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Abstract: However, due to the widespread use of web-

cams and mobile devices embedded with a camera, it is now 

possible to realize facial video recognition, rather than 

resorting to just still images. In fact, facial video recognition 
offers many advantages over still image recognition; these 

include the potential of boosting the system accuracy and 

deterring spoof attacks. Deep learning has recently achieved 

very promising results in a wide range of areas such as 

computer vision, speech recognition and natural language 

processing. It aims to learn hierarchical representations of 

data by using deep architecture models. In this paper, we 

propose a novel face verification algorithm, which starts 

with selecting feature-rich frames from a video sequence 

using Multi-wavelet transform and entropy computation. 

Frame selection is followed by representation learning-
based feature extraction, where three contributions are 

presented: 1) deep learning architecture, which is a 

combination of stacked denoising sparse autoencoder 

(SDAE) and deep Boltzmann machine (DBM); 2) 

formulation for joint representation in an autoencoder; and 

3) updating the loss function of DBM by including sparse 

and low rank regularization. Finally, a multilayer neural 

network is used as the classifier to obtain the verification 

decision. The results are tested on the YouTube Databases. 
 

Keywords: Deep learning, auto encoder, deep Boltzmann 

machine, face recognition, frame selection, Multi-Wavelet 
Transform. 

I.INTRODUCTION 

VIDEO face reputation has emerged as distinctly big in 

surveillance eventualities. For instance, more than 80,000 

people were identified and proven at somestage in the 2008 

Beijing Olympics with the help of face recognition in videos 

[1]. With improvements in technology, video capturing 

gadgets are reachable to a huge variety of humans within the 

phones and tablets. In unconstrained scenarios, videos 

captured by such devices may also be used by law 

enforcement agencies. Therefore, there is a high motivation 
to utilize video data to perform accurate face recognition. 

Fig. 1 shows frames from video clips in which the face 

regions have been detected and cropped. While a single 

frame from a video can only capture limited information, 

multiple frames capture a lot of information about the face 

pertaining to its appearance under the effect of common 

covariates such as pose, illumination, and expression. By 

utilizing the large variety of information present in a video, 

a robust and comprehensive representation of a face can be 

extracted and accuracy can be improved. 

Video face recognition algorithms can broadly be 

categorized into two kinds:  
(a) set-primarily based and  

(b) Sequence based [2].  

 

 
Fig1: A subset of frames illustrating the quantity of 

information found in a video. A single video can seize a 

topic’s face below specific pose, expression, and 

illumination versions. While a few frames can be 
enormously useful for face recognition, others may be 

unfavorable to overall performance. Images are frames from 

the PaSC database [2]. 

The set-primarily based approaches keep in mind a 

video as a fixed of images (frames) that are then modeled 

and coupled the use of a spread of methodologies. These 

tactics won't make use of the temporal statistics contained in 

the video, i.e. The order of frames inside the unique video 

may not count number. On the alternative hand, collection-

based totally processes are in particular designed to utilize 

temporal information of the video. These methods model the 

video as a series of photos and apply series classification 
strategies for reputation. 

For comparison, the outcomes are generally said on 

benchmark databases consisting of the Honda UCSD 

database [7], YouTube face database (YTF) [3], and these 

days developed Point and Shoot Challenge (PaSC) database 

[2]. As shown in Table I, existing algorithms have attained 

high performance on YouTube video face database [3]. 

However, the protocol of this database commonly requires 

reporting the consequences at equal blunders price (EER) 

[2]. From an implementation perspective, thealgorithms are 

required to reduce fake be given rate (FAR) or false reject 
charge (FRR).  
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Fig2: Summarizing the performance of some of the best 

performing face verification algorithms on the YouTube 

faces database [3]. It is evident that there is a huge gap in 

the performance at low false accepts rates as compared to 
performance at EER. We showcase that the proposed 

algorithm performs well even at a low false accept rate. 

Therefore, it is our assertion that there is a significant 

scope of improvement in the performance of video face 

recognition and additional research is required, especially 

focusing at lower false accept rates. 

 

Fig3 Proposed face recognition algorithm 

 

II. LITERATURE SURVEY 

Facial recognition technology (FRT) has emerged as an 

attractive solution to address many contemporary needs for 

identification and the verification of identity claims. It 

brings together the promise of other biometric Systems, 

which attempt to tie identity to individually distinctive 

features of the body, and the more familiar functionality of 

visual surveillance systems. This report develops a socio-

political analysis that bridges the technical and social-

scientific literatures on FRT and addresses the unique 
challenges and concernsthat attend its development, 

evaluation, and specific operational uses, contexts, and 

goals.[1] 

 

J. Beveridge et al Inexpensive “point-and-shoot” 

camera technology has combined with social network 

technology to give the general population a motivation to 

use face recognition technology. Users expect a lot; they 

want to snap pictures, shoot videos, upload, and have their 

friends, family and acquaintances more-or-less 

automatically recognized. Despite the apparent simplicity of 

the problem, face recognition in this context is hard. 
Roughly speaking, failure rates in the 4 to 8 out of 10 range 

are common. In contrast, error rates drop to roughly 1 in 

1,000 for well controlled imagery. [2] 

 

The face images, videos, data, and associated metadata 

for the PaSC are available upon request. The support 

software including the Cohort LDA and LRPCA baseline 

algorithms and scoring code are downloadable through the 

web. We will generate and maintain a curated website where 

groups working on the PaSC may submit results. 

 
L. Wolf, T. Hassner, and I. Maoz, Recognizing faces in 

unconstrained videos is a task of mounting importance.  

 

 

While obviously related to face recognition in still images, it 

has its own unique characteristics and algorithmic 

requirements. Over the years several methods have been 

suggested for this problem, and a few benchmark data sets 

have been assembled to facilitate its study. However, there 

is a sizable gap between the actual application needs and the 

current state of the art. In this paper we make the following 

contributions. [3] 

 
(a) We present a comprehensive database of labeled videos 

of faces in challenging, uncontrolled conditions (i.e., ‘in the 

wild’), the ‘YouTube Faces’ database, along with 

benchmark, pair matching tests1. 

 

(b) We employ our benchmark to survey and compare the 

performance of a large variety of existing video face 

recognition techniques. Finally, 

 

 (c) We describe a novel set-to-set similarity measure, the 

Matched Background Similarity (MBGS). This similarity is 

shown to considerably improve performance on the 
benchmark tests.  

 

III.PROPOSED FACE RECOGNITION ALGORITHM 

The proposed algorithm is divided into three steps: (i) 

frame selection, (ii) deep learning based feature extraction, 

and (iii) face verification using learnt representations. An 

overview of the proposed algorithm is presented in Fig. 3. 

 

A. Entropy Based Frame Selection 

Depending on the frame rate and duration, a video clip 

of 4−6 seconds may contain 100-200 frames. Existing 
literature for video face recognition has either used all the 

frames, or processed some (randomly) selected frames, or 
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have proposed algorithms for frame selection. Processing all 

the frames can result in inclusion of bad and redundant 

information. Liu et al. [3] proposed to partition the video 

into frame clusters and select the most representative frames 
from each cluster using Principal Component Analysis 

(PCA). Park et al. [4] proposed to select frames by 

estimating pose and motion blur information for each frame 

using Active Appearance Models (AAM) and selecting 

frames with controlled pose and minimal blur. Jillela and 

Ross [5] utilized optical flow to create super-resolved 

frames by using short five frame subsequences while 

avoiding the sub-sequences which demonstrate high inter-

frame motion.  

 

The proposed algorithm presents a novel perspective 

towards frame selection by utilizing feature richness as the 
criteria. It is our assertion that quantifying the feature 

richness of an image helps in extracting the frames that have 

higher possibility of containing discriminatory features. In 

order to compute feature-richness, first the input (detected 

face) image I is preprocessed to a standard size and 

converted to grayscale. By performing face detection first 

and considering only the facial region, we ensure that other 

non-face content of the frame does not interfere with the 

proposed algorithm. The image is normalized using its mean 

and standard deviation. Thereafter, the multi-wavelet 

transform of thePreprocessed image I is computed as 
follows:  

[𝐼𝐴𝑃 , 𝐼𝐻𝑂𝐼𝑉𝑟 , 𝐼𝐷𝑔] = 𝐺𝐻𝑀(𝐼)(1) 

Here, IAp captures the approximation coefficients of the 

image, whereas [IHo, IV r, IDg] contain the detail 

coefficients in horizontal, vertical, and diagonal sub-bands 

respectively.  
We use multi wavelet transforms liken GHM 

(Geronimo, Hardin, and Massopust),Chui and Lian 

(CL).Multi wavelets are defined using several wavelets with 

several scaling functions. Multi-wavelets have several 

advantages in comparison with scalar wavelet. The features 

such as compact support, Orthogonality, symmetry, and 

high order approximation are known to be important in 

signal processing. A scalar wavelet can not possess all these 

properties at the same time. On the other hand, a multi 

wavelet system can simultaneously provide perfect 

reconstruction while preserving length (Orthogonality), 
goodperformance at the boundaries (via linear-phase 

symmetry), and a high order of approximation (vanishing 

moments).  Thus multi wavelets offer the possibility of 

superior performance and high degree of freedom for image 

processing applications, compared with scalar wavelets.The 

detail and approximation coefficients obtained using Eq. 1 

represent the first level GHM coefficients. Another level of 

GHM is applied on the approximation band, IAp, as follows:  

[𝐼𝐴𝑃 , 𝐼𝐻𝑂𝐼𝑉𝑟 , 𝐼𝐷𝑔] = 𝐺𝐻𝑀(𝐼𝐴𝑃);   (2) 

Here, IAp and [IHo , IVr , IDg ] represent the second level 

GHM approximation and detail coefficients of input image I 

respectively. GHM is useful to enable multi-resolution 

analysis of the given image. While the first level GHM 

presents the coefficients for the finer details of the image, 

the second level GHM encodes the global features while 

focusing less on fine details.  

We have observed that with images of size 80 × 100. 
Therefore, in this research, we consider only two levels of 

GHM. For an image region, entropy signifies the variation 

in pixel intensity values. To quantify the feature-richness of 

an image, entropy [9] is computed by using both levels of 

GHM coefficients. The local entropy of each DWT band is 
computed by dividing each band into 3 × 3 windows. On 

applying the algorithm to a GHM band instead of the image, 

the entropy value captures the local variations in high 

frequency and approximation sub bands contained in the 

image. The entropy, H(κ), of an image window κ is 

computed.  

𝐻(𝑘) = − ∑ 𝑃(𝐾𝑖)

𝑛

𝑖=1

log2 𝑃(𝐾𝑖) (3) 

Where, n is the total number of pixel values, and p(κi) 

is the value of the probability mass function for κi which 

represents the probability of pixel value κiappearing in the 

neighborhood. If the size of the window κ is Mκ × Nκ then 

𝑃(𝐾𝑖) =
𝑛(𝐾𝑖)

𝑀𝑘 × 𝑁𝑘

(4) 

Here, nκi denotes the number of pixels in the window 

with value κi. The entropy value of each window is 

combined to compute the feature-richness value of a band.  

𝐻(𝐹) = ∑(|𝐻(𝑖)|

𝜔

𝑖=1

)  (5)     

Here, H F denotes the feature-richness score of a GHM 

band, ω is the number of windows in the band and Hi 

denotes the entropy of the i th window. The final score of 

image I, HF(I), is obtained by aggregating the feature-

richness values of individual bands.  

𝐻𝐹(𝐼) = 𝐻𝐹(𝐼′𝐴𝑃) + 𝐻𝐹(𝐼′𝐻𝑂) + 𝐻𝐹(𝐼′𝑉𝑟) + 𝐻𝐹(𝐼′𝐷𝑔)

+ 𝐻𝐹(𝐼𝐻𝑂) + 𝐻𝐹(𝐼𝑉𝑟) + 𝐻𝐹(𝐼𝐷𝑔)  (6) 

Given a video V, the feature-richness score of a frame fi 

is represented as H F( fi). Since the score of each frame 

depends on the distribution of intensity values in a frame, it 

is important to normalize the scores across the frames in one 

video. Let mi represent the feature-richness value 

corresponding to the i th frame fi, it is obtained using min-

max normalization.  

𝑚𝑖 =
𝐻𝐹(𝑓𝑖) − min(𝐻𝐹)

max(𝐻𝐹) − min(𝐻𝐹)
(7) 

Where, HF denotes all the feature-richness scores for 

the video V and min(HF) and max(HF) denote the minimum 

and maximum values in HF, respectively. Higher values of 

m signify a more feature-rich frame. Fig. 4 shows the 

feature richness distribution for two videos of different 
individuals from the YouTube Faces database [3] along with 

sample frames of high, average, and low feature-richness 

values. Once the score of each frame is computed, adaptive 

frame selection is performed to determine the optimum set 

of frames to represent a video. Let σ m denote the standard 

deviation and 𝜇𝑚 denote the mean pertaining to the set of 

feature-richness values of thevideo V. In order to decide 

which frames are selected for verification, ϕi is computed 

for each frame 

𝜑𝑖 = {1    𝑖𝑓𝑚𝑖 ≥ 𝜇𝑚 +
𝜎𝑚

2
0           𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

} (8) 

To perform adaptive frame selection, each frame with ϕ 

= 1 is selected from a given video. These frames are utilized 
for feature extraction using the deep learning architecture 

described in the next section.  
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B. Deep Learning Framework for Feature Extraction  

Once the feature-rich frames are obtained, the next step 

involves feature extraction and matching. Several state-of-

theart algorithms in recent literature use convolutional 
neural networks. In this paper, we propose a stacked 

denoising auto encoders (SDAE) and Deep Boltzmann 

Machine (DBM) based algorithm that can yield good results 

with limited training data while simultaneously being able to 

utilize additional training data to further improve 

performance. First, we briefly present an overview of SDAE 

and DBM followed by the proposed architecture.  

1) Stacked Denoising Autoencoder and Deep Boltzmann 

Machines:  

An autoencoder [6], [7] maps the data x ∈ Rα into 

feature (latent representation) f using a deterministic 
(encoder) function g such that,  

𝑓 = 𝑔𝜃(𝑋) = 𝑠(𝑊. 𝑋 + ∆)(9) 

 is the parameter set, s represents the sigmoid, w is the α × α 

weight matrix, and is the offset vector of size α. Feature f 

can be mapped to feature vector x ˆ of dimensionality α 

using a decoder function g such that,  

𝑋̂ = 𝑔′𝜃′(𝑓) = 𝑠(𝑊 ′. 𝑓 + ∆′)(10) 

Here, = {w, } is the decoder parameter set such that 

𝑎𝑟𝑔𝑚𝑖𝑛‖𝑋 − 𝑋̂‖
2

2
 

The parameters are optimized by utilizing the 

unsupervised training data. Denoising autoencoder [37], a 

variant of auto encoder, operates on the noisyinput data x n 

and attempts to reconstruct x ˆ such that f = g(x ˆn) = s(w • 

xn + ). It is observed that this variant is robust to noisy data 

and has good generalizability. Further, adding sparsity 

constraint helps in learning useful features and the cost 

function is updated as,  

‖𝑋 − 𝑋̂‖
2

2
+ 𝛽 ∑ 𝐾𝐿(𝜌 ∥ 𝜌𝑗̂)

𝑗

(11) 

where, ρ is the sparsity parameter, ρ ˆ j is the average 

activation of the j th hidden unit, K L(ρ ˆ ρ j ) = ρ log ρ ρ ˆ j 

+ (1 − ρ) log 1 1− ˆ −ρ ρj is the K L-divergence, and β is the 

sparsity penalty term. K L divergence measures the 

difference between a true probability distribution and its 

approximation. By setting the value of ρ to a small value 

(such as 0.05), the number of data points for which the j th 

unit is activated can be forced to be low, which introduces 
sparsity of features. Smaller values of ρ and larger values of 

β promote more sparse features. 

However, a higher value of β conversely reduces the 

importance of accurate reconstruction. The values of ρ and β 

are learnt during the training and validation stages to 

achieve a tradeoff between reconstruction performance and 

learning more generalizable features. If the auto encoders 

are stacked in a layered manner, they are called as stacked 

auto encoders and form a deep learning architecture to 

discover “patterns" in the input data. 

Deep Boltzmann Machine is an undirected graphical 
model, deep network architecture, with symmetrically 

coupled binary units [8]. It is designed by layer-wise 

training of Restricted Boltzmann Machine (RBM) and 

stacking them together in an undirected manner. A RBM has 

stochastic visible and hidden variables which are connected 

and the energy function is defined as: 

𝐸(𝑣, ℎ; 𝜃) = − ∑ ∑ 𝑊𝑖𝑗𝑣𝑖𝑗ℎ𝑗 −

𝐹

𝑗=1

∑ 𝑏𝑖𝑣𝑖

𝐷

𝑖=1

𝐷

𝑖=1

− ∑ 𝑎𝑗ℎ𝑗

𝐹

𝑗=1

    (12) 

Here, v ∈ {0, 1}D denotes the visible variables and h ∈ 

{0, 1}F denotes the hidden variables, respectively.The 

model parameters are denoted by θ = {a, b, W}. Wij denotes 

the weight of the connection between the i th visible unit 

and j th hidden unit and bi and a j denote the bias terms of 

the model. For real valued visible variables such as image 

pixel intensities, generally, Gaussian-Bernoulli RBMs are 

utilized and the energy is defined as: 

𝐸(𝑣, ℎ; 𝜃) = − ∑
𝑣𝑖

𝜎𝑖
∑ 𝑊𝑖𝑗ℎ𝑗 −

𝐹

𝑗=1

∑
(𝑣𝑖 − 𝑏𝑖)2

2𝜎2

𝐷

𝑖=1

𝐷

𝑖=1

− ∑ 𝑎𝑗ℎ𝑗

𝐹

𝑗=1

   (13) 

Here, v ∈ RD denotes the real-valued visible vector and 

θ = {a, b, W, σ} are the model parameters. A single 

Gaussian Bernoulli RBM can learn a representation of the 

input data. However, multiple such RBMs can be stacked in 
a layer wise manner to learn increasingly complex 

representations of data in the form of a DBM. In this 

research, a three layer DBM is utilized with a greedy 

learning approach [9].  

A three layer DBM, comprised of Gaussian-Bernoulli 

RBMs, can learn complex representations of a real-valued 

input vector v ∈ RD using a sequence of layers of hidden 

units h(1), h(2), and h(3). The first layer connects the visible 

units to the first layer of hidden units. Thereafter, 

subsequent layers connect the hidden units of one layer to 

the hidden units of the other, causing the hidden units of a 
layer to act as the visible units for the next layer and so on. 

The energy of this DBM can be defined as:  

𝐸(𝑣, ℎ; 𝜃) = − ∑ ∑ 𝑊𝑖𝑗 (1)
𝑣𝑖

𝜎𝑖
ℎ𝑗(1)

𝐹1

𝑗=1

𝐷

𝑖=1

− ∑ ∑ 𝑊𝑖𝑗 (2)ℎ𝑗(1)ℎ𝑙(2)

𝐹2

𝑙=1

𝐹1

𝑗=1

− ∑ ∑ 𝑊𝑖𝑚(3)ℎ𝑙(2)ℎ𝑚(3) −

𝐹3

𝑚=1

𝐹2

𝑙=1

∑
(𝑣𝑖 − 𝑏𝑖)2

2𝜎2

𝐷

𝑖=1

− ∑ 𝑎𝑗(1)ℎ𝑗(1)

𝐹1

𝑗=1

− ∑ 𝑎𝑙(2)ℎ𝑙(2)

𝐹2

𝑙=1

− ∑ 𝑎𝑚(3)ℎ𝑚(3)

𝐹3

𝑚=1

 (14) 

Here, D, F1, F2, F3 are the number of units and visible 

and hidden layers, and θ = {W(1), W(2), W(3), b, a(1), a(2), 

a(3), σ} is the set of model parameters representing visible-

to-hidden andhidden-to-hidden symmetric connection 

weights, bias terms, and the Gaussian distribution standard 

deviation, respectively. The probability assigned by this 

model to a visible vector v is given by the Boltzmann 

distribution:  

𝑃(𝑉; 𝜃) =
1

𝑍(𝜃)
∑ exp (−𝐸(𝑉, ℎ(1), ℎ(2), ℎ(3); 𝜃))

ℎ

 (15) 

Here, Z(θ) is the normalizing constant. If only W(1) is 

considered, the derivative of the log-likelihood with respect 
to the model parameters is:  
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𝛿 log 𝑃(𝑉; 𝜃)

𝛿𝑊(1)
= 𝐸𝑝𝑑𝑎𝑡𝑎[𝑉ℎ(1)𝑇

] − 𝐸𝑝𝑑𝑎𝑡𝑎[𝑉ℎ(1)𝑇
](16) 

Here, EPdata[•] denotes the expectation with respect to 

the data distribution and EPmodel[•] is the expectation with 

respect to the distribution defined by the DBM as in Eq. 

(15). Similar derivatives are obtained for W(1) and W(2), 

with the product vh(1) replaced by h(1)h(2) and h(2)h(3) 
respectively.  

2) Unsupervised Joint Feature Learning:  

SDAE and DBM both individually learn the useful 

(intermediate) representation of input data. While the SDAE 

learns two layers of image-level features that can be best 

utilized to reconstruct the original input, in this paper, we 

propose a joint representation layer that learns the important 

features from each constituent layer. This joint layer 

representation combines two different levels of granularities 

in features to obtain a better representation. Further, this 

joint feature is used as input to a DBM to obtain the final 

representation. While SDAE and joint representation are 
robust to noise in the input data, DBM learns the internal 

complex representations probabilistically. 

Therefore, it is our assertion that the proposed 

architecture should be able to produce a robust 

representation compared to using SDAE or DBM in 

isolation. Further, DBM is able to interpret the features 

learned by the joint representation and combine each of its 

components as required to obtain an enhanced higher level 

discriminative representation, especially after fine-tuning. 

Let thesize of the input data be M × N; in the proposed 

architecture, each layer of SDAE is one-fourth the size of its 
previous layer. Layer-by-layer greedy approach [4] with 

stochastic gradient descent is utilized to train the SDAE 

followed by fine-tuning with back-propagation method. 

Intermediate representations obtained using the 2-hidden 

layer SDAE are further combined to obtain a joint 

representation as illustrated in Fig. 5.  

The two layers of size M 2 × N 2 and M 4 × N 4 are 

utilized as input and one joint layer of size 2 × M 4 × N 4 is 

learned. Let f1 be the representation learned by the first 

layer of SDAE and f2 be the feature learned by the second 

layer of SDAE, the joint representation J can be learned 

using Eq. (17).  

𝐽 = 𝐺(𝑓1, 𝑓2)    (17) 

Here, G is the joint learning function to obtain J. In this 

research, using encoder-decoder approach, we define the 

cost function as:  

 

𝑎𝑟𝑔Φ
𝑚𝑖𝑛 (‖𝑓1 − 𝑓1′‖

2

2
+ ‖𝑓2 − 𝑓2′‖

2

2
+ 𝑅)     (18) 

 

 Where, represents the set of all the variables to be learned 

and R is a regularizer. For ease of explanation, we first 

Present the formulation with linear activation. Eq. (17) can 
be written as, 

𝐽 = 𝑊1𝑓1 + 𝑊2𝑓2   (19) 

 

Using Eq. (18), the associated cost can be written as,  

𝑎𝑟𝑔Φ
𝑚𝑖𝑛 (‖𝑓1 − 𝑊1′𝑊1𝑓1 − 𝑊1′𝑊2𝑓2‖

2

2

+ ‖𝑓2 − 𝑊2′𝑊2𝑓2 − 𝑊2′𝑊1𝑓1‖
2

2

+ 𝑅)     (20) 

 

 

 
Fig4: Proposed deep learning architecture for facial 

representation: from input layer (image), two hidden layer 

representations are computed using SDAE encoding 
function.  

A joint representation is then obtained which combines 

the information from two SDAE encodinglayers. Using joint 

representation as input, a DBM is used for computing a final 

feature vector.  

 
Fig5: Joint learning framework: features learned from the 

first and second levels of autoencoder, i.e., f1 and f2 are 

given as input to DBM to learn the joint representation J.  

 

As shown in Fig. 6, this approach learns the weights = {W1, 

W2, W1 , W2 } to obtain the joint representation J. In a 

similar fashion, non-linear cost function can be written as 

(for simplicity, bias terms are omitted) 

𝑎𝑟𝑔Φ
𝑚𝑖𝑛 (‖𝑓1 − 𝑠(𝑊1′[𝑠(𝑊1𝑓1)]) − 𝑠(𝑊1′[𝑠(𝑊2𝑓2)])‖

2

2

+ ‖𝑓2 − 𝑠(𝑊2′[𝑠(𝑊2𝑓2)])

− 𝑠(𝑊2′[𝑠(𝑊1𝑓1)])‖
2

2
+ 𝑅)  (21) 

 Adding 2-norm regularization term on W1, W2 and dropout 
[41] on the joint representation network, Eq. (21) can be 

written as,  

𝑎𝑟𝑔Φ
𝑚𝑖𝑛 (‖𝑓1 − 𝑠(𝑊1′[𝑠(𝑊1𝑓1)]) − 𝑠(𝑊1′[𝑠(𝑊2𝑓2)])‖

2

2

+ ‖𝑓2 − 𝑠(𝑊2′[𝑠(𝑊2𝑓2)])

− 𝑠(𝑊2′[𝑠(𝑊1𝑓1)])‖
2

2

+ (𝜆1‖𝑊1‖2
2

+ 𝜆2‖𝑊2‖2
2)) 𝑑𝑒𝑜𝑝𝑜𝑢𝑡    (22) 

The joint representation combines abstract and low-

level features obtained from SDAE encoding layers and is 

used as input to a three hidden layer DBM, i.e. J acts as the 
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visible vector. Similar to Eq. (14), the energy of this DBM is 

represented as:  

𝐸(𝐽, ℎ; 𝜃) = − ∑ ∑ 𝑊𝑖𝑗(1)
𝐽𝑖

𝜎𝑖
ℎ𝑗(1)

𝐹1

𝑗=1

𝐷

𝑖=1

− ∑ ∑ 𝑊𝑗𝑙(2)ℎ𝑗(1)ℎ𝑙(2)

𝐹2

𝑙=1

𝐹1

𝑗=1

− ∑ ∑ 𝑊𝑙𝑚(3)ℎ𝑙(2)ℎ𝑚(3)

𝐹3

𝑚=1

𝐹2

𝑙=1

− ∑
(𝐽𝑖 − 𝑏𝑖)2

2𝜎2
−

𝐷

𝑖=1

∑ 𝑎𝑗(1)ℎ𝑗(1)

𝐹1

𝑗=1

− ∑ 𝑎𝑙(2)ℎ𝑙(2)

𝐹2

𝑙=1

− ∑ 𝑎𝑚(3)ℎ𝑚(3)

𝐹3

𝑚=1

 (23) 

Inspired from [4] and [3], we believe that the learned 

weight matrix can be modeled as sparse and low rank at the 

same time and therefore, a regularization approach 

incorporating both of these can improve feature learning. 

Hence, we extend the loss function of DBM (RBM) by 

introducing trace norm regularization technique. Let L be 

the loss function of RBM (DBM) with the energy function 

defined in Eq. (23). Along with 1-norm, trace-norm is added 

to the loss function as follows:  

𝐿𝑛𝑒𝑤 = 𝐿 + 𝐴‖𝑊‖1 + 𝐵‖𝑊‖𝜏(24) 
Where • 1 is the 1-norm, and • τ is the trace-norm, and A, B 

are the regularization parameters which control sparsity and 

low-rankness. In general, elastic net regularization (• 1 + • 2) 

[4] may be used;however in this formulation, we propose to 

utilize trace-norm in conjunction with 1-norm for learning 

representation in RBM (DBM).  

While 1-norm induces sparsity in the weight matrix, 

trace norm induces features to have low-rankness. The 

weight matrix learned by the updated loss function has the 

benefits of both the regularizations and as shown in 

experimental results, improves the overall verification 
performance. The size of the first two layers of the DBM is 

set to 2× M 4 × N 4 and the final layer is set to M N 4 .  

A pre-training approach [9] combined with generative 

fine-tuning [5] is followed to train the DBM. The final 

hidden layer provides a complex representation of the input 

which can be utilized for classification. 

  

C. Face Verification Using Feature Richness and Deep 

Learning Based Representation  

As shown in Fig. 3, the proposed framework utilizes the 

frame selection, feature extraction, and classification 
architecture for video based face recognition. During 

training, the stack of SDAE joint representation and DBM is 

utilized for facial representation. Let I gallery and I probe be 

the two detected, preprocessed and geometrically 

normalized face images to be matched. These images are 

resized to M × N (in our experiments, it is 80 × 100) and 

converted into vector form.  

The trained architecture is used to extract the features 

from I gallery and Iprobe, respectively. According to the 

previous discussion, the input to the feature extraction 

module is the M N size image vector and the output is a 
vector of length M N 4 . Features are extracted for each 

selected frame in a video and given as input to a five layer 

neural network (one input layer - 3 hidden layers - one 

output layer) for classification (verification). The neural 

network classifier is trained to match features extracted from 

a pair of input images (frames), using all the frames in the 
training videos. The output of the network is a scalar match 

score. During testing, the most feature-rich frames are 

selected from each of the gallery and probe videos, and 

matched using the proposed featureextraction and matching 

algorithm. The output of neural network (classifier) is 

undecimated and match scores are computed.  

The videos to be matched may have significant 

variations in quality and feature-richness. It has been shown 

in literature that if the images are of very different quality, 

then the matching performance may deteriorate [46]. 

Therefore, we perform a post-processing step to select 

framepairs with similar feature-richness and discard the 
remaining pairs. Let V1 and V2 be the two videos to be 

matched, a pair-wise feature-richness value is computed for 

each possible frame-pair using the algorithm explained in 

Section II-A.  

 

[
𝑚1,1𝑚1,2; 𝑚2,1𝑚2,2; … , 𝑚𝑖, 1𝑚𝑗, 2;

… , 𝑚𝑁1,1𝑚𝑁2,2 
] (25) 

 

𝑚𝑖,1, 𝑚𝑗,2 denotes the product of feature-richness value 

associated with the pair formed by the i th frame from V1 

and the j th frame from V2. N1 and N2 denote the total 

number of selected frames from V1 and V2 respectively. Let 

σm be the standard deviation and μm be the mean pertaining 

to the set of the pair-wise feature-richness values for all 

pairs possible between V1 and V2. To finally select the pairs 

for decision making, following equation is utilized: 

𝛾𝑖,𝑗 = {1    𝑖𝑓𝑚𝑖, 1𝑚𝑗, 2 ≥ 𝜇′𝑚 +
𝜎′𝑚

2
0           𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

}    (26) 

 

If the combined score of a pair fi,1 f j,2 is more than the 

threshold, i.e., if ϒi, j = 1, then this pair is considered for 

computing the match score. While pairs with ϒi, j < 1 are 

not considered for verification, other selected frame-pairs 
are weighted according to the joint feature-richness value. 

For frame-pair fi,1 f j,2, this weight is computed as ϒi, j 

mi,1m j,2. 

 A pair where both participating frames are highly featuring 

rich is assigned a higher weight compared to other 

combinations. Here, facial coordinates obtained during face 

detection are used to ensure that frontal-only and semi-

profile images are not matched with profile faces (i.e, when 

pose variations are very large).  

 

The final match score is computed in the form of a 
weighted sum of scores obtained from each participating 

frame-pair.The undecimated/unthresholded network 

(classifier) output of these pairs are combined using 

weighted sum rule [28] and a verification threshold is 

applied to provide the final decision of accept or reject 

(same or not same) at a fixed false accept rate.  
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IV.RESULTS 

 

 
Fig6:Video face images for training the data from video1 

 

 

 
Fig7:Feature richness value 

 

 

 
Fig8:NN training 

 

 
Fig9:Training images for classifier 

 

 
Fig.10:Testing images for classifier 

 

 
Fig11:Autoencoder 

 

 
 

Fig12: Classifier View 
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Fig13: Face verified results 

 

 
Fig14: ROC graph for extension comparison 

 

 
Fig15: Execution Time (in sec) during training Process 

 
IV.CONCLUSION 

The proposed algorithm starts off evolved with 

adaptively choosing feature-wealthy frames from two videos 

the use of wavelet decomposition and entropy. The proposed 

deep gaining knowledge of structure which combines SDAE 

joint illustration with DBM is used to extract capabilities 

from the selected frames. The extracted representations from 
two films are matched the use of a feed ahead neural 

network. The outcome is validated at the YouTube Faces 

databases. The evaluation with modern-day consequences 

on both the databases show that the proposed algorithm 

offers the exceptional results on both the databases at low 

false receive price, even with constrained schooling records.  
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