

ISA Delhi Section

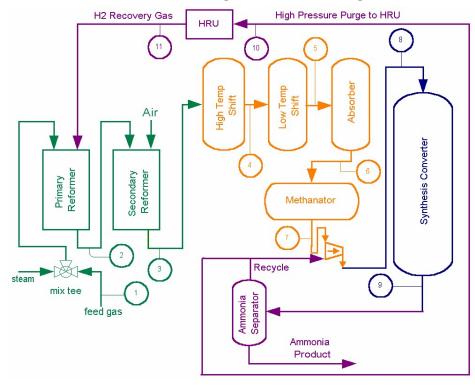
Fertilizer Symposium 2016

"Ammonia Production Control thru Process Mass Spectroscopy"

Dr. Frank A. DeThomas Extrel CMS LLC 575 Epsilon Drive Pittsburgh, PA USA

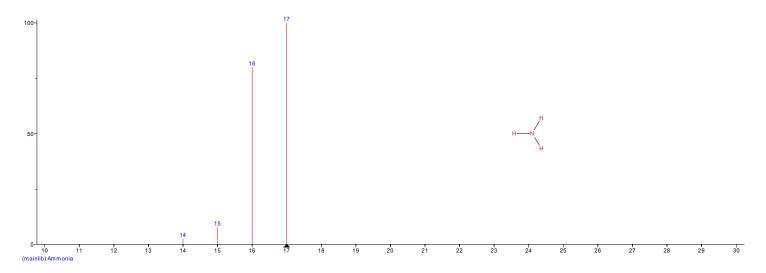
Main use of Ammonia is for Fertilizers

- Fertilizers (~78%)
 - Anhydrous ammonia
 - Urea
 - Ammonium nitrates
 - Ammonium phosphates
 - Other Nitrogen compounds
- Plastics
- Synthetic Fibers and Resins
- Explosives


Mass Spectrometry

- Speed of Analysis
 - 0.4 sec/constituent
 - 10-20 sec/stream
 - Advanced Process Control (APC)
- Selectivity
 - Mass/Charge Ratio (M/Z)
- Multiple Stream
 - 1-46 Process Streams
 - 1-160 Environmental Channels
 - Different Composition

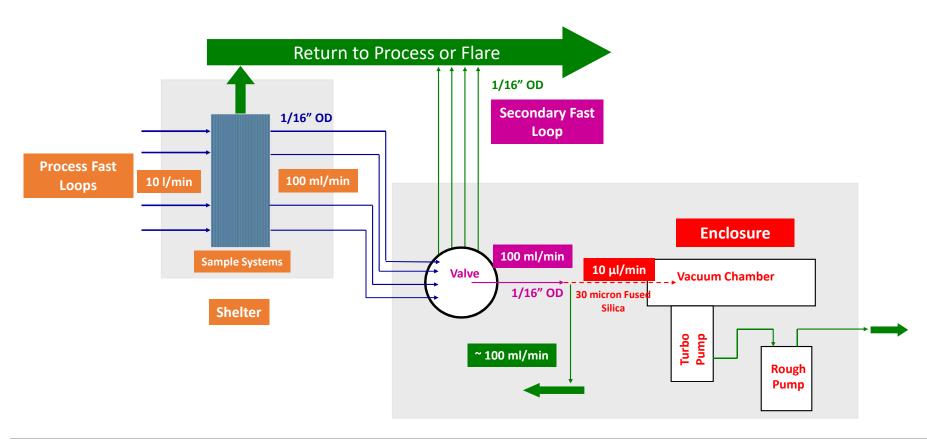
- Dynamic Range
 - Linear Form ppb to 100%
- Accuracy
 - Equal to Calibration Standards
- Precision
 - Better than Primary Method
 - 0.0025 on 1% Ar
- Maintenance
 - Reduced Maintenance
 - Better Than 98% Uptime


Ammonia Background

Ammonia is made in a multistage process based on steam methane reforming of a natural gas feed

Some plants are designed to use alternative feed stocks such as petroleum feedstock

How Does a Mass Spectrometer Work?



- Constant flow of gas enters the analyzers
- Sample gas is ionized and scanned electronically
 - Each scan produces a set of peaks specific to the composition of the ionized gas
 - All gas samples can be analyzed with a mass spectrometer

Sampling Requirements

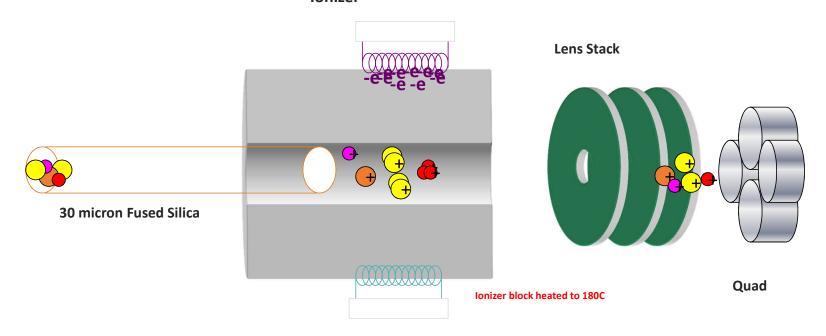
- Requirements are the same for any Gas Analyzer
 - Vapor Phase
 - non-condensing
 - Particulates
 - 5 micron filter
 - Pressure Range
 - 20PSI to 0.1PSI (1034 to 5 torr)
 - Flow
 - 100 cc/min
 - Temperature
 - Max. 250C

Typical Sample Flow for Rotary Valve

Ammonia Sampling

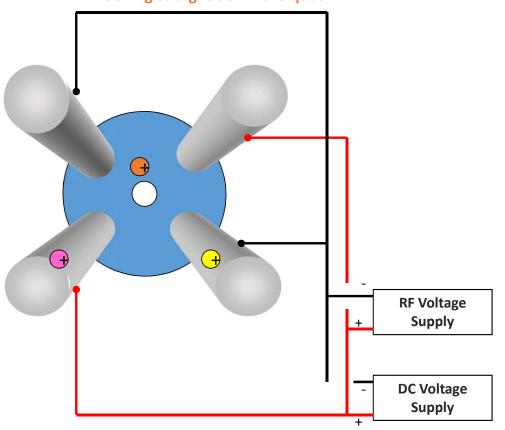
- Samples are measured on Dry basis
- High and Low Moisture Sampling Points
- Water must be removed from high moisture streams (20-50%)
 - Initial water condensing at sample tap.
 - Secondary water removal with Coalescing Filter (Membrane) close to analyzer
- Plant Upset Conditions
 - Consider isolation Solenoids tried to DCS emergency shutdown system.

Components of a Mass Spectrometer


- Inlet
 - Stream Selection
 - Sample Introduction
 - Membrane Pre-Concentration
- Ionizer
 - Electron Impact (EI) Ionization
- Mass Filter
 - Quadrupole
- Detector
 - Faraday and Electron Multiplier
- Data System
 - Signal Acquisition, Processing and Display

"Cutaway" of Mass Spectrometer Vacuum Chamber

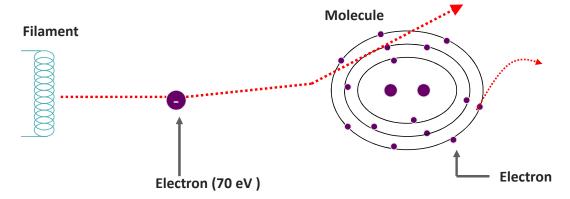
The capillary leaks a small appount of sample into the ionizer ... hydretie there disemite eleister ovod tage ...


Ionizer

the ions wheeper liters but not at the ions wheeper liters but not at the ions and experiments of the ions are included and experiments of the ions and experiments of the ions are included and

How does a mass filter work?

Looking straight down the quad


- RF and DC voltage is applied to opposite rods
- Only ions of the right mass make it all the way down the quad
- Other masses are unstable and will strike the quad and be neutralized and pumped away

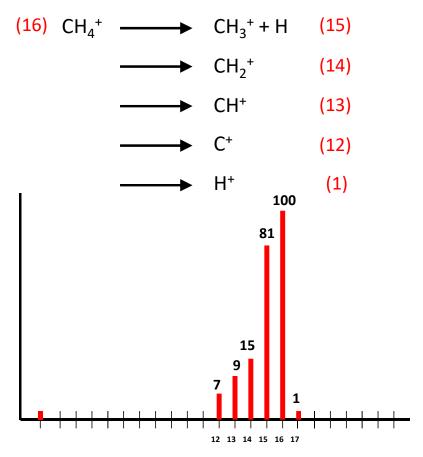
How does a mass filter work?

Looking horizontally along the quadrupole

Mechanism of Electron Impact Ionization

 $M + e \longrightarrow M^+ + 2e$

Single Ionization

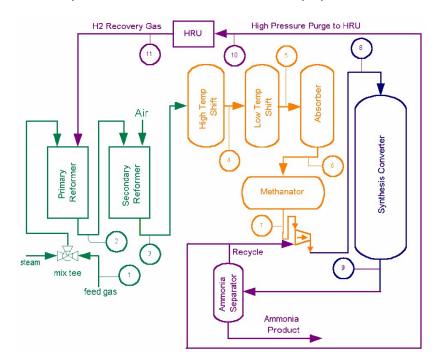

M + e — M++ 3e

Double Ionization

 $M + e \longrightarrow M_1^+ + R^{\bullet} + 2e$

Fragmentation

Fragmentation of Methane

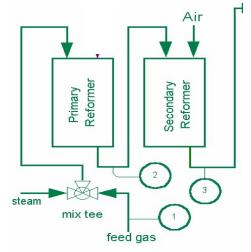


- Single Ionization occurs when electron impact (EI) causes CH₄ to lose an electron, becoming CH₄⁺
 - Largest peak at mass 16
- Fragmentation occurs when a bond breaks during ionization, CH₃⁺ is produced when CH₄ loses a H
 - Mass 15 peak
- Less frequently, additional fragmentation generates CH₂+,CH+ and C+ and H+

Ammonia Application Information

Analysis of streams to increase efficiency, reduce waste and extend equipment life

- 1. Feed Gas
- 2. Primary Reformer
- 3. Secondary Reformer
- 4. High Temperature Shift
- 5. Low Temperature Shift
- 6. Absorber Outlet
- 7. Methanator Outlet
- 8. Converter Inlet
- 9. Converter Outlet
- 10. Purge Gas
- 11. H₂ Recovery Gas

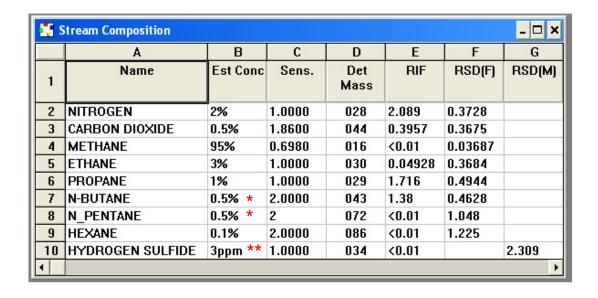

First Stage: Hydrogen from Feedstock

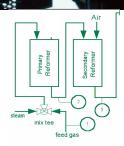
(3) Air is added at the secondary reformer to convert the remainder of the feedstock.

$$H_2 + AIR \longrightarrow 3H_2 + N_2 + (CO_2 + CO)$$

(2) Steam is added at the Primary Reformer.

$$CH_4 + H_2O \longrightarrow CO + 3H_2 + (CH_4)$$


(1) BTU and H₂S on Feed Gas Stream


(1) Feed Gas Stream: Typical

- Save energy and fuel by tightly controlling the steam to carbon ratio to within 0.02%
 - Requires accurate BTU values
 - Steam is expensive to make and tight control can decrease production costs
- Protect the catalyst from being poisoned and deactivated
 - Monitor the feed gas for the presence of hydrogen sulfides

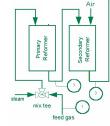
Component	Concentration
Nitrogen	2.00 %
Carbon Dioxide	0.50 %
Methane	95.0 %
Ethane	3.00 %
Propane	1.00 %
Butanes	0.50 %
Pentanes	0.50 %
Hexane	0.10 %
Hydrogen Sulfide	3 ppm

(1) Feed Gas Stream: Results

Calculation of Relative Interference Factor and RSD

^{*}Separation of C4 and C5 isomers

^{**} Measurement H₂S to 1ppm


Reformer Streams: Typical

Component	Concentration
Hydrogen	67.00 %
Nitrogen	1.50 %
Carbon Monoxide	8.00 %
Carbon Dioxide	11.50 %
Argon	0.10 %
Methane	12.00 %

3. Secondary Reformer

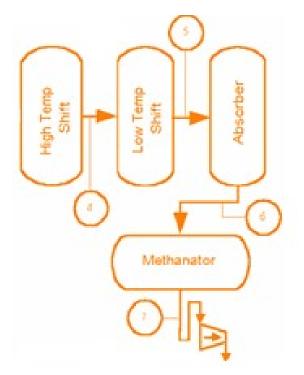
Component	Concentration
Hydrogen	57.50 %
Nitrogen	22.50 %
Carbon Monoxide	12.00 %
Carbon Dioxide	8.50 %
Argon	0.30 %
Methane	0.40 %

- Tight control of methane slippage maximizes equipment life
 - Amount of unreacted Methane is an indication of reformer efficiency
 - Wide dynamic range for methane analysis is required
 - > 90% in Feed
 - 10% in Primary Reformer
 - <0.5% in Secondary Reformer
 - Control the methane slippage with +/ 50ppm accuracy
- Accurate H₂ analysis is required in order to control Air injection rate for a 3:1 H₂:N₂ ratio at the exit

Reformer Streams: Results

2. Primary Reformer Stream

5 9							
	A	В	С	D	E	F	
1	Name	Est Conc	Sens.	Det Mass	RIF	RSD(F)	
2	HYDROGEN	67%	0.25	002	<0.01	0.07339	
3	NITROGEN	1.5%	1.0000	014	17.59	4.723	
4	CARBON MONOXIDE	8%	1.0000	028	0.4826	0.1291	
5	CARBON DIOXIDE	11.5%	1.8600	044	<0.01	0.06487	
6	ARGON	0.1%	1.5000	040	<0.01	0.7746	
7	METHANE	12%	0.6980	015	<0.01	0.1152	


3. Secondary Reformer

5 9	Stream Composition						
	A	В	С	D	E	F	
1	Name	Est Conc	Sens.	Det Mass	RIF	RSD(F)	
2	HYDROGEN	57.5%	0.25	002	<0.01	0.07912	
3	NITROGEN	22.5%	1.0000	014	0.1215	0.2995	
4	CARBON MONOXIDE	12%	1.0000	028	2.02	0.1505	
5	CARBON DIOXIDE	8.5%	1.8600	044	<0.01	0.07545	
6	ARGON	0.3%	1.5000	040	<0.01	0.4472	
7	METHANE	0.4%	0.6980	015	0.01989	0.637	

Calculation of Relative Interference Factor and RSD

Second Stage: Streams are "cleaned up" and the production of H₂ is maximized

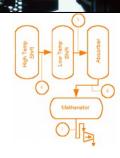
(4) High Temperature and (5) Low Temperature shifts remove the CO to increase the production of H_2 .

$$CO + H_2O \longrightarrow CO_2 + H_2$$

- (6) Absorber removes the CO₂ to levels less than 100ppm.
- (7) Methanator converts the remainder of the CO and CO_2 , which are poisons, to Methane.

$$CO + 3H_2 \longrightarrow CH_4 + H_2O$$

$$CO_2 + 4H_2 \longrightarrow CH_4 + 2H_2O$$


Temperature Shift: Typical

4. High Temperature Shift

Component	Concentration
Hydrogen	52.70 %
Nitrogen	27.27 %
Carbon Monoxide	3.60 %
Carbon Dioxide	14.53 %
Argon	0.35 %
Methane	1.55 %

5. Low Temperature Shift

Component	Concentration
Hydrogen	54.20 %
Nitrogen	26.42 %
Carbon Monoxide	0.4 %
Carbon Dioxide	17.19 %
Argon	0.35 %
Methane	1.50 %

Analysis of CO, CO₂ and H₂ is desired to calculate the amount of additional steam required to convert CO to CO₂ and H₂

Temperature Shift: Results

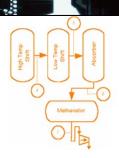
5 5	■ Stream Composition						
	A	В	С	D	E	F	
1	Name	Est Conc	Sens.	Det Mass	RIF	RSD(F)	
2	HYDROGEN	52.7%	0.25	002	<0.01	0.08265	
3	NITROGEN	27.27%	1.0000	014	0.1399	0.2744	
4	CARBON MONOXIDE	3.6%	1.0000	028	8.401	0.4848	
5	CARBON DIOXIDE	14.53%	1.8600	044	<0.01	0.0577	
6	ARGON	0.35%	1.5000	040	<0.01	0.414	
7	METHANE	1.55%	0.6980	015	<0.01	0.3215	

5. Low Temperature Shift

Stream Composition □						
	A	В	С	D	E	F
1	Name	Est Conc	Sens.	Det Mass	RIF	RSD(F)
2	HYDROGEN	54.2%	0.25	002	<0.01	0.08151
3	NITROGEN	26.42%	1.0000	014	0.1212	0.2764
4	CARBON MONOXIDE	0.4%	1.0000	028	74.84	4.131
5	CARBON DIOXIDE	17.19%	1.8600	044	<0.01	0.05306
6	ARGON	0.35%	1.5000	040	<0.01	0.414
7	METHANE	1.5%	0.6980	015	<0.01	0.3268

Calculation of Relative Interference Factor and RSD

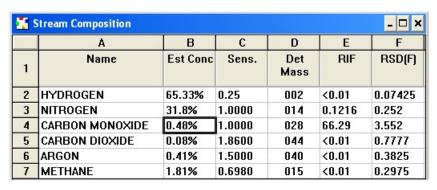
CO measurement is limited by interference form N₂


Outlets: Typical

6. Absorber Outlet

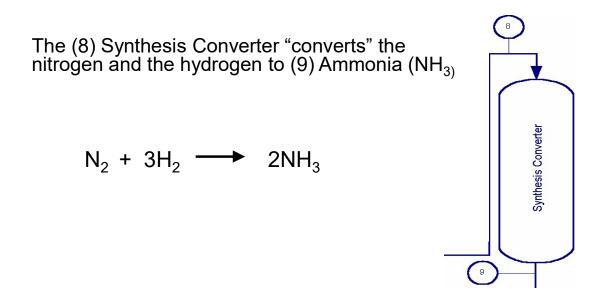
Component	Concentration
Hydrogen	65.33 %
Nitrogen	31.80 %
Carbon Monoxide	0.48 %
Carbon Dioxide	0.08 %
Argon	0.41 %
Methane	1.81 %

7. Methanator Outlet


Component	Concentration		
Hydrogen	69.80 %		
Nitrogen	28.00 %		
Carbon Monoxide	< 5 ppm		
Carbon Dioxide	< 5 ppm		
Argon	0.30%		
Methane	1.70 %		

The analysis of the oxides, CO and CO2 are important to prevent poisoning of catalysts in converter

Outlet: Results



7. Methanator Outlet

If Stream Composition						
	A	В	С	D	E	F
1	Name	Est Conc	Sens.	Det Mass	RIF	RSD(F)
2	HYDROGEN	69.8%	0.25	002	<0.01	0.07183
3	NITROGEN *	28%	1.0000	014	0.1271	0.2692
4	CARBON MONOXIDE	5ppm	1.0000	028	>99	
5	CARBON DIOXIDE	5ppm	1.8600	044	<0.01	
6	ARGON	0.3%	1.5000	040	<0.01	0.4472
7	METHANE	1.7%	0.6980	015	<0.01	0.3069

 CO at 5ppm can not be measured in the presence of N₂

Third stage: Converter Produces Ammonia

Converter: Typical

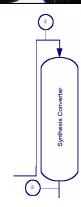
8. Converter Inlet

Component	Concentration
Hydrogen	65.00 %
Nitrogen	22.50 %
Argon	2.50 %
Helium	0.50 %
Methane	7.00 %
Ammonia	2.00 %

Efficient production of ammonia through the control of the Feed to Air (H₂:N₂) ratio within +- 0.01%

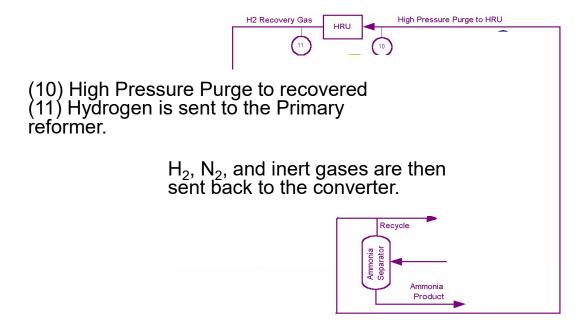
9. Converter Outlet

Component	Concentration
Hydrogen	54.00 %
Nitrogen	19.50 %
Argon	3.50 %
Helium	0.50 %
Methane	7.50 %
Ammonia	15.00 %


Converter: Results

8. Converter Inlet

5 9	tream Composition	<i>(1)</i>				_ 🗆 ×
	A	В	С	D	E	F
1	Name	Est Conc	Sens.	Det Mass	RIF	RSD(F)
2	HYDROGEN	65%	0.25	002	<0.01	0.07448
3	NITROGEN	22.5%	1.0000	028	<0.01	0.06325
4	ARGON	2.5%	1.5000	040	<0.01	0.1549
5	HELIUM	0.5%	0.2	004	<0.01	0.9487
6	METHANE	7%	0.6980	015	0.04156	0.1539
7	AMMONIA	2%	1.0000	017	0.02443	0.2147


9. Converter Outlet

5 9	🏅 Stream Composition					_ 🗆 ×
	A	В	С	D	E	F
1	Name	Est Conc	Sens.	Det Mass	RIF	RSD(F)
2	HYDROGEN	54%	0.25	002	<0.01	0.08173
3	NITROGEN	19.5%	1.0000	028	<0.01	0.06794
4	ARGON	3.5%	1.5000	040	<0.01	0.1309
5	HELIUM	0.5%	0.2	004	<0.01	0.9487
6	METHANE	7.5%	0.6980	015	0.2839	0.1651
7	AMMONIA	15%	1.0000	017	<0.01	0.07759

Calculation of Relative Interference Factor and RSD

Final Stage: Collects Ammonia Product, Recycles Inert Gases and Hydrogen Recovery

The ammonia Product stream is separated from the other gases.

Hydrogen Recovery: Typical

10. Purge Gas

Component	Concentration
Hydrogen	62.00 %
Nitrogen	22.50 %
Argon	3.50 %
Helium	0.50 %
Methane	11.00 %
Ammonia	2.00 %

11. H₂ Recovery Gas

Component	Concentration
Hydrogen	50.00 %
Nitrogen	10.00 %
Argon	1.75 %
Helium	0.60 %
Methane	37.50 %

- Much of the converter inlet is made up of recycled gases
- Control of the inert gases helps maintain the control for feed gases

Hydrogen Recovery: Results

H2 Recovery Gas HRU High Pressure Purge to HRU

10. Purge Gas

5 5	Stream Composition					_ 🗆 ×
	A	В	С	D	E	F
1	Name	Est Conc	Sens.	Det Mass	RIF	RSD(F)
2	HYDROGEN	62%	0.25	002	<0.01	0.07629
3	NITROGEN	22.5%	1.0000	028	<0.01	0.06326
4	ARGON	3.5%	1.5000	040	<0.01	0.1309
5	HELIUM	0.5%	0.2	004	<0.01	0.9487
6	METHANE	11%	0.6980	015	0.02645	0.1219
7	AMMONIA	2%	1.0000	017	0.03839	0.2162

Calculation of Relative Interference Factor and RSD

11. H₂ Recovery Gas

5 S	tream Composition					_ 🗆 🗙
	A	В	С	D	E	F
1	Name	Est Conc	Sens.	Det Mass	RIF	RSD(F)
2	HYDROGEN	50%	0.25	002	0.01047	0.0853
3	NITROGEN	10%	1.0000	028	<0.01	0.09498
4	ARGON	1.75%	1.5000	040	<0.01	0.1852
5	HELIUM	0.6%	0.2	004	<0.01	0.866
6	METHANE	37.5%	0.6980	015	<0.01	0.06516

Calibration and Validation

- Validation Gases (if required):
 - Daily, Weekly or Monthly depending on company policy or local regulation
 - Each validation requires <500 atm cc of gas
 - Small gas bottle will allow for biweekly validation for 3+ years
- Calibration Gases:
 - Required:
 - Any time instrument does not accurately validate
 - Following maintenance that involves venting the vacuum chamber
 - Typically once every 1-6 months
 - Each calibration step requires <500 atm cc of gas
 - Small gas bottle will allow for biweekly calibration for 3+ years

Customer Feedback

Comment	Estimate
Optimizing Purge Gas Recovery	\$100,000 to \$120,000/year
Energy saving equal to 0.6 GJ per ton NH3	\$1,500 per day
Plants run smoothly and stable	Daily production variations were +/- 25 tons/day, now +/- 1-2 tons/day
H/N ratio	With GC's 3.1+/- 0.1. With MS 3.1 +/- 0.007
Stable steam-to-carbon ratio and H/N ratio	1 million \$ per plant in 3 years
Yield and Catalyst	Increased yield over time and increased catalyst life
Startup	It takes only hours to reach set point instead of days

© Copyright 2016 Extrel CMS, LLC

Ammonia Production

Real-time Gas Analysis

• Any Questions?