International Construction Consulting, LLC HDD Design, Calculations, and Cost Estimate Bow Tie to Industrial Park; Soyo, Angola

INTERNATIONAL CONS	TRUCTION C	ONSULTING, LLC	
IOP No: NA		G Lambarson DATE: 16 Jan 19	
CLIENT: Sonangol Gas Natural	CHECKD BY	G Lamberson DATE: 10-Jan-16	
PROJECT: 24" Gas Pipeline from Bow Tie to Indust	rial Park-Soyo, An	ngola	
SUBJECT: HDD General Calculations; Length & An	gle & General Des	sign Analysis; Cost Estimate	
Input	t Parameters		
Diameter (in.) =	24.000		
Wall Thickness (in.) =	0.500		
SMYS (psi) =	65,000		
Type of Service =	Gas		
Design Pressure =	1,440		
Salety Factor =	0.72		
Ground Temperature (degrees F) =	50.00 60.00		
Operating Temperature (degrees F) =	80.00		
Cover on Bottom (Ft) =	10.00		
Groundwater table head (feet) =	10.00		
Groundwater Table Elevation =	15.38		
Concrete Coated Pipe =	No		
Concrete Coating Thickness (inches) =	0.00		
Concrete Compressive Strength (PSI) =	0		
Depth of Pipe relative to entry/exit at Lowest Point =	35.00		
	1,910.00		
D/t ratio =	48.00		
$r_{\rm c}$ (in.) =	12		
r. (in) =			
F(n) = F(n)	2 05E±07	Vounda modulus for staal (and calculation sheet)	
∟ (por) =	2549 351198	Young's mount of interia $= D!/4^*(r^4 - r^4)$	
R(in) =	16 631	Bedive of curveture in inches	
Deflection Angle -	0,001	Radius of curvature in incres	
Deflection Angle =	0.0517	Degress/15 Feet	
Deflection Angle =	0.0902	%/15 Feet	
M = (in-lb) =	4,670,570	M = EI/R	
$A = (in^2) =$	36.914	Cross sect. area = PI*(D - t)*t	
$W = (in^3) =$	216.868	(elastic) section modulus = $Pl/4^{*}(D - t)^{2*}t$	
Calculated R.O.C. =	1,386	Feet (average of calculation methods)	
Depute of this proliminary Technical Evolution	This preliminary	design has been evaluated and is deemed acc	eptable
Results of this preliminary reclinical Evaluation =		subject to a full design review.	
Length, Angles, & I	Misc Input and C	Calculations	
Top Bank at Entry of X-ing (Elev in Ft) =	0.000	Ft	
Top Bank at Exit of X-ing (Elev in Ft) =	0.000	Ft	
Bottom of X-ing (Elev in Ft) =	-25.000	Ft	
Entry Angle, Deg	12.000	Deg	
Entry Elevation, ft	16.00	Ft	
Minimum Depth Elevation, ft	35.00	Ft	
Horizontal Dist. @ Depth, ft	1,639.70	Ft	
Exit Angle, Deg.	10.000	Deg	
Exit Elevation, ft	0.00	Ft C4	
Finite Point to PC	-231.87	rt Et	
PC to PT	288.15	Ft	
PT to PC	1,639.70	Ft	
PC to PT	240.66	Ft	
PT to Exit Point	-317.91	Ft	
Length of Bore - Total Entry to Exit	1,923	Ft	
Maximum Pullback Force	224,841	Lbs	
Maximum Puliback Force	1,000 () dinal Strassas	KN (Sigma)	_
for positive compressive forces $N = 0$ i.e. to push or pull	unial Stresses (Sigina _x)	
Sigma, (psi) = Sigma, ^N + Sigma, ^M	= N/A + M/W		
where $Sigma_x^N =$	0	$Sigma_x^N = N/A$	
and Sigma ^M =	21.536	Sigma ^M = M/W	

INTERNATIO		STRUCTION C	ONSULTING, L	LC
JOB No: NA CLIENT: Sonangol Gas Natural		PREPRD.BY:	G Lamberson	DATE: 16-Jan-18
PROJECT: 24" Gas Pipeline from Bo	w Tie to Indu	strial Park-Soyo, A	ngola	
SUBJECT: HDD General Calculation	s; Length & A	Angle & General De	sign Analysis; Cost	Estimate
Crit	tical Longiti	idinal Stresses (S	Sigma _{xcr})	
when N acts alone, i.e., M = 0 and p = 0 Si N ~ axial	gma _{xcr} ^N (psi) =	63,180.0000	$Sigma_x^N = Sigma^{F*}[1-for 20 < D/t < 100]$.001*(D/t)-20)]
when M acts alone, i.e., N = 0 and p = 0 Sig M ~ bending	ma _{xcr} ^M (psi) =	73,710.0000	$Sigma_x^M = Sigma^{F*}(1)$	35-0.0045⁺D/t)
	General H	loop Stress (Sign	na _y)	
Given by: Sigma	$p_y = (p_e - p_i) \times D$	0 / (2 x t)		
where	p _e (psi) =	18.2	p _e = external pressure :	= 0.052*W _m *H
	W_m (lbs) =	10	W_m = weight of mud, lb	vs./gal.
	H (ft.) =	35.00	H = feet of head (depth	n of burial)
	p _i (psi) =	0	p _i = internal pressure (a	assumed)
	Sigma _y (psi) =	436.80		
		• • • • • • •	conversion factor, 0.05	2 converts #/gal to psi/ft.
	Critical Ho	op Stress, (Sigm	a _{ycr})	2
when p acts alone, i.e., $N = 0$ and $M = 0$	Sigma _{ycr} (psi) =	13,793.22	Sigma _{ycr} = Sigma _{yE} =	$E^{*}(t / (D-t))^{2}$
		(0.000.00	for Sigma _{yE} < 2/3 Sign	na _F
	Sigma _F (psi) =	43,333.33	OK	
ALPHA DETERMINATION:	Alpha –	1 20	Alpha = 1 + 300/(D/t)*S	Sigma /Sigma
Perm	issible Usad	ne Factors. (Nu	and Nu)	ng nay olg na _{ycr}
Nu _w is the permissible value of Sigma /Sigma when Sigma = 0		j e i detelo, (i d xp	шта та уру	
Nu_{vp} is the permissible value of Sigma _v /Sigma _{vcr} , when Sigma _x = 0	1			
BEST CASE			Zone 1 loading	
DEGTORGE	Nu _m =	1.00	Zone 1, loading	
	Nu _{vo} =	0.98		
	yp	0.00		
WORST CASE	Nu -	0.72	Installation, loading	
	Nu _{xp} =	0.72		
	NU _{yp} =	0.62		
Permis	sible Combi	nation Of Sigma,	, and Sigma _y	
(Sigma _x /Nu _{xp} *Sigma _{xcr}) ^{alpha} + (Sigma _y /Nu _{yp} *Sig	gma _{ycr}) < 1		
BEST CASE		0.261341478	OK	
WORST CASE		0.390539865	ОК	
	Installat	ion Stross Analy		•
	installati	ion Stress Analys	515	
Longitudinal Stress from	Bending = % SMYS =	21,985 33.8%	psi	
Ноо	o Stress =	34,456	psi	Hoop stress limited by design factor from 49
		52.0%	F	CFR Part 192.111. (72% for Class 1, 60% for
	% SIVI Y S =	53.0%		Class 2)
Longitudinal Compressive Stress from Hoo	p Stress =	10,337	psi	
	% SMYS =	15.9%		
Longitudinal Stross from Thormal Ex	roansion -	1 091	nci	
	$\sqrt{2}$ SMVS –	3.0%	psi	
		5.070		
Net Longitudinal Compressiv	e Stress = % SMYS =	(9,667) 14.9%	psi	
Maximum Shar	ar Strace -	22 UE2	nei	Shear stress limited to 45% of SMYS by
	% SMYS =	33.9%	မာ၊	402.3.1 of ASME/ANSI B31.4
Installation Design	n Results =	ОК		

JOB No: NA CLIENT: Sonangol Gas Natural PROJECT: 24" Gas Pipeline from Bow Tie to Industrial Park-Soyo, Angola SUBJECT: Minimum Free Stress Radius of Curvature for Steel Pipe

PREPRD.BY: G Lamberson CHECKD.BY:

DATE: 16-Jan-18 SHEET:

				F	Pipe Paran	neters							N	linimum Radiu	s of Curvature	(Ft) for Steel F	Pipe	
											Ноор							
											Stress	Case 1	Case 2	Case 3	Case 4		Case 5	
Pipe Grade	OD	WТ	ID	MAOP or	SMYS	F	E	т	Pressure Rating	Temperature		Method of ID	Pipeline Rules of	Quantum	McDermott	Texas C	Gas Transmissi	on Method
				MOP		195 &	195 &	192	at 72.%	of Pipe	psi	Hair	Thumb	Equation	Equation		Stress on Conc	rete Coating (psi)
	Inches	Inches	Inches	psig	psi	192	192	only	SMYS psig	°F		man	Method	Equation	Equation	Pipe	Best Case	Worst Case
					-							Note 1	Note 1	Note 1	Note 2	Notes 2 & 3	Note 4	Note 5
API 5L X-65	24.000	0.500	23.000	1,440	65,000	0.72	1.00	1.00	1,950	60	34,560	2,400 ft	977 ft	1,538 ft	1,032 ft	982 ft	0 psi	0 psi

Compressive Strength

Modulus of Elasticity (*)

Tensile Strength (*)

Case 1: per JD Hair; Radius = f(OD)

Case 2: per PipeLine Rules of Thumb Handbook Method, 2nd Ed; Radius = f (OD,SMYS,F,ID,Es)

Case 3: per Quantum Equation; Radius = f (OD,SMYS)

Case 4: per McDermott Equation; Radius = f (OD,SMYS,F,MAOP,WT,Es)

Case 5: per TGT Method; Radius = f (OD,SMYS,F,ID,MAOP,WT,Es,Temp.)

Concrete: Per TGT Method:

(Best) T & C = f (Ec,(OD/2+WTc),Radius) (Worst) T = f(SMYS,F,Ec,(OD/2+WT),Es,OD)

Note 1: This case does not allow for stress due to internal pressure.

Note 2: This case allows for stress due to internal pressure.

Note 3: If MAOP/MOP = 0 then pipe is assumed to be casing.

Note 4: The calculated quantity is the tension and compression (in psi). Best case assumes free relative motion between concrete inner surface and pipe outer surface.

Note 5: The calculated quantity is the tension (in psi). Worst case assumes no relative motion between concrete inner surface and pipe outer surface. This case does not take radius of curvature into account as the interaction between the pipe and concrete is the worst case.

Construction T	emperature	90 °F	
Minimum Ground	I Temperature	60 °F	
	Concrete	Parameters	
Thickness	0.00	inches	

psi

psi

psi

Ccs

 $= 7 \text{ x} (\text{Ccs}^{1/2})$

= 57000 x (Ccs^1/2)

0

0

0.00E+00

JOB No: N	A	PREPRD.BY: G Lamberson DATE: 28-Dec-17
CLIENT: S PROJECT: 2	onangol Gas Natural 4" Gas Pipeline from Bow Tie to Industrial	CHECKD.BY: Park-Soyo, Angola
SUBJECT: H	IDD General Calculations; Length & Angle &	& General Design Analysis; Cost Estimate
GENER	RAL DATA	PIPE WEIGHT DATA
Pipe Diameter:	24.000 Inches	Pino Weight in Air: 125 49 Lb/ft
Wall Thickness	0.500 Inches	Pipe Interior Vol : 288524742 cu ft/ft
SMYS:	65.000 Psi	Pipe Exterior Vol.: 3.14159265 cu.ft/ft
Young's Modulus:	30.469E+06 Psi	Air Line Weight: 0 Lb/ft
Total Pipe Length:	2,326 ft	Air Line Diameter: 0 Inches
Moment of Inertia:	2548.199797 Inches^4	Air Line Ext. Vol.: 0.000 cu.ft/ft
Pipe Face Surface Area:	36.91371368 Inches^2	Weight of Water: 0 Lb/ft
Diameter/wall thickness ratio:	48	Displaced Mud Weight: 279.601746 Lb/ft
Poisson's ratio for Steel:	0.3	Water density
Mud Weight:	89.00 Lb/cu.ft	Enter 0 for no buoyancy control: 0.00 Lb/cu.ft
Coefficient of Soil Friction.:	0.30	Effective Wt. of pipe: -154.111746 Lb/ft
Fluid Drag Coefficient.:	0.05 PSI	Note: positive value indicates downward force
	ANALYSIS OF LOADS	FOR STRAIGHT SECTION PULLED DOWNSLOPE
Measured Length:	121.28 ft	Axial Tension limited by RP2A-WSD
Angle of Inclination:	12 degrees	Comparison: 402 Psi < 58,500
=	0.20943951 radians	
		Longitudinal Bending limited by RP2A-WSD
		Comparison: 0 Psi < 42,940
Drag Forces from Mud:	5,487 Lb	
Friction from Soil:	5,485 Lb	External Hoop Stress limited by RP2A-WSD
Effective weight of Pipe:	(3,886) LD	Comparison: 374 PSI < 7,758
		Combined Stresses, Tensile & Bending, limited by RP2A-WSD
PULL LOAD AT POINT B		Comparison: 0.00688017 < 1
Tension on section:	14,857 Lb	
Cumulative Force exerted:	14,857 Lb	Combined Stresses, Tensile, Bending & Hoop limited by RP2A-WSD
		Companson. 0.00240120 < 1
	ANALISIS OF LOADS I	OK CORVIEINEAR SECTION FOLLED DOWNSLOFE
Measured Length:	241.8897082 ft	Axial Tension limited by RP2A-WSD
Change in Inclination Angle:	10 degrees	Comparison: 1,308 Psi < 58,500
=	0.174532925 radians	
Radius of Curvature:	1386 ft	Longitudinal Bending limited by RP2A-WSD
Center Displacement:	5.27386661911	Companson: 21,985 PSI < 42,940
Assumed Average Tension:	4,191 Lb	External Hoop Stress limited by RP2A-WSD
-		Comparison: 687 Psi < 7,758
Normal Force:	32,076 Lb	
Drag Forces from Mud:	10,943 Lb	Combined Stresses, Tensile & Bending, limited by RP2A-WSD
Friction from Soil:	19,246 Lb	Comparison: 0.53435705 < 1
Effective Weight of Pipe:	(3,249) LD	Combined Stresses Tensile Rending & Hean limited by DD2A WCD
PULL LOAD AT POINT C		Comparison: 0.22605637 < 1
Tension on section	33 438 J h	
Average Tension:	31,576 Lb	
Cumulative Force exerted:	48,295 Lb	
	ANALYSIS OF LC	DADS FOR HORIZONTAL STRAIGHT SECTION

Measured Length: Angle of Inclination: =	1,558.43 ft 0 degrees 0 radians	Axial Tension limited by RP2A-WSD Comparison: 5,170 Psi < 58,500	
		Longitudinal Bending limited by RP2A-WSD	
Drag Forces from Mud:	70,502 Lb	Companison: 0 PSI < 42,940	
Friction from Soil:	72,052 Lb	External Hoop Stress limited by RP2A-WSD	
Effective Weight of Pipe:	0 Lb	Comparison: 730 Psi < 7,758	
		Combined Stresses, Tensile & Bending, limited by RP2A-WSD	
PULL LOAD AT POINT D		Comparison: 0.08837802 < 1	
Tension on section:	142,553 Lb		
Cumulative Force exerted:	190,848 Lb	Combined Stresses, Tensile, Bending & Hoop limited by RP2A-WSD	
		Comparison: 0.02261897 < 1	

PREPRD.BY: G Lamberson CHECKD.BY:

JOB No: NA CLIENT: Sonangol Gas Natural PROJECT: 24" Gas Pipeline from Bow Tie to Industrial Park-Soyo, Angola SUBJECT: HDD General Calculations; Length & Angle & General Design Analysis; Cost Estimate

ANALYSIS OF LOADS FO	R CURVILINEAR	SECTION PU	LLED UPSLOPE

Measured Length: Change in Incl. Angle: =	241.8897082 ft 10 degrees 0.174532925 radians	Axial Tension limited by RP2A-WSD Comparison: 5,810 Psi < 58,500
Radius of Curvature:	1,386 ft	Longitudinal Bending limited by RP2A-WSD
Center Displacement:	5.273866619 ft	Comparison: 21,985 Psi < 42,940
Assumed Average Tension:	8,713 Lb	External Hoop Stress limited by RP2A-WSD
		Comparison: 418 Psi < 7,758
Normal Force:	26,534 Lb	
Drag Forces from Mud:	10,943 Lb	Combined Stresses, Tensile & Bending, limited by RP2A-WSD
Friction from Soil:	15,921 Lb	Comparison: 0.61130595 < 1
Effective Weight of Pipe:	(3,249) Lb	
		Combined Stresses, Tensile, Bending & Hoop limited by RP2A-WSD
PULL LOAD AT POINT E		Comparison: 0.30145671 < 1
Tension on section:	23,614 Lb	
Average Tension:	202,655 Lb	
Cumulative Force exerted:	214,462 Lb	

	ANALYSIS OF LOADS	FOR STRAIGHT SECTION PULLED UPSLOPE
Length of Section: Angle of Inclination: =	162.14 ft 10 degrees 0.174532925 radians	Axial Tension limited by RP2A-WSD Comparison: 6,091 Psi < 58,500
		Longitudinal Bending limited by RP2A-WSD
		Comparison: 0 Psi < 42,940
Drag Forces from Mud:	7,335 Lb	
Friction from Soil:	7,382 Lb	External Hoop Stress limited by RP2A-WSD
Effective Weight of Pipe:	(4,339) Lb	Comparison: 0 Psi < 7,758
		Combined Stresses, Tensile & Bending, limited by RP2A-WSD
PULL LOAD AT POINT F		Comparison: 0.10411927 < 1
Tension on section:	10,378 Lb	
Cumulative Force exerted:	224,841 Lb	Combined Stresses, Tensile, Bending & Hoop limited by RP2A-WSD
		Comparison: 0.01372042 < 1

		RESUL	_15
Total Pulling Force: Stress Violations:	224,841 Lb 0		The pulling force analysis performed indicate the design is adequate.

JOB No: NA CLIENT: Sonangol Gas Natural PROJECT: 24" Gas Pipeline from Bow Tie to Industrial Pa SUBJECT: HDD Installation Stress Analysis	* PREPRD.B CHECKD.B rk-Soyo, Angola	Y: G Lamberson DATE: 16-Jan-18 Y: SHEET:
GENER	AL DATA	
Pipe Diameter (inches):	24.00	
Wall Thickness (inches):	0.500	
SMYS (psi):	65,000	
Maximum Allowable Operating Pressure (psi):	1,440	
Poisson's ratio:	0.30	
Young's Modulus:	3.0E+07	
Radius of Curvature (feet):	1,386	
Coefficient of Thermal Expansion (inches/inch/degree F):	6.5E-06	
Installation Temperature (degrees F) =	90	
Ground Temperature (degrees F) =	60	
Operating Temperature (degrees F) =	80	
Cover on Bottom (Ft) =	10	
Groundwater table head (feet) =	: 10	
HDD INSTALLATION	N STRESS ANAL	YSIS
Longitudinal Stress from Bending =	21,985 psi	
% SMYS =	33.8%	
Hoop Stress =	34,456 psi	Hoop stress limited by design
% SMYS =	53.0%	factor from 49 CFR Part 192.111.
		(72% for Class 1, 60% for Class 2)
Longitudinal Compressive Stress from Hoop Stress =	10,337 psi	
% SMYS =	15.9%	
Longitudinal Stress from Thermal Expansion =	1,981 psi	
% SMYS =	3.0%	
Net Longitudinal Compressive Stress =	(9,667) psi	
% SMYS =	14.9%	
Maximum Shear Stress =	22,062 psi	Shear stress limited to 45% of
% SMYS =	33.9%	SMYS by 402.3.1 of ASME/ANSI B31.4
Installation Design Results =	<mark>OK </mark>	

JOB No: NA CLIENT: Sonangol Gas Natural PROJECT: 24" Gas Pipeline from Bow Tie to Industrial Park-Soyo, Angola

SUBJECT: HDD Operational Stress Analysis

PREPRD.BY: G Lamberson CHECKD.BY:

16-Jan-18

Pipe Diameter:	24.000 Inches		
Wall Thickness:	0.500 Inches		
SMYS:	65,000 psi		
Maximum Allowable Operating Pressure	1,440 psi		
Poisson's ratio:	0.3		
Young's Modulus:	3.047E+07 Psi		
Radius of Curvature:	1,386 feet		
Coefficient of Thermal Expansion:	6.5E-06 inches/inch/°F		
Installation Temperature:	90.00 °F		
Operating Temperature:	80.00 °F		
Groundwater Table Depth Relative to Entry Point:	-10.00 feet		
Groundwater Table Elevation:	15.38 feet		
Depth of Pipe relative to entry/exit at Lowest Point:	-35 feet		
Groundwater Table Head:	25 feet		
	DATA ANALYS	IS PER METHOD OF JD HAIR	
Longitudinal Stress from Bending =	DATA ANALYS 21,985	Allowable Stress per B31.4 = SMYS x F x E x T = Sa =	25,200 psi
Longitudinal Stress from Bending = % SMYS =	DATA ANALYS 21,985 33.8%	IS PER METHOD OF JD HAIR Allowable Stress per B31.4 = SMYS x F x E x T = Sa = % SMYS =	25,200 psi 38.8%
Longitudinal Stress from Bending = % SMYS =	DATA ANALYS 21,985 33.8%	IS PER METHOD OF JD HAIR Allowable Stress per B31.4 = SMYS x F x E x T = Sa = % SMYS =	25,200 psi 38.8%
Longitudinal Stress from Bending = % SMYS = Hoop Stress =	DATA ANALYS 21,985 33.8% 34,300 52.9%	IS PER METHOD OF JD HAIR Allowable Stress per B31.4 = SMYS x F x E x T = Sa = % SMYS = Hoop Stress limited by design factor from 49 CFR Part 192 or 195.	25,200 psi 38.8%
Longitudinal Stress from Bending = % SMYS = Hoop Stress = % SMYS =	DATA ANALYS 21,985 33.8% 34,300 52.8%	IS PER METHOD OF JD HAIR Allowable Stress per B31.4 = SMYS x F x E x T = Sa = % SMYS = Hoop Stress limited by design factor from 49 CFR Part 192 or 195.	25,200 psi 38.8%
Longitudinal Stress from Bending = % SMYS = Hoop Stress = % SMYS = Longitudinal Stress from Thermal Expansion =	DATA ANALYS 21,985 33.8% 34,300 52.8% 1,981	IS PER METHOD OF JD HAIR Allowable Stress per B31.4 = SMYS x F x E x T = Sa = % SMYS = Hoop Stress limited by design factor from 49 CFR Part 192 or 195.	25,200 psi 38.8%
Longitudinal Stress from Bending = % SMYS = Hoop Stress = % SMYS = Longitudinal Stress from Thermal Expansion = % SMYS =	DATA ANALYS 21,985 33.8% 34,300 52.8% 1,981 3.0%	IS PER METHOD OF JD HAIR Allowable Stress per B31.4 = SMYS x F x E x T = Sa = % SMYS = Hoop Stress limited by design factor from 49 CFR Part 192 or 195.	25,200 psi 38.8%
Longitudinal Stress from Bending = % SMYS = Hoop Stress = % SMYS = Longitudinal Stress from Thermal Expansion = % SMYS =	DATA ANALYS 21,985 33.8% 34,300 52.8% 1,981 3.0% -9 714	Allowable Stress per B31.4 = SMYS x F x E x T = Sa = % SMYS = Hoop Stress limited by design factor from 49 CFR Part 192 or 195.	25,200 psi 38.8%
Longitudinal Stress from Bending = % SMYS = Hoop Stress = % SMYS = Longitudinal Stress from Thermal Expansion = % SMYS = Net Longitudinal Compressive Stress = % SMYS =	DATA ANALYS 21,985 33.8% 34,300 52.8% 1,981 3.0% -9,714 14.9%	IS PER METHOD OF JD HAIR Allowable Stress per B31.4 = SMYS x F x E x T = Sa = % SMYS = Hoop Stress limited by design factor from 49 CFR Part 192 or 195. Additive Longitudinal Stress Limit = 0.75 x Sa = % SMYS =	25,200 psi 38.8% 18,900 psi 29.1%
Longitudinal Stress from Bending = % SMYS = Hoop Stress = % SMYS = Longitudinal Stress from Thermal Expansion = % SMYS = Net Longitudinal Compressive Stress = % SMYS =	DATA ANALYS 21,985 33.8% 34,300 52.8% 1,981 3.0% -9,714 14.9%	IS PER METHOD OF JD HAIR Allowable Stress per B31.4 = SMYS x F x E x T = Sa = % SMYS = Hoop Stress limited by design factor from 49 CFR Part 192 or 195. Additive Longitudinal Stress Limit = 0.75 x Sa = % SMYS =	25,200 psi 38.8% 18,900 psi 29.1%
Longitudinal Stress from Bending = % SMYS = Hoop Stress = % SMYS = Longitudinal Stress from Thermal Expansion = % SMYS = Net Longitudinal Compressive Stress = % SMYS = Maximum Shear Stress =	DATA ANALYS 21,985 33.8% 34,300 52.8% 1,981 3.0% -9,714 14.9% 22,007	IS PER METHOD OF JD HAIR Allowable Stress per B31.4 = SMYS x F x E x T = Sa = % SMYS = Hoop Stress limited by design factor from 49 CFR Part 192 or 195. Additive Longitudinal Stress Limit = 0.75 x Sa = % SMYS = Shear stress limited to 45% of SMYS by 402.3.1 of ASME/ANSI B31.4	25,200 psi 38.8% 18,900 psi 29.1%

JOB No: NA CLIENT: Sonangol Gas Natural PROJECT: 24" Gas Pipeline from Bow Tie to Industrial Park-Soyo, Angola SUBJECT: HDD - Modulus of Elasticity Calaculations PREPRD.BY: G Lamberson CHECKD.BY:

Reference Temperature = 60.00 °F Modulus of Elasticity = 30.469 ksi = 30.469E+06 psi

The data below is calculated based on Perry's Chemical Engineer's Handbook, 6th Edition

Modulus of Elasticity (ksi) at Temperature (°F)															
Material:	-325 °F	-200 °F	-100 °F	70 °F	200 °F	300 °F	400 °F	500 °F	600 °F	700 °F	800 °F	900 °F	1,000 °F	1,100 °F	1,200 °F
above 0.30 percent (0.3%)	31	30.6	30.4	29.9	29.5	29.0	28.3	27.4	26.7	25.4	23.8	21.5	18.8	15.0	11.2

INTERNATIONAL CONSTRUCTION CONSULTING, LLC												
JOB No: CLIENT: PROJECT: SUBJECT:	NA Sonangol Gas Natural 24" Gas Pipeline from Bow Tie to Inc HDD Cost Estimate					DATE: 16-Jan-18 PREPRD.BY: G Lamberson dustrial Park-Soyo, Angola						
HDD Cost Estimate												
Pipe Diameter		24.000										
Pipe Wall Thickness		0.500										
Pipe Grade		65,000										
Hours per Shift		12										
Length of Drill		1,923	Feet									
Mobe/Demobe Costs	\$	150,000	Each									
Type of Soil		Gravel										
Pilot Hole Production Rate		55	Feet/Hr									
Drilling Mud Flow Rate		5	BPM									
Pilot Hole Duration		2.91	Shifts									
Circulation Loss		50% 315	Sacks									
		515	Jacks									
Pre-Ream Passes		3	Ea									
Pre-Ream Travel Speed		2.5	Feet/Min									
Pre-Ream Mud Flow Rate		10	BPM									
Pre-Ream Duration		1.07	Shifts									
Circulation loss		50% 602	Sacks									
		092	Jacks									
Pull Back Travel Speed		8	Feet/Min									
Pull Back Mud Flow Rate		10	BPM									
Pull Back Duration		0.33	Shifts									
Circulation Loss		50%										
Pull Back Mud Quantity		72										
Mud Cost	\$	125.00										
Mobilization Time		30	Days									
Time Required to Drill		12	Days									
Total Time from Contract		42	Days									
Activities		Time	La	bor		Equipment		Misc		Totals		
Mobilization							\$	150,000	\$	150,000		
Rig Up		4	\$ ¢	60,000	\$	100,000			\$	161,019		
Pliot Hole Boom		2.91	ን ድ	43,707	\$ ¢	72,845			\$ ¢	117,570		
Ream Pull Back		0.33	Ф Ф	5 008	¢ ¢	20,710			¢ 2	43,752		
Rig Down		4	Ψ \$	60,000	\$	100.000			φ \$	161.019		
Demobilization		-	Ŧ	,000	+		\$	150.000	\$	150.000		
Drilling Mud							\$	144.725	\$	144,725		
Sub Total Cost							Ŧ	,. =0	\$	942.456		
Risk Premium		30%							\$	282.737		
Profit		20%							\$	245.038		
Total Cost									\$	1,470.231		
Cost/Ft									\$	127.42		