
1

CAP 4630

Artificial Intelligence

Instructor: Sam Ganzfried

sganzfri@cis.fiu.edu

2

Schedule

• 10/31: Continue planning (HW3 out)

• 11/2: Finish planning, start probability (Bayesian networks)

• 11/6: Withdrawal deadline

• 11/7: TA will go over HW2

• 11/9: Continue probability (Bayesian networks, Markov models)

• 11/14: Markov decision processes (HW4 out)

• 11/16: Reinforcement learning

• 11/21, 11/28, 11/30, 12/5: Machine learning (classification,

regression, clustering, deep learning)

• 12/7: Project presentations and class project due

• Final exam on 12/14

3

Announcements

• HW3 out today due 11/14 (2:05pm in lecture or

2:00pm on Moodle)

– https://www.cs.cmu.edu/~sganzfri/HW3_AI.pdf

• Midterm exams

• HW2 solutions and graded assignments

• Midterm grades and withdrawal deadline

https://www.cs.cmu.edu/~sganzfri/HW3_AI.pdf

4

Class project

• For the class project students will implement an agent

for 3-player Kuhn poker. This is a simple, yet

interesting and nontrivial, variant of poker that has

appeared in the AAAI Annual Computer Poker

Competition. The grade will be partially based on

performance against the other agents in a class-wide

competition, as well as final reports and presentations

describing the approaches used. Students can work

alone or in groups of 2.

http://www.computerpokercompetition.org/index.php/75-limit-games

5

Linear programming (LP)
• Countless real-world applications have been successfully

modeled and solved using LP techniques. This has produced an

ongoing revolution in the way decisions are made throughout all

sectors of the economy. Typical applications include the

scheduling of airline crews, the distribution of products through

a manufacturing supply chain, and production planning in the

petrochemical industry.

• Because of the simplicity of the LP model, software has been

developed that is capable of solving problems containing

millions of variables and tens of thousands of constraints.

Computer implementations are widely available for most

mainframes, workstations, and microcomputers. A variety of

problems with nonlinear functions, multiple objectives,

uncertainties, or multiple decision makers, such as those arising

in game theory, can be modeled as linear programs.

6

LP solution concepts

• Solution: An assignment of values to the decision variables is a

solution to the LP model. Given a solution, the expressions

describing the objective function and the constraints can be

evaluated. A solution is feasible if all the constraints, the non-

negativity restrictions, and the simple upper bounds are satisfied.

If any one of the restrictions is violated, the solution is infeasible.

• Optimal solution: A feasible solution that maximizes or

minimizes the objective function (depending on the criterion).

The purpose of an LP algorithm is to find the optimal solution or

to determine that no feasible solution exists.

7

LP solution concepts
• Alternative optima: If there is more than one optimal solution

(solutions that yield the same value of the objective z), the model

is said to have multiple or alternative optimal solutions. Many

practical problems have alternative optima.

• No feasible solution: If there is no specification of values for the

decision variables that satisfies all the constraints, the problem is

said to have no feasible solution. In practical problems, it is

possible that the set of constraints does not allow for a feasible

solution (e.g., x >= 3, x <=2). Such a situation might result from a

mistake in the problem statement or an error in data entry.

Redundant equality constraints or nearly identical inequality

constraints in the problem formulation may lead to a false

indication that no feasible solution exists. Although the set of

equalities may have a solution in theory, rounding errors inherent

in computer computations may make the simultaneous satisfaction

of these equalities (and sometimes inequalities) impossible.

8

LP solution concepts

• Unbounded model: If there are feasible solutions for which the

objective function can achieve arbitrarily large values (if

maximizing) or arbitrarily small values (if minimizing), the

model is said to be unbounded. When all variables are restricted

to be nonnegative and have finite simple upper bounds, this

condition is impossible. If no bounds are specified for some

variables, the model may have an unbounded solution. However,

since most decisions must take into account limitations on

resources and laws of nature, such a model is probably a poor

representation of the real problem.

9

Simplex algorithm

• The simplex algorithm, developed by George Dantzig in 1947, solves LP

problems by constructing a feasible solution at a vertex of the polytope and then

walking along a path on the edges of the polytope to vertices with non-

decreasing values of the objective function until an optimum is reached for sure.

In many practical problems, "stalling" occurs: Many pivots are made with no

increase in the objective function. In rare practical problems, the usual versions

of the simplex algorithm may actually "cycle". To avoid cycles, researchers

developed new pivoting rules.

• In practice, the simplex algorithm is quite efficient and can be guaranteed to find

the global optimum if certain precautions against cycling are taken. The simplex

algorithm has been proved to solve "random" problems efficiently, i.e. in a cubic

number of steps, which is similar to its behavior on practical problems.

• However, the simplex algorithm has poor worst-case behavior: Klee and Minty

constructed a family of linear programming problems for which the simplex

method takes a number of steps exponential in the problem size. In fact, for some

time it was not known whether the linear programming problem was solvable in

polynomial time, i.e. of complexity class P.

10

Interior point algorithm

• In contrast to the simplex algorithm, which finds an optimal

solution by traversing the edges between vertices on a

polyhedral set, interior-point methods move through the interior

of the feasible region.

• The ellipsoid algorithm (Khachiyan) is the first worst-case

polynomial-time algorithm for linear programming. To solve a

problem which has n variables and can be encoded in L input

bits, this algorithm uses O(n^4 L) pseudo-arithmetic operations

on numbers with O(L) digits. Khachiyan's algorithm and his

long standing issue was resolved by Leonid Khachiyan in 1979

with the introduction of the ellipsoid method. The convergence

analysis has (real-number) predecessors, notably the iterative

methods developed by Naum Z. Shor and the approximation

algorithms by Arkadi Nemirovski and D. Yudin.

11

LP Duality

• Primal problem: Maximize cTx subject to Ax <= b, x >= 0

• Corresponding dual problem: Minimize bTy subject to ATy>= c,

y >= 0

• Weak duality theorem: The objective function value of the

dual solution is always greater than or equal to the objective

function value of the primal at any feasible solution.

• Strong duality theorem: If the primal has an optimal solution,

x*, then the dual also has an optimal solution y*, and cTx*=bTy*

• Fact: the dual of a dual linear program is the original primal

linear program.

• Fact: Every feasible solution for a linear program gives a bound

on the optimal value of the objective function of its dual.

12

https://math.stackexchange.com/questions/243706/what-are-the-advantages-of-dual-of-a-problem

• Understanding the dual problem can lead to specialized algorithms

for some important classes of LP problems

– E.g., Hungarian algorithm for assignment problem, Network Simplex method

• The dual can be helpful for sensitivity analysis

– Modifying primal’s constraints can make original primal optimal solution

infeasible, but only changes objective function or adds new variable to dual,

so original dual solution is still feasible (and close to new optimal solution)

• Sometimes finding initial feasible solution to dual is much easier

than finding one for the primal.

– E.g., Ax>=b, x>=0,b>=0, dual Aty<=c,y>=0,c>=0. Origin feasible for dual.

• Dual variables give shadow prices for primal constraints

– E.g., profit maximization problem with resource constraint i. The value yi of

corresponding dual variable in optimal solution tells that you get an increase

of in maximum profit for each unit increase in the amount of resource i

• Sometimes dual is just easier to solve

– Problem with many constraints and few variables can be converted into one

with few constraints and many variables.

13

Cutting plane method for ILP

• Cutting plane methods for MILP work by solving a non-integer

linear program, the linear relaxation of the given integer

program. The theory of Linear Programming dictates that under

mild assumptions (if the linear program has an optimal solution,

and if the feasible region does not contain a line), one can

always find an extreme point or a corner point that is optimal.

The obtained optimum is tested for being an integer solution. If

it is not, there is guaranteed to exist a linear inequality that

separates the optimum from the convex hull of the true feasible

set. Finding such an inequality is the separation problem, and

such an inequality is a cut. A cut can be added to the relaxed

linear program. Then, the current non-integer solution is no

longer feasible to the relaxation. This process is repeated until

an optimal integer solution is found.

14

Gomory cut (for ILP)
• Cutting planes were proposed by Ralph Gomory in the 1950s as a

method for solving integer programming and mixed-integer

programming problems. However most experts, including

Gomory himself, considered them to be impractical due to

numerical instability, as well as ineffective because many rounds

of cuts were needed to make progress towards the solution.

Things turned around when in the mid-1990s Gérard Cornuéjols

and co-workers showed them to be very effective in combination

with branch-and-bound (called branch-and-cut) and ways to

overcome numerical instabilities. Nowadays, all commercial

MILP solvers use Gomory cuts in one way or another. Gomory

cuts are very efficiently generated from a simplex tableau,

whereas many other types of cuts are either expensive or even

NP-hard to separate. Among other general cuts for MILP, most

notably lift-and-project dominates Gomory cuts.

15

Gomory cut algorithm

16

Truth table for wumpus world

17

Satisfiability

• A sentence (in logic) is satisfiable if it is true in, or satisfied by,

some model. For example, the knowledge base, (R1 AND R2

AND R3 AND R4 AND R5), is satisfiable because there are

three models in which it is true.

• Satisfiability can be checked by enumerating the possible

models until one is found that satisfies the sentence. The

problem of determining the satisfiability of sentences in

propositional logic – the SAT problem—was the first problem

proved to be NP-complete. Many problems in computer science

(including the planning graph one, and integer programming)

are really satisfiability problems.

• Many specialized “SAT-solving” algorithms. But it can also be

formulated as an 0-1 ILP (or more generally a CSP).

18

Planning

• AI planning arose from investigations into state-space search,

theorem proving, and control theory and from the practical

needs of robotics, scheduling, and other domains.

• Shakey the robot was the first general-purpose mobile robot to

be able to reason about its own actions. While other robots

would have to be instructed on each individual step of

completing a larger task, Shakey could analyze commands and

break them down into basic chunks by itself.

• Due to its nature, the project combined research in robotics,

computer vision, and natural language processing. Because of

this, it was the first project that melded logical reasoning and

physical action. Some of the most notable results of the project

include the A* search algorithm, the Hough transform, and the

visibility graph method.

19

Shakey

• https://www.youtube.com/watch?v=7bsEN8mwUB8

20

Fuzzy logic

• Fuzzy logic is a form of many-valued logic in which the truth

values of variables may be any real number between 0 and 1. It

is employed to handle the concept of partial truth, where the

truth value may range between completely true and completely

false. By contrast, in Boolean logic, the truth values of variables

may only be the integer values 0 or 1. Furthermore, when

linguistic variables are used, these degrees may be managed by

specific (membership) functions. Fuzzy logic has been applied

to many fields, from control theory to artificial intelligence.

21

• Classical logic only permits conclusions which are either true or false.

However, there are also propositions with variable answers, such as

one might find when asking a group of people to identify a color. In

such instances, the truth appears as the result of reasoning from

inexact or partial knowledge in which the sampled answers are

mapped on a spectrum.

• Humans and animals often operate using fuzzy evaluations in many

everyday situations. In the case where someone is tossing an object

into a container from a distance, the person does not compute exact

values for the object weight, density, distance, direction, container

height and width, and air resistance to determine the force and angle

to toss the object. Instead he instinctively applies quick "fuzzy"

estimates, based upon previous experience, to determine what output

values of force, direction and vertical angle to use to make the toss.

• Both degrees of truth and probabilities range between 0 and 1 and

hence may seem similar at first, but fuzzy logic uses degrees of truth

as a mathematical model of vagueness, while probability is a

mathematical model of ignorance.

22

Fuzzy logic

• A basic application might characterize various sub-ranges of a

continuous variable. For instance, a temperature measurement

for anti-lock brakes might have several separate membership

functions defining particular temperature ranges needed to

control the brakes properly. Each function maps the same

temperature value to a truth value in the 0 to 1 range. These truth

values can then be used to determine how the brakes should be

controlled.

• 3-step process:

1. Fuzzify all input values into fuzzy membership functions.

2. Execute all applicable rules in the rulebase to compute the fuzzy output

functions.

3. De-fuzzify the fuzzy output functions to get "crisp" output values.

23

Fuzzification

• In this image, the meanings of the expressions cold, warm, and

hot are represented by functions mapping a temperature scale. A

point on that scale has three "truth values"—one for each of the

three functions. The vertical line in the image represents a

particular temperature that the three arrows (truth values) gauge.

Since the red arrow points to zero, this temperature may be

interpreted as "not hot". The orange arrow (pointing at 0.2) may

describe it as "slightly warm" and the blue arrow (pointing at

0.8) "fairly cold".

24

Applications of fuzzy logic
• Many of the early successful applications of fuzzy logic were

implemented in Japan. The first notable application was on the

high-speed train in Sendai, in which fuzzy logic was able to

improve the economy, comfort, and precision of the ride. It has

also been used in recognition of hand written symbols in Sony

pocket computers, flight aid for helicopters, controlling of

subway systems in order to improve driving comfort, precision

of halting, and power economy, improved fuel consumption for

automobiles, single-button control for washing machines,

automatic motor control for vacuum cleaners with recognition of

surface condition and degree of soiling, and prediction systems

for early recognition of earthquakes through the Institute of

Seismology Bureau of Meteorology, Japan.

• FIU talk on climate change & national security used “fuzzy

reasoning” https://www.cis.fiu.edu/lecture_series/climate-

change-national-security/

25

Planning example: air cargo transport

• Three actions:

– Load, Unload, Fly

• Two predicates:

– In(c,p) means that cargo c is inside plane p

– At(x,a) means that object x (either plane or cargo) is at

airport a.

• Initial state

– Conjunction (AND) of ground atoms. (Atoms that are not

mentioned are false).

• Goal

– Conjunction of literals

• Preconditions and effects

– Must be specified for each action

26

Air cargo transport problem

27

Air cargo transport problem

• Note that some care must be taken to make sure the At

predicates are maintained properly. When a plane flies from one

airport to another, all the cargo inside the plane goes with it. In

first-order logic it would be easy to quantify over all objects that

are inside the plane. But basic PDDL (Planning Domain

Definition Language) does not have a universal quantifier, so we

need a different solution. The approach we use is to say that a

piece of cargo ceases to be At anywhere when it is In a plane;

the cargo only becomes At the new airport when it is unloaded.

So At really means “available for use at a given location.”

• PDDL based off STRIPS language.

28

STRIPS

• In artificial intelligence, STRIPS (Stanford Research Institute

Problem Solver) is an automated planner developed by Richard

Fikes and Nils Nilsson in 1971 at SRI International. The same

name was later used to refer to the formal language of the inputs

to this planner. This language is the base for most of the

languages for expressing automated planning problem instances

in use today.

• STRIPS instance is quadruple <P,O,I,G>

– P is set of conditions

– O is set of operators (i.e., actions). Each action specifies preconditions

and postconditions .

– I is initial state (set of conditions that are initially true).

– G is goal state (set of conditions needed to be true/false to achieve goal).

29

Air cargo transport problem

• What is a solution for this problem?

30

Air cargo transport problem

• One solution (there may be others):

[Load(C1,P1,SFO), Fly(P1,SFO,JFK), Unload(C1,P1,JFK),

Load(C2,P2,JFK), Fly(P2,JFK,SFO), Unload(C2,P2,SFO)].

31

Air cargo transport problem

• What about “degenerate” actions like

Fly(P1,JFK,JFK)?

• This should be a no-op (no operation), but it

apparently has contradictory effects according to the

definition (the effect would include At(P1,JFK) AND

!At(P1,JFK)).

• It is common to ignore such problems and assume that

the effects just cancel out. A perhaps better approach is

to add inequality preconditions saying that the from

and to airports must be different. We will see another

similar example shortly.

32

Spare tire problem

• The goal is to have a good spare tire properly mounted

onto the car’s axle, where the initial state has a flat tire

on the axle and a good spare tire in the trunk.

• Four actions:

– Removing the spare tire from the trunk

– Removing the flat tire from the axle

– Putting the spare on the axle

– Leaving the car unattended overnight

• Assume that the car is parked in a particularly bad

neighborhood, so that the effect of leaving it overnight

is that the tire disappear.

33

Spare tire problem

34

Spare tire problem

• Solution?

35

Spare tire problem

• [Remove(Flat, Axle), Remove(Spare, Trunk),

PutOn(Spare, Axle)].

36

Blocks world

• One of the most famous planning domains is known as

the blocks world. This domain consists of a set of

cube-shaped blocks sitting on a table. The blocks can

be stacked, but only one block can fit directly on top of

another. A robot arm can pick up a block and move it

to another position, either on the table or on top of

another block. The arm can pick up only one block at a

time, so it cannot pick up a block that has another one

on it. The goal will always be to build one or more

stacks of blocks, specified in terms of what blocks are

on top of what other blocks. For example, a goal might

be to get block A on B and block B on C.

37

Blocks world

38

Blocks world

• We use On(b,x) to indicate that block b is on x, where x

is either another block or the table. The action for

moving block b from the top of x to the top of y will be

Move(b,x,y). One of the preconditions on moving b is

that no other block be on it. In first-order logic, this

would be !Exists x On(x,b), or alternatively, ForAll x

~On(x,b). Basic PDDL does not allow quantifiers, so

instead we introduce a predicate Clear(x) that is true

when nothing is on x.

39

Blocks world

40

Blocks world

• Solution?

41

Blocks world

• [MoveToTable(C,A), Move(B,Table,C), Move(A,Table,B)]

42

Blocks world

• The action Move moves a block b from x to y if both b

and y are clear. After the move is made, b is still clear

but y is not. A first at the Move schema is

• Action(Move(b,x,y),

– Precond: On(b,x) AND Clear(b) AND Clear(y)

– Effect: On(b,y) AND Clear(X) AND ~On(b,x) AND

~Clear(y).

43

Blocks world

• Unfortunately, this does not maintain Clear properly

when x or y is the table. When x is the Table, this

action has the effect Clear(Table), but the table should

not become clear; and when y=Table, it has the

precondition Clear(Table), but the table does not have

to be clear for us to move a block onto it. To fix this,

we do two things. First we introduce another action to

move a block b from x to the table:

• Action (MoveToTable(b,x),

– Precond: On(b,x) AND Clear(b)

– Effect: On(b,Table) AND Clear(x) AND ~On(b,x))

44

Blocks world

• Second, we take the interpretation of Clear(x) to be

“there is a clear space on x to hold a block.” Under this

interpretation, Clear(Table) will always be true. The

only problem is that nothing prevents the planner from

using Move(b,x,Table) instead of MoveToTable(b,x),

which leads to a larger than needed search space,

though functionally is not problematic. We can fix this

by introducing the predicate Block and add Block(b)

AND Block(y) to the precondition of Move.

45

Planning in relation to other class modules

• We have seen that planning and search are very intertwined for

robotics (e.g., Shakey implements A* search).

• Resemblance between Planning Domain Definition Language

and First Order Logic.

• Planning graph can be represented as a Satisfiability problem in

Conjunctive-Normal Form (conjunction (or AND) of clauses),

which is an instance of constraint satisfaction.

• Certain AI planning models also solved by integer programming

http://www.cs.umd.edu/~nau/papers/vossen1999use.pdf

46

Have cake and eat cake too

47

Planning graph

48

Planning graph

• A planning problem asks if we can reach a goal state from the

initial state. Suppose we are given a tree of all possible actions

from the initial state to successor states, and their successors,

and so on. If we indexed this tree appropriately, we could

answer the planning question “can we reach state G from state

S0” immediately, by just looking it up. Of course, the tree is of

exponential size, so this approach is impractical. A planning

graph is a polynomial-size approximation to this tree that can be

constructed quickly. The planning graph can’t answer

definitively whether G is reachable from S0, but it can estimate

how many steps it takes to reach G. The estimate is always

correct when it reports the goal is not reachable, and it never

overestimates the number of steps, so it is an admissible

heuristic.

49

Planning graph

• A planning graph is a directed graph organized into

levels: first a level S0, for the initial state, consisting of

nodes representing each fluent that holds in S0; then a

level A0 consisting of nodes for each ground action that

might be applicable in S0; then alternating levels Si

followed by Ai; until we reach a termination condition

(this will be described next time).

50

Homework for next class

• Chapter 14 from Russel/Norvig

• HW3 out today, due 11/4

