Homework 8 (17808479)

A farmer plans to enclose a rectangular pasture adjacent to a river (see figure). The pasture must contain 245,000 square meters in order to provide enough grass for the herd. No fencing is needed along the river. What dimensions will require the least amount of fencing? x = 100700 m y = 1007000 m y = 1007000 m y = 1007000 m y = 1007000000000000000000000000000000000		Question Details	LarCalcET7 4.7.011. [4056640
length 240 m width 240 m Question Details LarCalcET7 4.7.019. [405653 A farmer plans to enclose a rectangular pasture adjacent to a river (see figure). The pasture must contain 245,000 square meters in order to provide enough grass for the herd. No fencing is needed along the river. What dimensions will require th least amount of fencing? x = 2700 m y = 250 m y = <t< th=""><th></th><th></th><th>the given perimeter and a maximum area.</th></t<>			the given perimeter and a maximum area.
Question Details LarCalCET7 4.7.019. [405653] A farmer plans to enclose a rectangular pasture adjacent to a river (see figure). The pasture must contain 245,000 square meters in order to provide enough grass for the herd. No fencing is needed along the river. What dimensions will require th least amount of fencing? x =			
A farmer plans to enclose a rectangular pasture adjacent to a river (see figure). The pasture must contain 245,000 square meters in order to provide enough grass for the herd. No fencing is needed along the river. What dimensions will require the least amount of fencing? x = 100700 m y = 100000 m y = 100000000000000000000000000000000000			
meters in order to provide enough grass for the herd. No fencing is needed along the river. What dimensions will require the least amount of fencing? x =	-	Question Details	LarCalcET7 4.7.019. [405653]
least amount of fencing? x = y =			
x = 200 m y = 2350 m y = 2350 m y = 200 m x = y = 200 m x = y = 200 m x = y = 200 m y = 200 m x = 200 m x = x = 200 m x = 200 m x = x = 200 m x = x = 200 m x =			ierd. No fencing is needed along the river. What dimensions will require the
Question Details LarCalcET7 4.7.020. [405698 A rectangular solid (with a square base) has a surface area of 121.5 square centimeters. Find the dimensions that will resu a solid with maximum volume.		least amount of fencing?	
A rectangular solid (with a square base) has a surface area of 121.5 square centimeters. Find the dimensions that will result a solid with maximum volume.			
A rectangular solid (with a square base) has a surface area of 121.5 square centimeters. Find the dimensions that will resu a solid with maximum volume.		x = 2700 m	
A rectangular solid (with a square base) has a surface area of 121.5 square centimeters. Find the dimensions that will resu a solid with maximum volume.		x = 2700 m	
A rectangular solid (with a square base) has a surface area of 121.5 square centimeters. Find the dimensions that will resu a solid with maximum volume.		x = 2700 m	
a solid with maximum volume.		x = 2700 m	
	_	x = $y = $ $y =$	LarCalcET7 4.7.020. [405698
	_	$x = \boxed{2}700 \text{ m}}{y} = \boxed{2}350 \text{ m}}$ $y = \boxed{2}$	
		$x = \boxed{2}700 \text{ m}}$ $y = \boxed{2}350 \text{ m}}$ $y = \boxed{2}350 \text{ m}}$ Question Details A rectangular solid (with a square base) has a su	LarCalcET7 4.7.020. [4056988 rface area of 121.5 square centimeters. Find the dimensions that will resul

4.	Question Details LarCalcET7 4.7.029. [4056754]
	A rectangular package to be sent by a postal service can have a maximum combined length and girth (perimeter of a cross section) of 102 inches (see figure). Find the dimensions of the package of maximum volume that can be sent. (Assume the cross section is square.) $x = \boxed{17}$ $y = \boxed{234}$
5.	Question Details LarCalcET7 4.7.033.MI. [4056915] A solid is formed by adjoining two hemispheres to the ends of a right circular cylinder. The total volume of the solid is 18 cubic centimeters. Find the radius of the cylinder that produces the minimum surface area. (Round your answer to three decimal places.) Image: Details Image: Details Image: Details Image: Details Image: Details LarCalcET7 4.7.033.MI. [4056915] A solid is formed by adjoining two hemispheres to the ends of a right circular cylinder. The total volume of the solid is 18 cubic centimeters. Find the radius of the cylinder that produces the minimum surface area. (Round your answer to three decimal places.) Image: Details Image: Details Image: Details Image: Details
6.	Question Details LarCalcET7 4.7.039. [4056755]
	An offshore oil well is 4 kilometers off the coast. The refinery is 6 kilometers down the coast (see figure). Laying pipe in the ocean is twice as expensive as on land. What path should the pipe follow in order to minimize the cost? $x = \boxed{\frac{4}{\sqrt{3}}} \text{ km}$ 4

·····			
11.	Question Details	LarCalcET7 4.8.021. [4057152]	
	Find the differential dy of the given function. (Use "dx" for dx .)		
	$y = 3x^2 - 6$		
	dy =		
12.	Question Details	LarCalcET7 4.8.025. [4057021]	
	Find the differential dy of the given function.	(Use "dx" for dx.)	
	$y = \frac{x+1}{5x-2}$		
	$dy = \boxed{-\frac{7}{(5x-2)^2}}$	dx	
13.	Question Details	LarCalcET7 4.8.041.MI. [4057205]	
		hown below, where T is in feet and x is the speed in miles per hour.	
	$T = 2.5x + 0.5x^2$	nown below, where r is in feet and x is the speed in finites per hour.	
		in total stopping distance as speed changes from $x = 25$ to $x = 28$ miles per	
	hour. (Round your answers to one decimal pla	ace.)	
	dT = 82.5 ft		
	$\frac{dT}{T} = \boxed{22.0\%}$		
14.	Question Details	LarCalcET7 4.8.047. [4056352]	
	answers to four decimal places.)	the expression. Compare your answer with that of a calculator. (Round your	
	√24.4		
	using differentials 🔑 4.9400		
	using a calculator 🔑 4.9396		
15.	Question Details	LarCalcET7 4.8.503.XP.MI. [4133853]	
		be 20 inches, with a possible error of 1/32 inch. Use differentials to approximate	
	the possible propagated error in computing th		
	± 5/4 in ²		
Assign	ment Details		
Name	(AID): Homework 8 (17808479)	Feedback Settings	
	ssions Allowed: 5	Before due date	
-	ory: Homework	Question Score	
Code: Lockeo		Assignment Score Publish Essay Scores	
LOOKE			

Author: Arrigo, Danny (darrigo@uca.edu) Last Saved: Oct 12, 2020 08:13 AM CDT Permission: Protected Randomization: Assignment Which graded: Last

Question Part Score Mark Add Practice Button Help/Hints Response Save Work After due date Question Score Assignment Score Publish Essay Scores Key Question Part Score Solution Mark Add Practice Button Help/Hints Response