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Abstract: Map projections have been widely used in many 
areas such as geography, oceanography, meteorology, 
geology, geodesy, photogrammetry and global positioning 
systems. Understanding different types of map projections 
is very crucial in these areas. This paper presents a tutorial 
review of various types of current map projections such as 
equal-area, conformal and conventional. We present these 
map projections from a model of the Earth to a flat sheet of 
paper or map and derive the plotting equations for them in 
detail. The first fundamental form and the Gaussian fun-
damental quantities are defined and applied to obtain the 
plotting equations and distortions in length, shape and 
size for some of these map projections.

Keywords: Conformal, Distortion, Equal-area, Gaussian 
Fundamental Form, Geographical Information System, 
Map Projection, Tissot’s indicatrix

1  Introduction
A map projection is a systematic transformation of the 
latitudes and longitudes of positions on the surface of 
the Earth to a flat sheet of paper, a map. More precisely, 
a map projection requires a transformation from a set of 
two independent coordinates on a model of the Earth (the 
latitude f and longitude l) to a set of two independent 
coordinates on the map (e. g., the Cartesian coordinates  
x and y), i. e., a transformation matrix T such that 
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However, since we deal with partial derivative and fun-
damental quantities (to be defined in Section 2), it is 
impossible to find such a transformation explicitly. 

(1)

There are a number of techniques for map projection, 
yet in all of them distortion occurs in length, angle, shape, 
area or in a combination of these. Carl Friedrich Gauss 
showed that a sphere’s surface cannot be represented on 
a map without distortion (cf., [8]). 

A terrestrial globe is a three dimensional scale model 
of the Earth that does not distort the real shape and the 
real size of large futures of the Earth. The term globe is used 
for those objects that are approximately spherical. The 
equation for spherical model of the Earth with radius R is 
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An oblate ellipsoid or spheroid is a quadratic surface 
obtained by rotating an ellipse about its minor axis (the 
axis that passes through the north pole and the south 
pole). The shape of the Earth is appeared to be an oblate 
ellipsoid (mean Earth ellipsoid), and the geodetic latitudes 
and longitudes of positions on the surface of the Earth 
coming from satellite observations are on this ellipsoid. 
The equation for spheroidal model of the Earth is 
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where a is the semi-major axis, and b is the semi-minor 
axis of the spheroid of revolution. 

The spherical representation of the Earth (terrestrial 
globe) must be modified to maintain accurate representa-
tion of either shape or size of the spheroidal representation 
of the Earth. We discuss about these two representations 
in Section 3.

There are three major types of map projections:
1.	 Equal-area projections. These projections preserve 

the area (the size) between the map and the model 
of the Earth. In other words, every section of the map 
keeps a constant ratio to the area of the Earth that rep-
resents. Some of these projections are Albers with one 
or two standard parallels [6] (the conical equal-area), 
the Bonne [8], the azimuthal and Lambert cylindrical 
equal-area [6, 8] which are best applied to a local area 
of the Earth, and some of them are world maps such 

(2)

(3)
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as the sinusoidal [8], the Mollweide [8, 12], the para-
bolic [13], the Hammer-Aitoff [8, 12], the Boggs eumor-
phic [13], and Eckert IV [11]. As an application of 
equal-area projections, we can mention for instance 
Lambert azimuthal projection [6, 8] which is often 
used by researchers in structural geology to plot crys-
tallographic axes and faces, lineation and foliation 
in rocks, slickensides in faults, and other linear and 
planar features.

2.	 Conformal projections. These projections, while 
not so useful for portraying large areas, are very 
important in surveying and mapping, as angles are 
truly preserved. These projections include the Mer-
cator, the Lambert conformal with one standard 
parallel, and the stereographic (e. g., [6, 8]. These 
projections are only applicable to limited areas on 
the model of the Earth for any one map. Conformal 
projections have applications in topography, certain 
kinds of navigation and geographical information 
system (GIS). Lambert conformal conic and Merca-
tor conformal cylindrical are commonly used for GIS. 
Google and Bing Maps use a variant of the Mercator 
conformal projection called Web Mercator or Google 
Web Mercator. This for instance shows Greenland 
as large as Australia, however, in reality Australia is 
more than three and half times larger than Greenland 
(e. g., [4]). 

3.	 Conventional projections. These projections are 
neither equal-area nor conformal, and they are 
designed based on some particular applications, for 
instance in GIS and on web pages. Some examples are 
the simple conic [6], the gnomonic [8], the azimuthal 
equidistant [9], the Miller [12], the polyconic [13], the 
Robinson [8], and the Plate Carree projections [8, 9]. 
The Plate Carree was commonly used in the past since 
it has a very simple calculation before computers 
allowed for complex calculations.

In this paper, we only show the derivation of plotting 
equations on a map for the Mercator cylindrical confor-
mal and Lambert cylindrical equal-area for a spherical 
model of the Earth (Section 4), the Albers with one stan-
dard parallel and the azimuthal for a spherical model of 
the Earth and the Lambert conformal with one standard 
parallel for a spheroidal model of the Earth (Section 5), 
the sinusoidal (Section 6), the simple conic and the plate 
carree projections (Section 7). The methods of obtaining 
other projections are similar to these projections, and we 
refer the reader to [3, 6, 8, 9].

In Section 8, the equations for distortions of length, 
area and angle are derived. As an example, the distortions 

in length for the Albers projection and in length and area 
for the Mercator projection are calculated [8, 9, 15].

2  �Mathematical Fundamentals  
of Map Projections

In this section, we derive the first fundamental form for 
a general surface that completely describes the metric 
properties of the surface, and it is a key in map projec-
tion. Furthermore, we discuss about Tissot’s indicatrices  
(Tissot’s ellipses) that usually depict on the maps to show 
the various types of distortions. This section is mainly 
based on [5, 6, 8, 9, 12, 15].

2.1  �Differential Geometry of a General 
Surface and First Fundamental Form

The parametric representation of a surface requires two 
parameters. Let a and b be these two parameters. For 
instance, for a particular surface such as the model of the 
Earth, these two parameters are the latitude and longitude. 
The vector at any point P on a surface is given by r = r (a, b). 
If either of parameters a or b is held constant and the other 
one is varied, a space curve results (cf., Figure 1).

The tangent vectors to a-curve and b-curve at point P 
are respectively as follows: 

a r b r= , = .� � � �

α β
∂

∂

∂

∂
(4)

Figure 1: Geometry for parametric curves.
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The total differential of r is 

dr ad bd= + .� � �
α β

The first fundamental form (e. g., [8]) is defined as the dot 
product of Equation (5) with itself:

ds dr dr ad bd ad bd

E d Fd d G d

= = + +

= +2 + ,
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where E = a . a, F = a . b


 and G = b


 . b


 are known as the 
Gaussian fundamental quantities.

–– From Equation 6, the distance between two arbitrary 
points P1 and P2 on the surface can be calculated: 

∫ α α β β

β
α

β
α

α

( ) ( )s E d Fd d G d

E F d
d

G d
d

d

= +2 +

= +2 + .

P

P 2 2

2

1

2

∫
P

P

1

2

–– The angle between a and b


 is simply given by 
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–– Incremental area is the magnitude of the cross product 
of ada and b
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db, i. e., 

� � � �

� �
α β α β θ

θ α β

θ α β

α β

α β

× ⋅

⋅

dA ad bd ad bd

a b d d

E G d d

EG EG F
EG

d d

EG F d d

= = sin

= sin

= 1–cos

= –

= – .

2

2

2

Since we are dealing with latitudes and longitudes on a 
spherical or spheroidal model of the Earth, the vectors a 
and b



 are orthogonal (meridians are normal to equator 
parallels). Also, in maps, we are dealing with the polar 
and Cartesian coordinate systems in which their axes are 
perpendicular. Thus, from Equation (8), because 90° = 0, 
one obtains F = 0.

Therefore, the first fundamental form Equation (6) in 
map projection will be deduced to the following form:

ds E d G d= + .
2 2 2

α β( ) ( ) ( )

(5)

(6)

(7)

(8)

(9)

from Equation (8)

(10)

Example 1 The first fundamental form for a planar surface
1.	 in the Cartesian coordinate system (a cylindrical 

surface) is (ds)2 = (dx)2 + (dy)2, where E = G = 1,
2.	 in the polar coordinate system (a conical surface) is 

(ds)2 = (dr)2 + r2(dθ)2, where E = 1 and G = r2,
3.	 in the spherical model of the Earth, Equation (2), 

is (ds)2 = R2(df)2 + R2 cos2 f(dl)2, where E = R2 and 
G = R2 cos2 f, and

4.	 in the spheroidal model of the Earth, Equation (3), 
is (ds)2 = M2(df)2 + N 2 cos2 f(dl)2, where E = M2 and 
G = N2 cos2 f in which M is the radius of curvature in 
meridian and N is the radius of curvature in prime ver-
tical which are both functions of f: 
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See Figure 2, and [8, 15] for the derivations of M and N.

2.2  �Transformation Equations of Map 
Projections

Suppose that a = f and b = l are the parameters of the 
model of the Earth with the fundamental quantities e, f 
and g given by e = R2, f = 0, g = R2 cos2 f for the spherical 
model of the Earth, or given by e = M2, f = 0 and g = N 2 cos2 f 
for the spheroidal model of the Earth (cf., Example 1).

(11)

Figure 2: Geometry for the spheroidal model of the Earth, x
a

y
a

z
b
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Consider a two-dimensional projection with para-
metric curves defined by the parameters u and v. For 
instance, for the polar or conical coordinates, we have 
u = r and υ = θ. Let E ¢, F ¢ and G¢ be its fundamental quan-
tities. Also, assume that on the plotting surface a second 
set of parameters, x and y, with the fundamental quanti-
ties E, F and G.

The relationship between the two sets of parameters 
on the plane is given by 

x x u v y y u v, , , .( ) ( )= =

As an example, x = r cos θ and y = r sin θ for the polar and 
Cartesian coordinates. 

The relationship between the parametric curves f, l, 
u and υ is 

u u v v= , , = , .φ λ φ λ( ) ( )
Equation (13) must be unique and reversible, i. e., a point 
on the Earth must represent only one point on the map 
and vice versa. From Equations (12) and (13), we have 

x x u v y y u v= , , , , = , , , .φ λ φ λ φ λ φ λ( ) ( )( ) ( ) ( ) ( )
From the definition of the Gaussian first fundamental 
quantities, we have 
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Note that in here a and b in Equation (4) are replaced by f 
and l, respectively. Similarly, we have 
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As we mentioned earlier, since we are dealing with 
orthogonal curves, f = F = F ¢ = 0. Using this fact and 

(12)

(13)

(14)

(15)

(16)

Equations (14), (15) and (16), the following relation can be 
derived (see [8, Chapter 2]): 
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From Equation (9), a mapping from the Earth to the plot-
ting surface preserves area if (e. g., [8]): 

eg EG= .

From Equations (15), (16), (17) and using F = F¢ = 0, one 
obtains 
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= , = ,2

where J is the Jacobian determinant of the transformation 
from the coordinate set f and l to the coordinate set u and υ.

By a theorem of differential geometry (e. g., [8]), a 
mapping for the orthogonal curves is conformal if and 
only if 

E
e

G
g= .

2.3  Tissot’s Indicatrix

Suppose that a terrestrial globe is covered with infinites-
imal circles. In order to show distortions in a map projec-
tion, one may look at the projection of these circles in a 
map which are ellipses whose axes are the two principal 
directions along which scale is maximal and minimal at 
that point on the map. This mathematical contrivance is 
called Tissot’s indicatrix (e. g., [6, 12]).

Let a and b respectively be the semi-major and 
semi-minor axes of the projected ellipse on a map with 
coordinates x ad y. It is shown in [12] that 

ϑ ϑ
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ϑ ϑ
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

b h k hk h k hk= 0.5 + +2 sin – + –2 sin ,2 2 2 2

where h and k represent scales along the meridian and 
parallel for a given point respectively, and υ is the angular 
deformation: 

(17)

(18)

(19)

(20)

(21)

(22)
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where f, l, R are latitude, longitude and the radius of 
the globe, respectively. Moreover, the maximum angular 
distortion denoted by ω can be calculated as (cf., [12]): 

ω
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a b
a b

= 2 arcsin –
+

.

Usually Tissot’s indicatrices are placed across a map along 
the intersections of meridians and parallels to the equator, 
and they provide a good tool to calculate the magnitude of 
distortions at those points (the intersections). In an equal-
area projection, Tissot’s indicatrices (Tissot’s ellipses) 
change shape, whereas their areas remain the same. In 
conformal projection, the shape of Tissot’s indicatrices 
preserves (i. e., a = b in Equation (26), and so ω = 0), but 
their area varies. In conventional projection, both shape 
and area of Tissot’s indicatrices vary. 

3  �Projection from an Ellipsoid  
to a Sphere

In this section, we describe how much the latitudes 
and longitudes of a spheroidal model of the Earth will 
be affected once they are transformed to a spherical 
model, i. e., how much distortion in shape and size 
happens when one projects a spheroidal model of the 
Earth to a spherical model [3, 8, 9, 14]. We distinguish 
two cases, equal-area transformation and conformal 
transformation. 

Case 1. A spherical model of the Earth that has the 
same surface area as that of the reference ellipsoid is 
called the authalic sphere [8]. This sphere may be used as 
an intermediate step in the transformation from the ellip-
soid to the mapping surface. 

Let RA, fA and lA be the authalic radius, latitude and 
longitude, respectively. Also, let f and l be the geodetic 
latitude and longitude, respectively. From Example 1, we 

(23)

(24)

(25)

(26)

have e = M2, g = N2 cos2 f, E¢ = R2
A and G¢ = R2

A cos2 fA. By 
Equations (18) and (19), 
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In the transformation from the ellipsoid to the authalic 
sphere, longitude is invariant, i. e., l = lA. Moreover, fA is 
independent of lA and so l. Thus Equation (27) reduces to 

φ φ
φ
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∂
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A
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Substitute the values of M and N given by Equation (11) 
into Equation (28) to obtain 
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Integrating the left hand side of Equation (29) from 0 to f 
(using binary expansion), and the right hand side from 0 
to fA, one obtains 
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Assuming fA = 90° when f = 90°, Equation (30) gives: 
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Substituting Equation (31) into Equation (30), one obtains 
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Since the eccentricity eab is a small number, the above 
series are convergent. The relation between authalic and 
geodetic latitudes is equal at latitudes 0° and 90°, and 
the difference between them at other latitudes is about 

(27)

(28)

(29)

(30)

(31)

(32)
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0°.1 for the WGS-84 spheroid (see [8] for the definitions of 
the WGS-84 and WGS-72 spheroids). 

Example 2
1.	 For the WGS-72 spheroid with a ≈ 6,378,135 m and 

eab ≈ 0.081818, the radius of the authalic sphere is 

( )










R a e e e≈ 1– 1+ 2

3
+ 3

5
≈ 6,371,004 m.A ab ab ab

2 2 4

2.	 For the I. U. G. G spheroid (cf., [8]) with f = (a–b) /  
a ≈ 1 / 298.275, we have eab = 2 f – f 2 ≈ 0.0066944, and 
from Equation (32), for geodetic latitude f = 45°, we 
have sin fA ≈ 0.70552 which gives fA ≈ 44°.8713.

Case 2. A conformal sphere is an sphere defined for con-
formal transformation from an ellipsoid, and similar to 
the authalic sphere may be used as an intermediate step 
in the transformation from the reference ellipsoid to a 
mapping surface. 

Let Rc, fc and lc be the conformal radius, latitude and 
longitude for the conformal sphere, respectively. Let e 
and g be the same fundamental quantities as Case 1, and 
E¢ = R2

c and G¢ = R2
c cos2 fc. Also, let fc = fc(f) and lc = l. 

Thus, from Equation (17), 

φ
φ

λ
φ

φ
φ

φ
λ

λ
λ

∂

∂











 ′ ∂

∂











 ′ ∂

∂











 ′

∂

∂











 ′ ∂

∂











 ′ ′

E E G E

G E G G

= + = ,

= + = .

c c c

c c

2 2 2

2 2

Combining Equations (20) and (34), one obtains 

φ
φ φ

φ

∂
∂











 R

M

R

N
=

cos

cos
,

c
c

c c

2

2

2

2 2

2 2

that after integrating and simplifying with the condition 
fc = 0 for f = 0, it gives 

φ φ φ
φ





































π π e
e

tan
2

+
4

= tan
2

+
4

1– sin
1+ sin

.c ab

ab

e
2
ab

One can calculate fc from Equation (36) which is a func-
tion of geodetic latitude f. Also, it can be shown that 
R MN=c  for a given latitude f which in this case f = π / 2. 
We refer the reader to [8, Chapter 5] for the derivation. 

(33)

(34)

(35)

(36)

4  �Mercator and Lambert Cylindrical 
Projections

In this section, by an elementary method, we show the 
cylindrical method that Mercator used to map from a spher-
ical model of the Earth to a flat sheet of paper and derive 
its plotting equations. Also, we give the plotting equations 
for the Lambert cylindrical equal-area projection. In the fol-
lowing sections, however, we apply the mathematical equa-
tions of map projections described in Section 2 to obtain the 
plotting equations. This section is based mostly on [7].

Let S be the globe, and C be a circular cylinder tangent 
to S along the equator, see Figure 3. Projecting S along the 
rays passing through the center of S onto C, and unrolling 
the cylinder onto a vertical strip in a plane is called central 
cylindrical projection. Clearly, each meridian on the sphere 
is mapped to a vertical line to the equator, and each parallel 
of the equator is mapped onto a circle on the cylinder and so 
a line parallel to the equator on the map. All methods dis-
cussed in this section and other sections are about central 
projection, i. e., rays pass through the center of the Earth to 
a cone or cylinder. Methods for those projections that are 
not central are similar to central projections (see [8, 9]).

Let w be the width of the map. The scale of the map 
along the equator is s = w / (2πR) that is the ratio of size 
of objects drawn in the map to actual size of the object it 
represents. The scale of the map usually is shown by three 
methods: arithmetical (e. g. 1:6,000,000), verbal (e. g. 100 
miles to the inch) or geometrical.

At latitude f, the parallel to the equator is a circle 
with circumference 2πR cos f, so the scale of the map at 
this latitude is 

φ
φs w

πR
s=

2 cos
= sec ,h

where the subscript h stands for horizontal.

(37)

Figure 3: Geometry for the cylindrical projection.

Authenticated | ebig2@yorku.ca author's copy
Download Date | 7/10/16 8:19 AM



� E. Ghaderpour, Some Equal-area, Conformal and Conventional Map Projections   7

Assume that f and l are in radians, and the origin in 
the Cartesian coordinate system corresponds to the inter-
section of the Greenwich meridian (l = 0) and the equator 
(f = 0). Then every cylindrical projection is given explicitly 
by the following equations 

x w
π

y f=
2

, = .λ φ( )
For instance, it can be seen from Figure 3 that a central 
cylindrical projection is given by 

x w
π

y r=
2

, = tan ,λ φ

where for a map of width w, a globe of radius r = w / (2π) 
is chosen.

In a globe, the arc length between latitudes of f and f1 
(in radians) along a meridian is 

φ φ φ φ( )⋅ −πR
π

R2 –
2

= ,1
1

and the image on the map has the length f (f1) – f (f). So 
the overall scale factor of this arc along the meridian when 
f1 gets closer and closer to f is 

φ
φ φ

φ φ
( ) ( ) ( )

′
φ φ→

s
R

f
R

f f
= 1 = 1 lim

–

–
,v

1

11

where the subscript υ stands for vertical.
The goal of Mercator was to equate the horizontal 

scale with vertical scale at latitude f, i. e., sh = sυ. Thus, 
from Equations (37) and (41), 

f w
π

=
2

sec .φ φ( )′

Mercator was not be able to solve Equation (42) precisely 
because logarithms were not invented! But now, we know 
that the following is the solution to Equation (42) (use 
f (0) = 0 to make the constant coming out from the integra-
tion equal to zero), 

y f w
π

= =
2

ln sec +tan .φ φ φ( )
Thus, the equations for the Mercator conformal projection 
(central cylindrical conformal mapping) are 

x w
π

y w
π

=
2

, =
2

ln sec +tan .λ φ φ

(38)

(39)

(40)

(41)

(42)

(43)

(44)

Figure 4 shows the Mercator projection with Tissot’s 
indicatrices that do not change their shapes (all of them 
are circles indicating a conformal projection) while 
their areas increase toward the poles. More precisely, it 
can be easily verified from Equations (23), (24), (25) and 
(44) that h = k, sin υ = 1, and so a = b = w / (2πR cos f) =  
s / cos f (cf., Equations (21) and (22)), and so ω in Equa-
tion (26) will be zero. 

Now if the goal is preserving size rather than shape, 
then we would make the horizontal and vertical scaling 
reciprocal, so the stretching in one direction will match 
shrinking in the other. Thus, from Equations (37) and (41), 
we obtain f ¢(f)sec f = c or 

f c= cos ,φ φ( )′

where c is a constant. From Equations (42) and (45), we can 
choose c in such away that for a given latitude, the map 
also preserves the shape in that area. For instance if f = 0, 
then we choose c = w / (2π), and so the map near equator 
is conformal too. Hence, the equations for the cylindrical 
equal-area projection (one of Lambert’s maps) are 

x w
π

y w
π

=
2

, =
2

sin .λ φ

Figure 5 shows the Lambert projection with Tissot’s 
indicatrices that have the same areas (indicating an 
equal-area projection) while their shapes change toward 
the poles.

(45)

(46)

Figure 4: The Mercator conformal map.
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8   E. Ghaderpour, Some Equal-area, Conformal and Conventional Map Projections

5  �Albers and Lambert, One Standard 
Parallel

In this section, we describe the Albers one standard paral-
lel (equal-area conic projection) and Lambert one standard 
parallel (conformal conic projection) at latitude f0 which 
give good maps around that latitude (cf., [2, 8, 9, 14]).

We start with some geometric properties in a cone 
tangent to a spherical model of the Earth at latitude f0. 

In Figure 6, ACN and BDN are two meridians sepa-
rated by a longitude difference of ∆l, and CD is an arc of 
the circle parallel to the equator. We have CD = DO¢∆l and 
DN ¢ sin f0 = DO¢ and approximately θ . DN¢ = CD. 

Therefore, the first polar coordinate, θ, is a linear 
function of l, i. e., 

= ∆ sin .0θ λ φ

The second polar coordinate, r, is a function of f, i. e., 

r r= .φ( )
The constant of the cone, denoted ϱ, is defined from the 
relation between lengths on the developed cone on the 
Earth. Let the total angle on the cone, θT, corresponding to 
2π on the Earth be θT = d / r0, where d = 2πR cos f0 is the cir-
cumference of the parallel circle to the equator at latitude 
f0, and r0 = R cot f0. Thus θT = 2π sin f0, and the constant of 
the cone is defined as ϱ = sin f0.

Case 1. The Albers projection. Consider a spherical 
model of the Earth. From Example 1, we know that the 
first fundamental quantities for the sphere are e = R2 and 
g = R2 cos2 f and for a cone (the polar coordinate system) 
are E¢ = 1 and G¢ = r 2. Hence, from Equations (18) and (19), 

φ
φ λ
θ
φ

θ
λ

∂
∂

∂
∂

∂
∂

∂
∂

R r

r r

cos = .4 2 2

2

Using Equations (47) and (48), Equation (49) becomes 

φ φ
φ

∂
∂R r

r
cos =

0

0 sin
.4 2 2

0

2

Solving Equation (50) by knowing the fact that an increase 
in f corresponds to a decrease in r, one gets 

(47)

(48)

(49)

(50)

Figure 5: The Lambert equal-area map.

Figure 6: Geometry for angular convergence of the meridians.
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� E. Ghaderpour, Some Equal-area, Conformal and Conventional Map Projections   9

φ

φ
r

R
c=

–2 sin

sin
+ .2

2

0

Imposing the boundary condition r0 = R cot f0 into Equa-
tion (51), c = 2R2 + R2 cot2 f0, and so after some simplifica-
tions, Equation (51) becomes 

φ
φ φ φr R=

sin
1+sin –2sin sin .

0

2
0 0

The Cartesian plotting equations for a conical projection 
are defined as follows: 

θ θ( )x sr y s r r= sin , = – cos ,0

where s is the scale factor, θ and r are given respectively 
by Equations (47) and (52), and r0 = R cot f0. The origin of 
the projection has the coordinates l0 (the longitude of 
central meridian) and f0. Figure 7 shows the Albers pro-
jection with one standard parallel. If we let f0 = 90°, then 
Equations (47) and (52) reduce to 

θ λ φr R= ∆ , = 2(1–sin ),

that are the polar coordinates for the azimuthal equal-
area projection, a special case of the Albers projection, 
see Figure 8. The shape of Tissot’s indicatrices in Figures 7 
and 8 changes when the latitude changes, but they all 
have the same area.

Case 2. The Lambert projection. In this case, we con-
sider a spheroidal model of the Earth. From Example 1, 
the fundamental quantities for this model are e = M2 and 
g = N2 cos2 f, and the fundamental quantities for a cone 
are E¢ = 1 and G¢ = r2. Again using Equations (47) and (48), 
Equation (17) becomes 

(51)

(52)

(53)

(54)

φ
θ
φ φ

λ
θ
λ

φ

∂

∂











 ′ ∂

∂











 ′ ∂

∂













∂

∂











 ′ ∂

∂











 ′

E r E G r

G r E G r

= + = ,

= + = sin .

2 2 2

2 2

2
0

2

Substituting these values in Equation (20), integrating, sim-
plifying and noting that r increases as f decreases, one gets 

φ φ

φ

φ φ

φ

















































































φ

r r

π e

e

π e

e

=

tan
4

–
2

1+ sin

1– sin

tan
4

–
2

1+ sin

1– sin

,

ab

ab

e

ab

ab

e0

/2

0 0

0

/2

sin
ab

ab

0

where 

φ
φ

φ( )
φr N

a

e
= cot =

cot

1– sin
.

ab

0 0
0

2 2
0

0.50

The Cartesian equations are the same as Equation (53) 
with these new r0 and r. We show the Lambert projection 
with one standard parallel in Figure 9. Tissot’s indicatrices 
in this figure have different areas for different latitudes, 
but they all have the same shape (circle). 

(55)

(56)

(57)

Figure 7: The Albers equal-area map with standard parallel 45°N.

Figure 8: The Albers equal-area azimuthal map.

Figure 9: The Lambert conformal map with one standard parallel.
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10   E. Ghaderpour, Some Equal-area, Conformal and Conventional Map Projections

6  Sinusoidal Projection
In this section, we only discuss about the sinusoidal 
equal-area projection that is a projection of the entire 
model of the Earth onto a single map, and it gives an ade-
quate whole world coverage [3, 8].

Consider a spherical model of the Earth with the 
fundamental quantities e = R2 and g = R2 cos2 f. The first 
fundamental quantities on a planar mapping surface is 
E¢ = G¢ = 1. Substituting these fundamental quantities into 
Equation (19) (using Equation (18)), one gets 

φ
φ λ

φ λ

∂
∂

∂
∂

∂
∂

∂
∂

R

x x

y y
cos = ,4 2

2

which by imposing the conditions y = Rf and x = x(f,l) 
reduces to 

φ φ λ
λ

∂
∂

∂
∂

∂

∂











R

x x

R

R xcos =

0

= .4 2

2

2

2

Taking the positive square root of Equation (58) and 
using the fact that l and f are independent, one obtains 
dx = R cos fdl, and so by integrating x = lR cos f + c. 
Using the boundary condition x = 0 when l = l0, one gets 
c = –l0R cos f, and so the plotting equations for the sinu-
soidal projection become as follow (f and l in radians):

λ φ φ=x sR y sR= ∆ cos , ,

where s is the scale factor. Figure 10 shows a normalized 
plot for the sinusoidal projection. In this map, the merid-
ians are sinusoidal curves except the central meridian 
which is a vertical line and they all meet each other in 
the poles. This is why this map is known as the sinusoi-
dal map. The x axis is also along the equator. Tissot’s 

(58)

(59)

indicatrices in Figure 10 change their shapes (the ellipses 
with different eccentricities indicating angular distortion) 
toward the poles while having the same areas. 

The inverse transformation from the Cartesian to geo-
graphic coordinates is simply calculated from Equation (59): 

φ λ
φ

y
sR

x
sR

= , ∆ =
cos

.

7  Some Conventional Projections
In this section, we give the plotting equations for two 
conventional projections, the simple conic projection 
(one standard parallel) and the plate carree projection 
(cf., [3, 8, 13]). As we mentioned earlier, these projections 
neither preserve the shape nor do they preserve the size, 
and they are usually used for simple portrayals of the 
world or regions with minimal geographic data such as 
index maps.
1.	 The simple conic projection is a projection that the 

distances along every meridian are true scale. Suppose 
that the conic is tangent to the spherical model of the 
Earth at latitude f0, see Figure 11. In this figure, we have 
r0 = R cot f0. We want to have DE = DE¢, but DE¢ = R(f – f0).  
Thus the polar coordinates for this projection are 

φ φ θ λ φ( )r r R= – – , = ∆ sin .0 0 0

Replacing these values into Equation (53) gives its 
Cartesian coordinates. 

(60)

(61)

Figure 10: The sinusoidal equal-area projection. Figure 11: Geometry for the simple conic projection.
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2.	 The plate carree, the equirectangular projection, is a 
conventional cylindrical projection that divides the 
meridians equally the same way as on the sphere. 
Also, it divides the equator and its parallels equally. 
The plate carree plotting equations are very simple: 

λ φx sR y sR= ∆ , = ,

where f and y are in radians. Figure 12 shows the 
plate carree map with Tissot’s indicatrices which are 
changing their shapes and areas when moving toward 
the poles indicating that this map is neither equal-
area nor conformal. 

8  Theory of Distortion
In this section, we discuss about three types of distor-
tions from differential geometry approach: distortions in 
length, area and angle, and we present them in term of the 
Gaussian fundamental quantities (cf., [8, 9, 15]).
1.	 The distortion in length, also known as the scale factor 

in the surveying and mapping world, is defined as the 
ratio of a length of a line on a map to the length of the 
true line on a model of the Earth. More precisely, 

φ λ

φ λ

( )
( )

( ) ( )
( ) ( )

K
ds

ds

E d G d

e d g d
= =

+

+
.L

M

E

2

2

2

2 2

2 2

From Equation (63), the distortion along the meridians 
(dl = 0) is 

K E
e

= ,m

and along the lines parallel to the equator (df = 0) is 

K G
g

= .e

(62)

(63)

(64)

(65)

Figure 12: The plate carree map, 10° graticule.

2.	 The distortion in area is defined as the ratio of an area 
on a map to the true area on a model of the Earth. 
From Equation (9) ( f = F = 0), the area on the map is 
A EG=M , and the corresponding area on the model 
of the Earth is A eg=E . Thus, the distortion in area is 

K A
A

EG
eg

K K= = = .A
M

E
m e

In equal-area map projections, from Equation (18), 
KA = Km Ke = 1.

3.	 The distortion in angle is defined as (in percentage): 

α β
α

⋅αK = 100 – ,

where a is the angle on a model of the Earth (the 
azimuth), and b is the projected angle on a map (the 
azimuth a on the map, cf., Figure 13). 

In order to obtain b as a function of the fundamental 
quantities and a, we first calculate sin (b ± a). From 
Figure 13, we have 

β α β α β α

λ φ φ λ

φ λ

( )

( )

± ±

⋅










 ⋅











 ± ⋅











 ⋅













±

G d
dS

e d
ds

E d
dS

g d
ds

K K d
dS

d
dS

eg

sin = sin cos cos sin

=

= .e m

Hence, 

β α β α( ) ( )K K
K K

sin – = –
+

sin + .e m

e m

Define 

β β α β α( ) ( ) ( )f K K
K K

= sin – – –
+

sin + .e m

e m

(66)

(67)

(68)

(69)

(70)

Figure 13: Geometry for differential parallelograms. 
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12   E. Ghaderpour, Some Equal-area, Conformal and Conventional Map Projections

Now the goal is to find the roots of f. This can be done by 
Newton’s iteration as follows: 

β β
β

β

( )
( )′

f

f
= – ,n n

n

n

+1

where 

β β α β α( ) ( ) ( )′f K K
K K

= cos – – –
+

cos + .n n
e m

e m

n

The iteration is rapidly convergent by letting b0 = a. In 
conformal mapping, from Equation (20), Ke = Km, and so 
the function f will have a unique solution (b = a). 

Example 3 In this example, we show the distortions in 
length in the Albers projection with one standard parallel. 
From Example 1, the first fundamental form for the map is 

θ θ( ) ( ) ( ) ( ) ( )′ ′ds dr r d E dr G d= + = + ,
M

2 2
2

2 2 2

and the first fundamental form for the spherical model of 
the Earth is 

φ φ λ φ λ( ) ( ) ( ) ( ) ( )ds R d R d e d g d= + cos = + .
E

2
2

2
2 2

2 2 2

Taking the derivatives of Equations (47) and (50), one obtains 

θ φ λ
φ φ

φ φ φ
d d dr

R d
= sin , =

– cos

1+sin –2sin sin
,0 2

0 0

respectively. One may substitute Equation (75) in Equation 
(73) to get 

φ

φ φ φ
φ

φ λ φ λ

( ) ( )
( ) ( ) ( )

ds
R

d

r d E d G d

=
cos

1+sin –2sin sin

+ sin = + .

M

2 2 2

2
0 0

2

2 2
0

2 2 2

Substituting Equations (74) and (76) in Equation (63) gives 
the total length distortion. Also,

φ

φ φ φ

φ φ φ
φ

K E
e

K G
g

= =
cos

1+sin –2sin sin
,

= = 1+sin –2sin sin
cos

,

m

e

2
0 0

2
0 0

which are functions of f. Clearly, KmKe = 1. 

(71)

(72)

(73)

(74)

(75)

(76)

(77)

Example 4 In this example, we first use the first funda-
mental form to obtain the plotting equations for the Mer-
cator projection, and then we show its length and area 
distortions. From Example 1, the first fundamental form for 
the cylindrical surface (the Cartesian coordinate system) is 

( ) ( ) ( )ds dy dx= + .
M

2 2 2

Taking the derivative of Equation (38) and substituting in 
Equation (78), one finds 

φ
φ λ φ λ( ) ( ) ( ) ( ) ( )











ds dy

d
d s R d E d G d= + = + ,

M

2
2

2
2 2

2 2 2

where s is the scale of the map along the equator, 
E = (dy / df)2 and G = s2R2. The first fundamental quan-
tities for the spherical model of the Earth are e = R2 and 
g = R2 cos2 f. Substituting these fundamental quantities in 
Equation (20) and simplifying, one obtains 

φ
φ

dy sRd=
cos

.

It is easy to see that integrating the above differential 
equation and applying the boundary condition y(0) = 0, 
Equation (43) follows. By Equation (80), E = (dy / df)2 =  
s2R2 / cos2 f. Therefore, substituting Equations (74) and 
(79) in Equation (63), the length distortion will be

φ
K s=

cos
.L

It can be seen that KL = Km = Ke, and so from Equation (66), 
the distortion in area for the Mercator projection is 

φ
K K K s= =

cos
.A m e

2

2

Hence, in the Mercator projection both length and area 
distortions are functions of f not l.

9  Discussions and Conclusions
There are a number of map projections used for different 
purposes, and we discussed about three major classes of 
them, equal-area, conformal, and conventional. Users 
may also create their own map based on their projects by 
starting with a base map of known projection and scale 
(e. g., [10]). In certain applications such as global web 
map visualization, some of the map projections can be 

(78)

(79)

(80)

(81)

(82)
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also combined to minimize the distortion in both shape 
and area [1, 4]. 

In this paper, in cylindrical projections, we assume 
that the cylinder is tangent to the equator. Making the cyl-
inder tangent to other closed curves on the Earth results 
good maps in areas close to the tangency. This is also 
applied for conical and azimuthal projections.

In all projections from a 3-D surface to a 2-D surface, 
there are distortions in length, shape or size that some of 
them can be removed (not all) or minimized from the map 
based on some specific applications. In Section 3, we also 
showed that projecting a spheroidal model of the Earth to 
a spherical model of the Earth will distort length, shape 
and / or angle.

Intelligent map users should have knowledge about 
the theory of distortion in order to compare and distin-
guish their maps with the true surface on the Earth that 
they are studying. 
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