## Six Effective Components of Mathematics Instruction for Students with Learning Difficulties

HELP Group Summit
October 19, 2018

## Contact Information

## Sarah Powell, Ph.D

The University of Texas at Austin
srpowell@austin.utexas.edu
@sarahpowellphd

## Sarahpowellphd.com <br> Evidence-based mathematies resources for educators





Broad math in preK predicted K broad math

Broad math in preK predicted grade 10 broad math


Counting in K predicted grade 1 broad math

Broad math in K predicted grade 8 broad math

K math accurately predicted math performance below $10^{\text {th }}$ percentile in grades 2 and 3 with $84 \%$ correct classification




Broad math in grade 8 predicted completion of 4-year college degree

Students who took algebra in grades 8 took more advanced math courses and enrolled in 4-year colleges more often than students who took algebra in grade 9

Numeracy measured in adolescence impacted hourly earnings 7 to 15 years later

Mathematics in high school predicts later outcomes

Mathematics in preschool predicts later mathematics

Mathematics in kindergarten predicts later mathematics

Mathematics in elementary school predicts later mathematics

Mathematics in middle school predicts later mathematics

Mathematics in high school predicts later outcomes






| Modeling | Practice |
| :---: | :---: |
| Clear | Guided |
| Explanation | Practice |
| Planned <br> Examples | Independent <br> Practice |

## Supporting Practices

- Asking the right questions
- Eliciting frequent responses
- Providing immediate specific feedback
- Maintaining a brisk pace


## Modeling

Clear
Explanation
Planned
Examples

## Goal and importance

"Today, we are learning about division. This is important because sometimes you have to share objects or things with your friends."
"Let's continue working with our three-dimensional shapes and volume. Understanding volume and calculating volume helps with measuring capacity."

## Modeling

## Clear

Explanation
Planned
Examples

## Goal and importance

## Model steps

"To solve 26 plus 79, I first decide about the operation. Do I add, subtract, multiply or divide?"
"The plus sign tells me to add. So, I'll add 26 plus 79. I'll use the partial sums strategy. First, I add 20 plus 70.
What's 20 plus 70?"
" 20 plus 70 is 90 . I write 90 right here."
"Then I add 6 plus 9. What's 6 plus 9?"
"6 plus 9 is 15 . So, I write 15 here."
"Finally, we add the partial sums. What do we add?"
"So, we add the partial sums of 90 and 15.90 plus 15 is 105. So, 26 plus 79 equals 105."

## Modeling

## Clear

Explanation
Planned
Examples

Goal and importance

## Model steps

## Concise language

"To solve 26 plus 79, I first decide about the operation. Do I add, subtract, multiply, or divide?"
"The plus sign tells me to add. So, I'll add 26 plus 79. I'll use the partial sums strategy. First, I add 20 plus 70. What's 20 plus 70?"
" 20 plus 70 is 90 . I write 90 right here."
"Then I add 6 plus 9. What's 6 plus 9?"
" 6 plus 9 is 15 . So, I write 15 here."
"Finally, we add the partial sums. Why do we add the partial sums?"

## Modeling

Clear
Explanation
Planned
Examples

Goal and importance

## Model steps

## Concise language

## Examples

"Today, we are learning about division. This is important because sometimes you have to share objects or things with your friends."

$$
2 4 / 6 \quad 2 8 \div 7 \quad 3 5 \longdiv { 5 }
$$

## Modeling

Clear
Explanation
Planned
Examples

Goal and importance

## Model steps

## Concise language

## Examples

## With non-examples

$$
32 \div 8 \quad 42 \div 7 \quad 25-5
$$

| Modeling | Practice |
| :---: | :---: |
| Clear | Guided |
| Explanation | Practice |
| Planned <br> Examples | Independent <br> Practice |

## Supporting Practices

- Asking the right questions
- Eliciting frequent responses
- Providing immediate specific feedback
- Maintaining a brisk pace
Practice
Guided
Practice
Independent
Practice


## Teacher and student practice together


Teacher and student practice together
Student practices with teacher support

| Modeling | Practice |
| :---: | :---: |
| Clear | Guided |
| Explanation | Practice |
| Planned <br> Examples | Independent <br> Practice |

## Supporting Practices

- Asking the right questions
- Eliciting frequent responses
- Providing immediate specific feedback
- Maintaining a brisk pace


## Low-level and high-level

"What is 7 times 9?"
"Which shape has 6 sides?"
"What do you do when you see a word problem?"

## Supporting Practices

- Asking the right questions
- Eliciting frequent responses
- Providing immediate specific feedback
- Maintaining a brisk pace
"Why do you have to regroup?"
"How would you solve this problem?"
"Why do you have to use zero pairs?"


## Low-level and high-level

## Classwide, individual, partner, write on paper, write on whiteboard, thumbs up, etc.

## Supporting Practices

- Asking the right questions
- Eliciting frequent responses
- Providing immediate specific feedback
- Maintaining a brisk pace
"Turn and discuss the formula for perimeter with your partner."
"Write the multiplication problem on your whiteboard."
"In your math journal, draw a picture to help you remember to term parallelogram."


## Low-level and high-level

## Classwide, individual, partner, write on paper, write on whiteboard, thumbs up, etc.

## Supporting Practices

- Asking the right questions
- Eliciting frequent responses
- Providing immediate specific feedback
- Maintaining a brisk pace


## Affirmative and

 corrective"Good work using your word-problem attack strategy."
"Let's look at that again. Tell me how you added in the hundreds column."

Low-level and high-level

## Classwide, individual, partner, write on paper, write on whiteboard, thumbs up, etc.

## Supporting Practices

- Asking the right questions
- Eliciting frequent responses
- Providing immediate specific feedback
- Maintaining a brisk pace

Affirmative and corrective

## Modeling Practice

## Supporting Practices

Introduction of material


Review of material

## Modeling Practice

Supporting Practices

## How do you use explicit instruction within intensive intervention?

Model steps using concise language
$\square$ Provide guided practice opportunities
$\square$ Provide independent practice opportunities
Use supporting practices during modeling and practice
$\square$ Ask the right questions
$\square$ Elicit frequent responses
$\square$ Provide feedback
$\square$ Be planned and organized

## Multiple Representations




Three-dimensional objects



Two-dimensional images



$$
2+8=10
$$

## $34=3$ tens and 4 ones

$$
\begin{array}{r}
4-179 \\
+\quad 569 \\
\hline
\end{array}
$$

## How should multiple representations be used within intensive intervention?

$\square$ Use three-dimensional concrete materials to teach concepts and procedures
$\square$ Use two-dimensional representations to teach concepts and procedures
Ensure students understand mathematics with numbers and symbols (i.e., the abstract)

## Focus on Language

## precise <br> concise

## Language of Mathematics

- Technical terms

| trapezoid | rhombus |
| :--- | :--- |

numerator


```
subtract
```

- Subtechnical terms

arc
- Symbolic terms

and
- General terms
above

longest
outside

Instead of...
"And the last one is 10 ."
"What number is in the tens place?"
"Six hundred and forty-eight"
"Bigger number and smaller number"

## Say...

" $8,9,10$. We'll stop counting there but we could count more."
"What digit is in the tens place?"
"Six hundred forty-eight"
"Number that is greater and the number that is less"

## Say...

"Numbers in the fraction"
"Top number and bottom number"
"Reduce"
"One point two nine"
"This fraction is one number."
"Numerator and denominator"
"Find an equivalent fraction"
"One and twenty-nine hundredths"

## Say...

"Corner"
"Flips, slides, and turns"
"Box or ball"
"Long hand and short hand"
"Angle"
"Reflections, translations, and rotations"
"Cube or sphere"
"Minute hand and hour hand"

## How do you attend to language within intensive

 intervention?$\square$ Understand why formal mathematical language is important
Plan for mathematical language to be precise
$\square$ Plan for mathematical language to be concise

## Fluency



## Addition

## 100 addition basic facts

- Single-digit addends sum to a single- or double-digit number

| 5 | (addend) |
| :--- | :--- |
| $+\quad 4$ | $($ addend) |
| 9 | $($ sum $)$ |

## Addition: Part-Part-Whole (Total)

Count one set, count another set, put sets together, count sum


$$
2+3=5
$$

## Addition: Join (Change Increase)

Start with a set, add the other set, count sum


## Subtraction

## 100 subtraction basic facts

- Subtrahend and difference are single-digit numbers and minuend is single- or double-digit number

| 16 |
| ---: |
| $-\quad 8$ |
| 8 |

(minuend)
(subtrahend)
(difference)

## Subtraction: Separate (Change Decrease)

Start with a set, take away from that set, count difference


$$
5-3=2
$$

## Subtraction: Compare (Difference)

Compare two sets, count difference


$$
5-3=2
$$

## Multiplication

## 100 multiplication basic facts

- Multiplication of single-digit factors results in a single- or doubledigit product

| 2 | (factor) |
| :--- | :--- |
| $\times \quad 3$ | (factor) |
| 6 | (product) |

## Multiplication: Equal Groups

Show the groups, show the amount for each group, count product


$$
3 \times 2=6
$$

## Multiplication: Array/Area

Make the array, count product

$3 \times 2=6$

## Multiplication: Comparison

Show a set, then multiply the set


## $3 \times 2=6$

## Division

## 90 division basic facts

- Divisor and quotient are single-digit numbers and dividend is single- or double-digit number

| 8 | $\div$ | 4 |
| :---: | :---: | :---: |
| (dividend) | 2 |  |
| (divisor) |  |  |

## Division: Equal Groups (Partitive Division)

Show the dividend, divide equally among divisor, count quotient


## Division: Equal Groups (Measurement Division)

Show the dividend, make groups of the divisor, count groups


$$
6 \div 3=2
$$


$3+(-4)=\ldots \quad 5-(-6)=$

## How to build fact fluency within intensive intervention?

$\square$ Teach the concepts of the operations
$\square$ Teach strategies to understand how facts fit together
$\square$ Practice building fluency with a variety of activities and games

## Problem Solving Difficulties



## Don't tie key words to operations

## Have an attack strategy

## Teach word-problem schemas



## Key Words Used in Math Word Problems



## Problem Solving

## SOLVE

## Study the problem.

Organize the facts.
Line up the plan.
Verify the plan with computation.
Examine the answer.

## SIGNS

Survey questions


Identify key words
Graphically draw problem
Note operations
Solve and check

## Problem Solving

When teaching about word problems, students should learn the schema of the word problem.

## Total

## Difference

## Change

## Equal Groups

## Comparison

## Ratios/Proportions

## How do you incorporate effective problem-solving strategies within intensive intervention?

$\square$ Don't use key words tied to operations
$\square$ Do teach students an attack strategy
$\square$ Do teach students schemas
$\square$ Do explicitly teach problem solving
$\square$ Do provide problem-solving instruction regularly (i.e., several times a week)
$\square$ Do practice schemas that students will encounter regularly

## Motivation Component

## on task

## keep attention

## regulate behavior

## How do you incorporate a motivational component within intensive intervention?

UUtilize a motivational component, when necessary



## Contact Information

## Sarah Powell, Ph.D.

The University of Texas at Austin
srpowell@austin.utexas.edu
@sarahpowellphd

## sarahpowellphd.com <br> Evidence-based mathematics resources for educators

