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CAP 4630

Artificial Intelligence

Instructor: Sam Ganzfried

sganzfri@cis.fiu.edu
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Schedule

• 10/31: Continue planning (HW3 out)

• 11/2: Finish planning, start probability (Bayesian networks)

• 11/6: Withdrawal deadline

• 11/7: TA will go over HW2

• 11/9: Continue probability (Bayesian networks, Markov models)

• 11/14: Markov decision processes (HW4 out)

• 11/16: Reinforcement learning

• 11/21, 11/28, 11/30, 12/5: Machine learning (classification, 

regression, clustering, deep learning)

• 12/7: Project presentations and class project due

• Final exam on 12/14
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Announcements

• HW3 out today due 11/14 (2:05pm in lecture or 

2:00pm on Moodle)

– https://www.cs.cmu.edu/~sganzfri/HW3_AI.pdf

• Midterm exams 

• HW2 solutions and graded assignments

• Midterm grades and withdrawal deadline

https://www.cs.cmu.edu/~sganzfri/HW3_AI.pdf
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Class project

• For the class project students will implement an agent 

for 3-player Kuhn poker. This is a simple, yet 

interesting and nontrivial, variant of poker that has 

appeared in the AAAI Annual Computer Poker 

Competition. The grade will be partially based on 

performance against the other agents in a class-wide 

competition, as well as final reports and presentations 

describing the approaches used. Students can work 

alone or in groups of 2.

http://www.computerpokercompetition.org/index.php/75-limit-games
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Linear programming (LP)
• Countless real-world applications have been successfully 

modeled and solved using LP techniques. This has produced an 

ongoing revolution in the way decisions are made throughout all 

sectors of the economy. Typical applications include the 

scheduling of airline crews, the distribution of products through 

a manufacturing supply chain, and production planning in the 

petrochemical industry. 

• Because of the simplicity of the LP model, software has been 

developed that is capable of solving problems containing 

millions of variables and tens of thousands of constraints. 

Computer implementations are widely available for most 

mainframes, workstations, and microcomputers. A variety of 

problems with nonlinear functions, multiple objectives, 

uncertainties, or multiple decision makers, such as those arising 

in game theory, can be modeled as linear programs.
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LP solution concepts

• Solution: An assignment of values to the decision variables is a 

solution to the LP model. Given a solution, the expressions 

describing the objective function and the constraints can be 

evaluated. A solution is feasible if all the constraints, the non-

negativity restrictions, and the simple upper bounds are satisfied. 

If any one of the restrictions is violated, the solution is infeasible.

• Optimal solution: A feasible solution that maximizes or 

minimizes the objective function (depending on the criterion). 

The purpose of an LP algorithm is to find the optimal solution or 

to determine that no feasible solution exists.
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LP solution concepts
• Alternative optima: If there is more than one optimal solution 

(solutions that yield the same value of the objective z), the model 

is said to have multiple or alternative optimal solutions. Many 

practical problems have alternative optima.

• No feasible solution: If there is no specification of values for the 

decision variables that satisfies all the constraints, the problem is 

said to have no feasible solution. In practical problems, it is 

possible that the set of constraints does not allow for a feasible 

solution (e.g., x >= 3, x <=2). Such a situation might result from a 

mistake in the problem statement or an error in data entry. 

Redundant equality constraints or nearly identical inequality 

constraints in the problem formulation may lead to a false 

indication that no feasible solution exists. Although the set of 

equalities may have a solution in theory, rounding errors inherent 

in computer computations may make the simultaneous satisfaction 

of these equalities (and sometimes inequalities) impossible.
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LP solution concepts

• Unbounded model: If there are feasible solutions for which the 

objective function can achieve arbitrarily large values (if 

maximizing) or arbitrarily small values (if minimizing), the 

model is said to be unbounded. When all variables are restricted 

to be nonnegative and have finite simple upper bounds, this 

condition is impossible. If no bounds are specified for some 

variables, the model may have an unbounded solution. However, 

since most decisions must take into account limitations on 

resources and laws of nature, such a model is probably a poor 

representation of the real problem.
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Simplex algorithm

• The simplex algorithm, developed by George Dantzig in 1947, solves LP 

problems by constructing a feasible solution at a vertex of the polytope and then 

walking along a path on the edges of the polytope to vertices with non-

decreasing values of the objective function until an optimum is reached for sure. 

In many practical problems, "stalling" occurs: Many pivots are made with no 

increase in the objective function. In rare practical problems, the usual versions 

of the simplex algorithm may actually "cycle". To avoid cycles, researchers 

developed new pivoting rules.

• In practice, the simplex algorithm is quite efficient and can be guaranteed to find 

the global optimum if certain precautions against cycling are taken. The simplex 

algorithm has been proved to solve "random" problems efficiently, i.e. in a cubic 

number of steps, which is similar to its behavior on practical problems.

• However, the simplex algorithm has poor worst-case behavior: Klee and Minty 

constructed a family of linear programming problems for which the simplex 

method takes a number of steps exponential in the problem size. In fact, for some 

time it was not known whether the linear programming problem was solvable in 

polynomial time, i.e. of complexity class P.
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Interior point algorithm

• In contrast to the simplex algorithm, which finds an optimal 

solution by traversing the edges between vertices on a 

polyhedral set, interior-point methods move through the interior 

of the feasible region.

• The ellipsoid algorithm (Khachiyan) is the first worst-case 

polynomial-time algorithm for linear programming. To solve a 

problem which has n variables and can be encoded in L input 

bits, this algorithm uses O(n^4 L) pseudo-arithmetic operations 

on numbers with O(L) digits. Khachiyan's algorithm and his 

long standing issue was resolved by Leonid Khachiyan in 1979 

with the introduction of the ellipsoid method. The convergence 

analysis has (real-number) predecessors, notably the iterative 

methods developed by Naum Z. Shor and the approximation 

algorithms by Arkadi Nemirovski and D. Yudin.
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LP Duality

• Primal problem: Maximize cTx subject to Ax <= b, x >= 0

• Corresponding dual problem: Minimize bTy subject to ATy>= c, 

y >= 0

• Weak duality theorem: The objective function value of the 

dual solution is always greater than or equal to the objective 

function value of the primal at any feasible solution.

• Strong duality theorem: If the primal has an optimal solution, 

x*, then the dual also has an optimal solution y*, and cTx*=bTy* 

• Fact: the dual of a dual linear program is the original primal 

linear program.

• Fact: Every feasible solution for a linear program gives a bound 

on the optimal value of the objective function of its dual.
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https://math.stackexchange.com/questions/243706/what-are-the-advantages-of-dual-of-a-problem

• Understanding the dual problem can lead to specialized algorithms 

for some important classes of LP problems

– E.g., Hungarian algorithm for assignment problem, Network Simplex method

• The dual can be helpful for sensitivity analysis

– Modifying primal’s constraints can make original primal optimal solution 

infeasible, but only changes objective function or adds new variable to dual, 

so original dual solution is still feasible (and close to new optimal solution)

• Sometimes finding initial feasible solution to dual is much easier 

than finding one for the primal.

– E.g., Ax>=b, x>=0,b>=0, dual Aty<=c,y>=0,c>=0. Origin feasible for dual.

• Dual variables give shadow prices for primal constraints

– E.g., profit  maximization problem with resource constraint i. The value yi of 

corresponding dual variable in optimal solution tells that you get an increase 

of in maximum profit for each unit increase in the amount of resource i

• Sometimes dual is just easier to solve

– Problem with many constraints and few variables can be converted into one 

with few constraints and many variables.
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Cutting plane method for ILP

• Cutting plane methods for MILP work by solving a non-integer 

linear program, the linear relaxation of the given integer 

program. The theory of Linear Programming dictates that under 

mild assumptions (if the linear program has an optimal solution, 

and if the feasible region does not contain a line), one can 

always find an extreme point or a corner point that is optimal. 

The obtained optimum is tested for being an integer solution. If 

it is not, there is guaranteed to exist a linear inequality that 

separates the optimum from the convex hull of the true feasible 

set. Finding such an inequality is the separation problem, and 

such an inequality is a cut. A cut can be added to the relaxed 

linear program. Then, the current non-integer solution is no 

longer feasible to the relaxation. This process is repeated until 

an optimal integer solution is found.
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Gomory cut (for ILP)
• Cutting planes were proposed by Ralph Gomory in the 1950s as a 

method for solving integer programming and mixed-integer 

programming problems. However most experts, including 

Gomory himself, considered them to be impractical due to 

numerical instability, as well as ineffective because many rounds 

of cuts were needed to make progress towards the solution. 

Things turned around when in the mid-1990s Gérard Cornuéjols

and co-workers showed them to be very effective in combination 

with branch-and-bound (called branch-and-cut) and ways to 

overcome numerical instabilities. Nowadays, all commercial 

MILP solvers use Gomory cuts in one way or another. Gomory

cuts are very efficiently generated from a simplex tableau, 

whereas many other types of cuts are either expensive or even 

NP-hard to separate. Among other general cuts for MILP, most 

notably lift-and-project dominates Gomory cuts.
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Gomory cut algorithm
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Truth table for wumpus world
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Satisfiability

• A sentence (in logic) is satisfiable if it is true in, or satisfied by, 

some model. For example, the knowledge base, (R1 AND R2 

AND R3 AND R4 AND R5), is satisfiable because there are 

three models in which it is true.

• Satisfiability can be checked by enumerating the possible 

models until one is found that satisfies the sentence. The 

problem of determining the satisfiability of sentences in 

propositional logic – the SAT problem—was the first problem 

proved to be NP-complete. Many problems in computer science 

(including the planning graph one, and integer programming) 

are really satisfiability problems.

• Many specialized “SAT-solving” algorithms. But it can also be 

formulated as an 0-1 ILP (or more generally a CSP). 
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Planning

• AI planning arose from investigations into state-space search, 

theorem proving, and control theory and from the practical 

needs of robotics, scheduling, and other domains.

• Shakey the robot was the first general-purpose mobile robot to 

be able to reason about its own actions. While other robots 

would have to be instructed on each individual step of 

completing a larger task, Shakey could analyze commands and 

break them down into basic chunks by itself.

• Due to its nature, the project combined research in robotics, 

computer vision, and natural language processing. Because of 

this, it was the first project that melded logical reasoning and 

physical action. Some of the most notable results of the project 

include the A* search algorithm, the Hough transform, and the 

visibility graph method.
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Shakey

• https://www.youtube.com/watch?v=7bsEN8mwUB8
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Fuzzy logic

• Fuzzy logic is a form of many-valued logic in which the truth 

values of variables may be any real number between 0 and 1. It 

is employed to handle the concept of partial truth, where the 

truth value may range between completely true and completely 

false. By contrast, in Boolean logic, the truth values of variables 

may only be the integer values 0 or 1. Furthermore, when 

linguistic variables are used, these degrees may be managed by 

specific (membership) functions. Fuzzy logic has been applied 

to many fields, from control theory to artificial intelligence.
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• Classical logic only permits conclusions which are either true or false. 

However, there are also propositions with variable answers, such as 

one might find when asking a group of people to identify a color. In 

such instances, the truth appears as the result of reasoning from 

inexact or partial knowledge in which the sampled answers are 

mapped on a spectrum.

• Humans and animals often operate using fuzzy evaluations in many 

everyday situations. In the case where someone is tossing an object 

into a container from a distance, the person does not compute exact 

values for the object weight, density, distance, direction, container 

height and width, and air resistance to determine the force and angle 

to toss the object. Instead he instinctively applies quick "fuzzy" 

estimates, based upon previous experience, to determine what output 

values of force, direction and vertical angle to use to make the toss.

• Both degrees of truth and probabilities range between 0 and 1 and 

hence may seem similar at first, but fuzzy logic uses degrees of truth 

as a mathematical model of vagueness, while probability is a 

mathematical model of ignorance.
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Fuzzy logic

• A basic application might characterize various sub-ranges of a 

continuous variable. For instance, a temperature measurement 

for anti-lock brakes might have several separate membership 

functions defining particular temperature ranges needed to 

control the brakes properly. Each function maps the same 

temperature value to a truth value in the 0 to 1 range. These truth 

values can then be used to determine how the brakes should be 

controlled.

• 3-step process:

1. Fuzzify all input values into fuzzy membership functions.

2. Execute all applicable rules in the rulebase to compute the fuzzy output 

functions.

3. De-fuzzify the fuzzy output functions to get "crisp" output values.
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Fuzzification

• In this image, the meanings of the expressions cold, warm, and 

hot are represented by functions mapping a temperature scale. A 

point on that scale has three "truth values"—one for each of the 

three functions. The vertical line in the image represents a 

particular temperature that the three arrows (truth values) gauge. 

Since the red arrow points to zero, this temperature may be 

interpreted as "not hot". The orange arrow (pointing at 0.2) may 

describe it as "slightly warm" and the blue arrow (pointing at 

0.8) "fairly cold".
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Applications of fuzzy logic
• Many of the early successful applications of fuzzy logic were 

implemented in Japan. The first notable application was on the 

high-speed train in Sendai, in which fuzzy logic was able to 

improve the economy, comfort, and precision of the ride. It has 

also been used in recognition of hand written symbols in Sony 

pocket computers, flight aid for helicopters, controlling of 

subway systems in order to improve driving comfort, precision 

of halting, and power economy, improved fuel consumption for 

automobiles, single-button control for washing machines, 

automatic motor control for vacuum cleaners with recognition of 

surface condition and degree of soiling, and prediction systems 

for early recognition of earthquakes through the Institute of 

Seismology Bureau of Meteorology, Japan.

• FIU talk on climate change & national security used “fuzzy 

reasoning” https://www.cis.fiu.edu/lecture_series/climate-

change-national-security/
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Planning example: air cargo transport

• Three actions: 

– Load, Unload, Fly

• Two predicates:

– In(c,p) means that cargo c is inside plane p

– At(x,a) means that object x (either plane or cargo) is at 

airport a.

• Initial state

– Conjunction (AND) of ground atoms. (Atoms that are not 

mentioned are false).

• Goal

– Conjunction of literals

• Preconditions and effects

– Must be specified for each action
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Air cargo transport problem
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Air cargo transport problem

• Note that some care must be taken to make sure the At

predicates are maintained properly. When a plane flies from one 

airport to another, all the cargo inside the plane goes with it. In 

first-order logic it would be easy to quantify over all objects that 

are inside the plane. But basic PDDL (Planning Domain 

Definition Language) does not have a universal quantifier, so we 

need a different solution. The approach we use is to say that a 

piece of cargo ceases to be At anywhere when it is In a plane; 

the cargo only becomes At the new airport when it is unloaded. 

So At really means “available for use at a given location.” 

• PDDL based off STRIPS language. 
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STRIPS

• In artificial intelligence, STRIPS (Stanford Research Institute 

Problem Solver) is an automated planner developed by Richard 

Fikes and Nils Nilsson in 1971 at SRI International. The same 

name was later used to refer to the formal language of the inputs 

to this planner. This language is the base for most of the 

languages for expressing automated planning problem instances 

in use today.

• STRIPS instance is quadruple <P,O,I,G>

– P is set of conditions

– O is set of operators (i.e., actions). Each action specifies preconditions 

and postconditions .

– I is initial state (set of conditions that are initially true).

– G is goal state (set of conditions needed to be true/false to achieve goal).
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Air cargo transport problem

• What is a solution for this problem?
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Air cargo transport problem

• One solution (there may be others):

[Load(C1,P1,SFO), Fly(P1,SFO,JFK), Unload(C1,P1,JFK),

Load(C2,P2,JFK), Fly(P2,JFK,SFO), Unload(C2,P2,SFO)].
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Air cargo transport problem

• What about “degenerate” actions like 

Fly(P1,JFK,JFK)?

• This should be a no-op (no operation), but it 

apparently has contradictory effects according to the 

definition (the effect would include At(P1,JFK) AND 

!At(P1,JFK)).

• It is common to ignore such problems and assume that 

the effects just cancel out. A perhaps better approach is 

to add inequality preconditions saying that the from

and to airports must be different. We will see another 

similar example shortly.
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Spare tire problem

• The goal is to have a good spare tire properly mounted 

onto the car’s axle, where the initial state has a flat tire 

on the axle and a good spare tire in the trunk. 

• Four actions:

– Removing the spare tire from the trunk

– Removing the flat tire from the axle

– Putting the spare on the axle

– Leaving the car unattended overnight

• Assume that the car is parked in a particularly bad 

neighborhood, so that the effect of leaving it overnight 

is that the tire disappear.
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Spare tire problem
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Spare tire problem

• Solution?
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Spare tire problem

• [Remove(Flat, Axle), Remove(Spare, Trunk), 

PutOn(Spare, Axle)].
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Blocks world

• One of the most famous planning domains is known as 

the blocks world. This domain consists of a set of 

cube-shaped blocks sitting on a table. The blocks can 

be stacked, but only one block can fit directly on top of 

another. A robot arm can pick up a block and move it 

to another position, either on the table or on top of 

another block. The arm can pick up only one block at a 

time, so it cannot pick up a block that has another one 

on it. The goal will always be to build one or more 

stacks of blocks, specified in terms of what blocks are 

on top of what other blocks. For example, a goal might 

be to get block A on B and block B on C.
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Blocks world
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Blocks world

• We use On(b,x) to indicate that block b is on x, where x 

is either another block or the table. The action for 

moving block b from the top of x to the top of y will be 

Move(b,x,y). One of the preconditions on moving b is 

that no other block be on it. In first-order logic, this 

would be !Exists x On(x,b), or alternatively, ForAll x 

~On(x,b). Basic PDDL does not allow quantifiers, so 

instead we introduce a predicate Clear(x) that is true 

when nothing is on x.
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Blocks world
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Blocks world

• Solution?
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Blocks world

• [MoveToTable(C,A), Move(B,Table,C), Move(A,Table,B)]
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Blocks world

• The action Move moves a block b from x to y if both b 

and y are clear. After the move is made, b is still clear 

but y is not. A first at the Move schema is

• Action(Move(b,x,y),

– Precond: On(b,x) AND Clear(b) AND Clear(y)

– Effect: On(b,y) AND Clear(X) AND ~On(b,x) AND 

~Clear(y).
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Blocks world

• Unfortunately, this does not maintain Clear properly 

when x or y is the table. When x is the Table, this 

action has the effect Clear(Table), but the table should 

not become clear; and when y=Table, it has the 

precondition Clear(Table), but the table does not have 

to be clear for us to move a block onto it. To fix this, 

we do two things. First we introduce another action to 

move a block b from x to the table:

• Action (MoveToTable(b,x),

– Precond: On(b,x) AND Clear(b)

– Effect: On(b,Table) AND Clear(x) AND ~On(b,x))
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Blocks world

• Second, we take the interpretation of Clear(x) to be 

“there is a clear space on x to hold a block.” Under this 

interpretation, Clear(Table) will always be true. The 

only problem is that nothing prevents the planner from 

using Move(b,x,Table) instead of MoveToTable(b,x), 

which leads to a larger than needed search space, 

though functionally is not problematic. We can fix this 

by introducing the predicate Block and add Block(b) 

AND Block(y) to the precondition of Move.
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Planning in relation to other class modules

• We have seen that planning and search are very intertwined for 

robotics (e.g., Shakey implements A* search).

• Resemblance between Planning Domain Definition Language 

and First Order Logic.

• Planning graph can be represented as a Satisfiability problem in 

Conjunctive-Normal Form (conjunction (or AND) of clauses), 

which is an instance of constraint satisfaction.

• Certain AI planning models also solved by integer programming 

http://www.cs.umd.edu/~nau/papers/vossen1999use.pdf
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Have cake and eat cake too
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Planning graph
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Planning graph

• A planning problem asks if we can reach a goal state from the 

initial state. Suppose we are given a tree of all possible actions 

from the initial state to successor states, and their successors, 

and so on. If we indexed this  tree appropriately, we could 

answer the planning question “can we reach state G from state 

S0” immediately, by just looking it up. Of course, the tree is of 

exponential size, so this approach is impractical. A planning 

graph is a polynomial-size approximation to this tree that can be 

constructed quickly. The planning graph can’t answer 

definitively whether G is reachable from S0, but it can estimate 

how many steps it takes to reach G. The estimate is always 

correct when it reports the goal is not reachable, and it never 

overestimates the number of steps, so it is an admissible 

heuristic.
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Planning graph

• A planning graph is a directed graph organized into 

levels: first a level S0, for the initial state, consisting of 

nodes representing each fluent that holds in S0; then a 

level A0 consisting of nodes for each ground action that 

might be applicable in S0; then alternating levels Si 

followed by Ai; until we reach a termination condition 

(this will be described next time).
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Homework for next class

• Chapter 14 from Russel/Norvig

• HW3 out today, due 11/4


