Real-Time Metagenomic Next-Generation Analysis for Diagnosis of Infectious Diseases

Charles Chiu, MD / PhD

Associate Professor, Department of Laboratory Medicine and Medicine / Infectious Diseases
Director, UCSF-Abbott Viral Diagnostics and Discovery Center
Associate Director, UCSF Clinical Microbiology Laboratory
Disclosures

• Abbott Diagnostics (research support for pathogen discovery)

• BioMérieux (research support for nanopore assay development)
Targeting Acute Infectious Diseases in Hospitalized Patients

Up to 60% of hospitalized patients with pneumonia, sepsis, and encephalitis / meningitis are managed and treated without a laboratory-confirmed cause of their disease, resulting in:

delayed and ineffective therapy, increased mortality, and excess healthcare costs
Conventional Testing

Metagenomic Next-Generation Sequencing (mNGS)
All Microbes can be Uniquely Identified by mNGS

Bacteria

Viruses

Fungi

Parasites
Precision Diagnosis of a Mysterious Infection

3 hospitalizations over 4 months
44 days in the ICU
>100 inconclusive tests

Brain biopsy and induced coma (Wilson, et al., 2014, *New England Journal of Medicine*; photos courtesy of the Osborn family)
Leptospira santarosai
Leptospira borgpetersenii
unclassified
Leptospira interrogans
Propionibacterium acnes
mNGS Clinical Workflow (48-72 hr TAT)

Naccache, et al. (manuscript in preparation)
Precision Diagnosis of Acute Infectious Diseases (PDAID)

Meningitis / Encephalitis
40-60% unknown cause

7 hospitals in CA and nationwide
Enroll/consent patients
151 to date
CSF collected
Clinical chart review

mNGS assay validated in CLIA lab
86% sensitivity, 98% specificity

Clinical microbial sequencing board
Clinical report in patient EMR

Diagnosis of neurologic infection in 23.2% of cases, one-third of which were not identified by conventional testing
88% sensitivity, 97% specificity (excluding cases dx’ed by serology)
Precision Diagnosis of Acute Infectious Diseases (PDAID) Study

Neurological Infections Missed by Conventional Testing

- St. Louis encephalitis virus (first case in California since 1986)
- Human coronavirus 229E
- Hepatitis E virus
- *Enterobacter aerogenes*
- *Candida tropicalis*
- *Neisseria meningitidis*
- *Streptococcus agalactiae*
Nanopore Sequencing for Real-Time Metagenomic Pathogen Detection in Febrile Illness

MinION (Oxford Nanopore Technologies)

(Greninger, et al., 2015, *Genome Medicine* 7:99)
Viral Reads Detected <8 Min into Sequencing Run

- **Chik1 (9.1x10⁷ copies/mL)**
 - All reads (n=19,452)
 - CHIKV reads (n=556)
 - 6 min

- **Ebola1 (1x10⁷ copies/mL)**
 - All reads (n=13,090)
 - EBOV reads (n=41)
 - 8 min
Low Serum Titers in Acutely Infected ZIKV Patients

(Quick, et al., 2016, Nature 530:228-232)
Nanopore Metagenomic Sequencing Protocol (<3 hr turnaround time)

RNA extraction + DNase (0.5 hr)

Reverse transcription with random and targeted priming of RNA (0.5 hr)

PCR amplification (1.5 hr)

First read detection (3 - 30 min)

Library preparation (15 min - 2 hr)
Targeted Primers Increase Sensitivity But Do Not Impact Off-Target Metagenomic Detection
Nanopore Sequencing in Space
SURPlr Analysis of Nanopore Data Collected on the ISS

E. coli de novo assembly (Canu)
- raw 1D and 2D reads (n=84,502)
 - (4 mapped contigs, 99.8% complete, 98.5% pairwise identity)

Circle chart:
- Bacteria (6,279, 42.3%)
- Non-host Eukaryote (0.40%)
- Other (1.9%)
- Mus musculus (6,220, 41.8%)
- Low quality / complexity (14)
- Viruses (520, 3.5%)
- Unidentified (1,482, 10.0%)
Increasing Read Throughput of Nanopore Sequencing

Detection of Zika virus @ 10^2 copies/mL

- 5,000 reads / min
- 200,000 reads / hr
- 7.4 million reads total for run
- Detection of Zika virus @ 15 min
Diagnosis of Lyme Disease using Human Host Biomarkers

59 human gene transcripts → 96% sensitivity / 100% specificity in distinguishing Lyme patients from controls
Machine Learning-Based Prediction of Causes of Infection from Human Gene Expression Data (RNA-Seq)

74% accuracy (preliminary analysis)
Acknowledgements

UCSF Chiu Lab and VDDC
Erik Samayoa, BS, CLS
Samia Naccache, PhD
Shaun Arevalo, CLS
Jerome Bouquet, PhD
Guixia Yu, BS
Scot Federman, BA
Alex Greninger, MD/PhD
Sneha Somasekar, BS
Doug Stryke, MS
Matt Massie, BS
Tony Li, BS
Wayne Deng, PhD
Guixia Yu, BS
Steve Miller, MD/PhD

Johns Hopkins University
John Aucott, MD
Mark Soloski, MD

Metabiota, Inc. / PREDICT
Placide Mbala, MD
Jean-Jacques Muyembe, MD

Federal University of Bahia, Brazil
Silvia Sardi, PhD

CDPH
Shigeo Yagi, PhD
Carol Glaser, MD
Dongxiang Xia, PhD
Sharon Messenger, PhD
Debra Wadford, PhD

NASA
Aaron Burton, PhD
Sarah Castro-Wallace, PhD
Kate Rubins, PhD

Abbott Diagnostics
John Hackett, PhD

Weill Cornell Medical College
Christopher Mason, PhD

American Red Cross
Sue Stramer, PhD

Funding
- NIH
- UC Center for Accelerated Innovation Award
- Abbott Laboratories
- Sandler Foundation
- Bowes Foundation
- Charles and Helen Schwab Foundation
- BioMérieux Award
The Precision Diagnosis of Acute Infectious Diseases Team

UCSF
Charles Chiu, MD/PhD (PI)
Steve Miller, MD/PhD
Hannah Sample, BS
Kelsey Zorn, BS
Joseph DeRisi, PhD
Michael Wilson, MD
Eric Chow, PhD
Jeffrey Gelfand, MD
Felicia Chow, MD
Samia Naccache, PhD

UCD
Christopher Polage, MD
Stuart Cohen, MD
Lara Zimmermann, MD

UCDAVIS

UCLA
Romney Humphries, PhD/D(ABMM)
Jeffrey Klausner, MD/MPH
Paul Vespa, MD
Jamie Murkey, BS

UCB
Brent Fulton, PhD

Children’s Hospital Colorado
Kevin Messacar, MD
Samuel Dominguez, MD/PhD

Children’s Hospital Los Angeles
Jeffrey Bender, MD
Jennifer Dien-Bard, MD
Samia Nacache, PhD

Syapse
Jonathan Hirsch, PhD
Laurie Gomer, MBA

DNAnexus
David Shaywitz, MD/PhD
Marcus Kinsella, BS

St. Jude Children’s Research Hospital
Randall Hayden, MD

Children’s Hospital Los Angeles

Children’s National Medical Center
Brittany Goldberg, MD
Roberta DiBiasi, MD

Quest Diagnostics
Rick Pesano, MD/PhD
John Leake, MD/MPH