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Abstract 

Let  be a complex separable Hilbert space with and let  be the Banach algebra of all bounded 

linear operators on . In the present paper we characterize Aluthge transforms in Banach algebras. We 

considered classical and maximal numerical ranges of these transforms and finally we give their 

relationships. 
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Introduction 

It is known that the numerical range W(T) of T is 

the subset W(T)=  of the 

complex plane  [1]. It is known that W(T) is 

always convex and the closure  of W(T) 

contains σ(T). On the other hand, essential 

numerical range of T is the 

subset  there exists a unit vector 

sequence  such that xn converges weakly 

to 0, . It is known [2] that We (T) is 

also always non-empty closed and convex and 

contains σ e (T). In [3], we also 

have . 

 In [4] the author introduced the concept 

of the maximal numerical range W 0(T) of T to 

consider the norm of a derivation on . The 

maximal numerical range of T is defined to be 

the subset  there exists a unit 

vector sequence  such that 

. It was proved 

in [5] that W 0(T) is a non-empty closed and 

convex subset of . We note that W 0(T) does 

not have translation property by scalar, that 

is . In particular, we 

know that for any λ1≠λ2 in  

, . For a more 

detailed discussion of the maximal numerical 

range we refer to [6]. For a subset Δ of , we 

denote by  the closed convex hull of Δ. 

If  with a polar decomposition T=U|T|, 

then the Aluthge transform  and *-Aluthge 

transform  are defined 

by  =   and =  re

spectively [7]. Note that both  and  are 

independent of the choice of the partial 

isometry U in the polar decomposition of T. 

Recently, T,  and  have been studied by 

many authors [8]. In this note, we consider the 

essential numerical range and the maximal 

numerical range of T,  and . We prove 

that  and 

  for all . 

 Let  and T=U|T| be the polar 

decomposition of T, then [9] we 

have N(T)=  N(|T|)=N(U). In terms of the 

orthogonal 

decomposition  of , T has 

the following matrix form for some 

bounded linear operators A from  to N(T) 

and B on . Now it is known [10] 

that

for some operators U 1 and U 2. By a simple 

calculus,  has the following matrix 

form where 

 on 

. 
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 It is known 

that  and . Note 

that U is a unitary operator 

from  to , then there is a unitary 

operator U 0 from  onto  suchthat 

 from  to  

. It follows that  with 

respect to the space decomposition 

, where . 

Research methodology 

Proposition 2.1 

Let . Then for all  

,  

Proof 

Since  for 

some , we have  . 

It follows 

that  and 

, which implies 

that  and 

again . 

 Let T=U|T| and  be 

the decomposition of T and T+K respectively. 

Note that , 

then  , and 

therefore  since 

. If |T| is invertible, 

then . Otherwise, 

put , t∈[0,|T|]. We may choose a 

sequence of polynomials Pn (t) 

with Pn(0)=0 such 

that  in C[0,|T|] by Stone–

Weierstrass Theorem. It is 

clear  for all n. It follows 

that  and 

therefore . 

Then

since .  

Proposition 2.2 

Let . Then . 

 

Proof 

It is known 

that , that 

is,  for all . By [7], 

we have 

 

Thus 

  

Lemma 2.3 

Let . Then . 

Proof 

Recall that . We first 

prove that  . 

Suppose . Then there exists a unit 

vector sequence {xn } in  such that {xn } 

converges weakly to zero 

and , that 

is, . In fact, we 

may choose {xn } in  such 

that  for all integer n. It follows 

that

 Note that U xn converges weakly to zero, 

then .On the other hand, we can 

obtain  by a similar 

method. Then .It 

also follows that  by 

the fact that  for any . 

Then . Next we show 

that  if and only if . This is 

equivalent to show that  is Fredholm if and 

only if  is. Note that  (resp. ) is 

Fredholm if and only 

if U and (resp. ) are Fredholm. It 

follows that  is Fredholm if and only if  is 

by the facts that  and . 

Above all, we have .  

Theorem 2.4 

Let . Then . 

Proof 

We recall 

that  and  where X and

 Y are unitarily equivalent. Then we easily 

have 



Okwany, 2020.                                                            Characterization of properties of Aluthge transforms in Banach algebras 

©2020 The Authors. Published by G. J. Publications under the CC BY license. 21 

 

 To complete the proof, it is sufficient to prove 

that  if and only if . 

Suppose . If , 

then  and . By 

Proposition 2.1, we also have . It 

follows that N(T) is finite-dimensional and X is 

Fredholm. Then 

. This is a 

contradiction. Thus, . Conversely, 

if , we similarly have .  

Results and discussion 

In this section, we give the main results of our 

study. We begin with the following Lemma. 

Lemma 3.1 

Let . Then 

. 

Proof 

We may assume that . 

Suppose . Then there exists a unit 

vector sequence {xn } in  such 

that  and . 

Now we 

have

which implies 

that . 

Then  and 

. In 

particular, . 

Hence,

 

We now 

have 

. 

Here put . Then {yn } is a unit 

vector 

sequence,  and 

, which implies 

that . Then . By 

symmetry, we have .  

Lemma 3.2 

Let T ∈  . Then  for 

all . 

Proof 

Let  and  with respect to 

the space 

decomposition  and 

 respectively, 

where , and U 0 is unitary. 

Let , then we 

have , , 

and  . 

Then . 

Case 1 N(T)≠{0} and . 

Then

 

Case 2 N(T)={0} and . In this 

case,  Clearly 

 

Case 3 N(T)={0} and . 

Then . It follows 

that . Next we show 

that . Otherwise, 

if , then , which 

implies that Y is invertible. It follows that X is 

also invertible since X and Y are unitarily 

equivalent. Thus  is invertible and so 

are T and T*. However, . This is a 

contradiction. 

Hence  and . 

Therefore . 

Case 4  and . The 

proof is similar to Case 3.  

Remark 3.3 

Let U be a non-unitary isometry on . It is 

known that  from the von Neumann-

Wold Decomposition Theorem, where U 0 is 

unitary and U 1 is a unilateral shift.  

Theorem 3.4 

Let . Then  fo

r all . 

Proof 

Let , we 

have  and  

with respect to the space 

decomposition  and 
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 respectively, where X-

λ and Y-λ are unitarily equivalent. 

Case 1 N(T)={0} and . In this 

case  

The result follows. 

Case 2 N(T)≠{0} and . 

If , 

then 

 

 by Lemma 3.1. 

If , 

then  

 by Lemma 3.2. 

If , 

then  by 

Lemma 3.1 again. 

Case 3 N(T)={0} and . 

Then  and  

. We next prove that . Note 

that . Without loss of generality, we 

may assume that λ = 1. 

We have 

 

by Lemma 3.1 and our assumption.  

In fact, if , then we have 

that  is invertible. Then so is T. This contradicts 

with the assumption of this case. If , 

then . Note that U is non-unitary 

isometry and  is injective with dense range 

since  and  . Then for any 

unit vector , we have , 

which implies 

that

It is clear that  

Note that  has dense range. Then we can 

choose a unit vector x0∈H such 

that by 

Lemma 3.2. It follows 

that

 

This is a contradiction. Hence |Y-1| >1 

and  by Lemma 3.2. 

 We then generally 

have 

 by Lemma 2. 

Case 4  and . The 

proof is similar to Case 3. 

We recall that an inner derivation determined 

by  is defined by  for 

all . Stampfli in 8 gave the 

norm  of δ A by using of maximal numerical 

range, that is, . By 

Theorem 3, we have 

Theorem 3.5 

Let . 

 

If , then  

Proof 

Without loss of generality, we may assume 

that . 

 Let λ∈W 0(T), then there exists a unit 

vector sequence of {xn } in  such 

that  and , 

which implies 

that  and 

. 

Hence It 

follows that . 

Here put . Then {yn } 

is a unit vector sequence 

and , and 

therefore . 

 We have . 

Suppose . Then there exists a unit 

vector sequence of {xn } in  such 

that  and 

. It easily follows 

that  and 

then . We easily 

have  also. 
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Thus  

.  

On the other hand, 

 

Here put .  

Then {yn } is a unit vector sequence 

and  and 

. Thus λ∈W 0 (T).  

Conclusions 

If we let  to be a complex separable Hilbert 

space and we let  be the Banach algebra of 

all bounded linear operators on , we have  

characterized Aluthge transforms in Banach 

algebras. We have considered the classical and 

maximal numerical ranges of these transforms 

and finally we have given their relationships. 
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