Waveform Processing Airborne Laser Scanner for Wide Area Mapping and High Productivity

REGL VQ-780i

- online waveform processing as well as smart and full waveform recording
- excellent multiple target detection capability
- excellent suppression of atmospheric clutter
- Multiple-Time-Around (MTA) processing of up to 25 pulses simultaneously in the air
- high laser pulse repetition rate up to 1 MHz
- up to 666,000 measurements/sec on the ground
- parallel scan lines and uniform point distribution
- interface for GNSS time synchronization
- seamless integration and compatibility with other RIEGL ALS systems and software packages

The RIEGL VQ-780i is a high performance, rugged, lightweight, and compact airborne mapping sensor. This versatile system is designed for high efficient data acquisition at low, mid, and high altitudes, covering a variety of different airborne laser scanning applications from high density to wide area mapping.

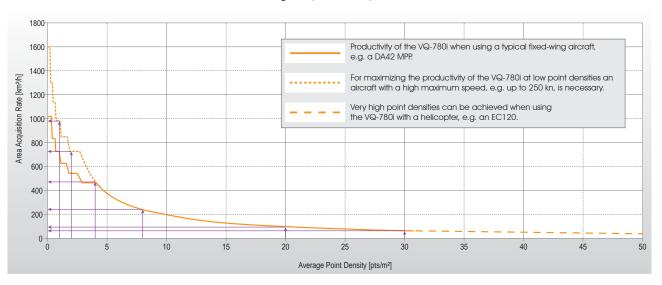

High speed rotating mirror design ensures reliability, and uniform point distribution across its entire wide field of view and at all flying altitudes. Based on *RIEGL*'s proven Waveform-LiDAR technology, the system provides point clouds with highest accuracy, excellent vertical target resolution, calibrated reflecetance readings, and pulse shape deviation for unsurpassed information content on each single measurement. Excellent atmospheric clutter suppression yields clean point clouds with minimum efforts in filtering isolated noise points.

The system is complimented with *RIEGL*'s advanced acquisition and data processing software suite that utilizes parallel computing (GPU) for fast data processing.

The *RIEGL* VQ-780i is designed to work with the latest Inertial Navigation (IMU) Systems, flight management systems, and camera options.

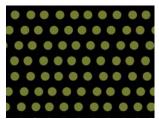
Applications:

- Wide Area / High Altitude Mapping
- High Point Density Mapping
- Mapping of Complex Urban Environments
- Glacier & Snowfield Mapping
- City Modeling
- Mapping of Lakesides & River Banks
- Agriculture & Forestry
- Corridor Mapping



visit our website www.riegl.com

RIEGL VQ®-780i Productivity

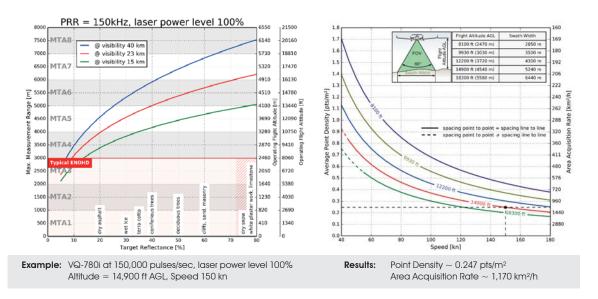


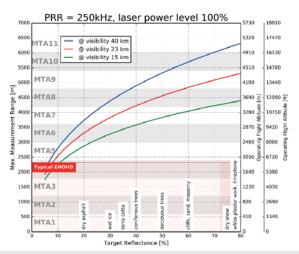
Examples 1)								
Average Point Density	1 pts/m²	2 pts/m²	4 pts/m²	8 pts/m²	20 pts/m²	30 pts/m²		
Flight Altitude	7500 ft	5580 ft	5580 ft	4000 ft	1600 ft	1150 ft		
AGL	2280 m	1700 m	1700 m	1120 m	490 m	350 m		
Ground Speed	246 kn	250 kn	165 kn	115 kn	115 kn	106 kn		
Swath Width	2600 m	1960 m	1960 m	1410 m	560 m	410 m		
Productivity	960 km²/h	727 km²/h	480 km²/h	240 km²/h	96 km²/h	64 km²/h		
Measurement Rate ²⁾	333 000 meas./sec	666 000 meas./sec						

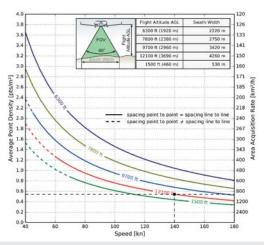
1) calculated for 20% target reflectivity and 20% stripe overlap
2) The target detection rate is equal to the measurement rate for terrains offering only one target per laser pulse but may be much higher for vegetated areas.

RIEGL VQ®-780i Dense Scan Pattern and Wide Effective Swath Width

RIEGL VQ-780i point distribution

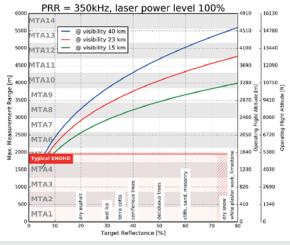

The RIEGL VQ-780i scanning mechanism – based on a continuously rotating polygon mirror wheel - delivers straight parallel scan lines resulting in a regular point pattern on the ground. With equal spatial sampling frequency along and across track, object extents are well defined and even small objects may be detected. The instrument is perfectly suited for applications where a superior point pattern on target surfaces is required.

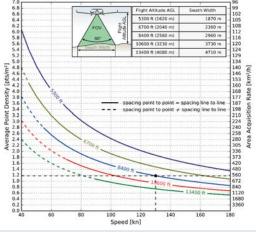



broad effective swath width

The wide field of view and the multiple-time-around measurement capability of the RIEGL VQ-780i make the instrument perfectly suited for wide area mapping applications. The instrument has been designed for utmost efficiency in collecting data by enabling scanning operations from high altitudes at high laser pulse repetition rates simultaneously, reducing the necessary flight time to a minimum.

Measurement Range & Point Density RIEGL VQ®-780i



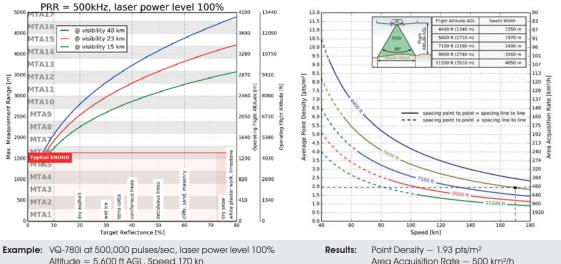


Example: VQ-780i at 250,000 pulses/sec, laser power level 100% Altitude = 12,100 ft AGL, Speed 140 kn

Results: Point Density ~ 0.54 pts/m² Area Acquisition Rate ~ 880 km²/h

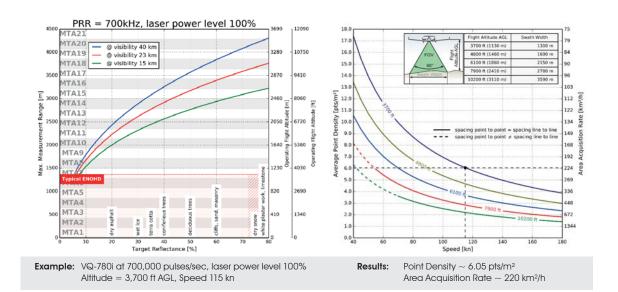
Example: VQ-780i at 350,000 pulses/sec, laser power level 100% Altitude = 8,400 ft AGL, Speed 130 kn

Results: Point Density $\sim 1.18 \, \text{pts/m}^2$ Area Acquisition Rate ~ 570 km²/h


The following conditions are assumed for the Operating Flight Altitude AGL • ambiguity resolved by multiple-time-around (MTA) processing • target size ≥ laser footprint • full FOV of 60° • roll angle ±5°

- $\begin{array}{l} \textbf{Assumptions for calculation of the Area Acquisition Rate} \\ \bullet 20\% \text{ overlap of neighboring flight strips. This overlap covangle of $\pm 5^\circ$ or a reduction of flight altitude AGL of 20%.} \\ \end{array}$

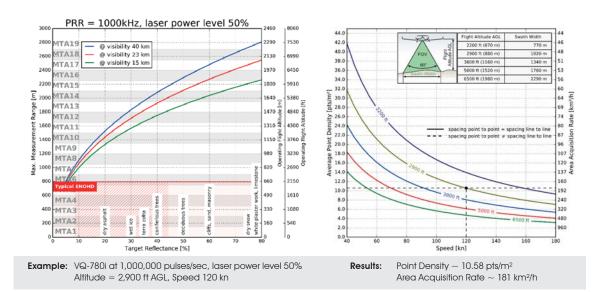
Typical ENOHD


Calculated under assumption of an angular step width of 0.012° and an aircraft speed higher than 10kn.

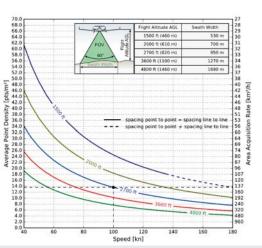
Measurement Range & Point Density RIEGL VQ®-780i

Altitude = 5,600 ft AGL, Speed 170 kn

Area Acquisition Rate ~ 500 km²/h

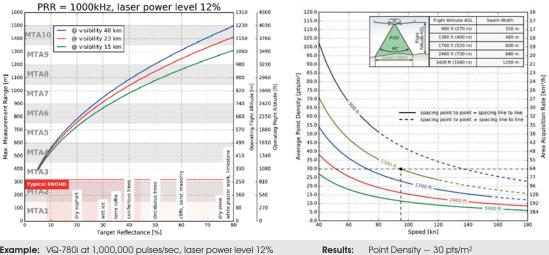

- $\begin{array}{ll} \textbf{The following conditions are assumed for the Operating Flight Altitude AGL}\\ \bullet \ \ \text{ambiguity resolved by multiple-time-around (MTA) processing}\\ \bullet \ \ \text{target size} \geq \text{laser footprint}\\ \bullet \ \ \text{full FOV of 60°}\\ \end{array} \\ \bullet \ \ \text{roll angle $\pm5^\circ$}\\ \end{aligned}$

Assumptions for calculation of the Area Acquisition Rate \bullet 20% overlap of neighboring flight strips. This overlap covers a roll angle of $\pm 5^\circ$ or a reduction of flight altitude AGL of 20%.


Typical ENOHD

Calculated under assumption of an angular step width of 0.012° and an aircraft speed higher than 10kn.

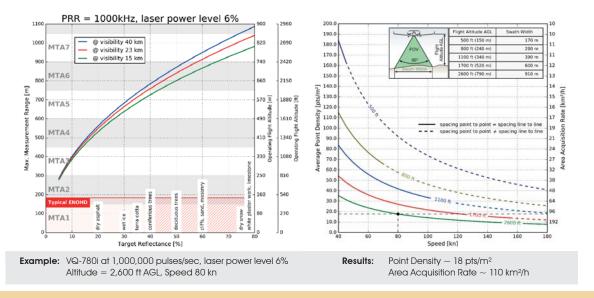
Measurement Range & Point Density RIEGL VQ®-780i



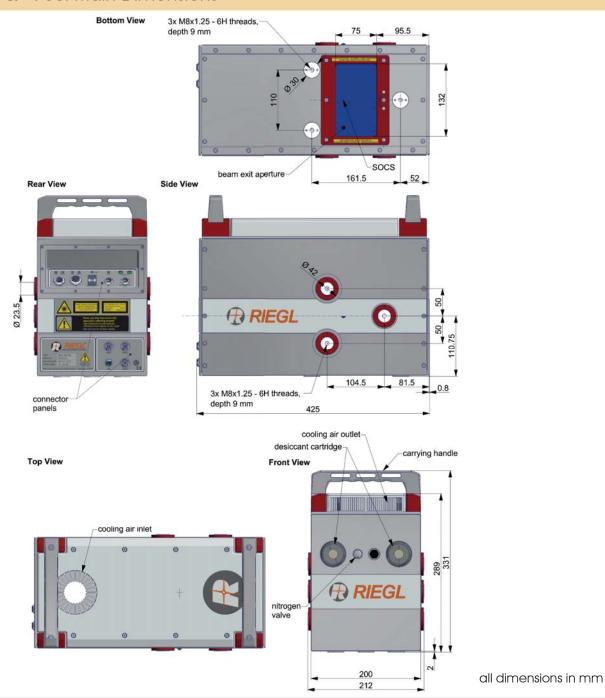
PRR = 1000kHz, laser power level 25% @ visibility 40 km @ visibility 23 km @ visibility 15 km MTATI VTA10 1150 <u>E</u> MTA9 3230 P 1200 8ATM 820 MTA7 1610 490 330 1080 160 wet ice MTA1

Example: VQ-780i at 1,000,000 pulses/sec, laser power level 25% Altitude = 2,700 ft AGL, Speed 100 kn

Example: VQ-780i at 1,000,000 pulses/sec, laser power level 12% Altitude = 1,300 ft AGL, Speed 95 kn


Area Acquisition Rate ~ 64 km²/h

The following conditions are assumed for the Operating Flight Altitude AGL • ambiguity resolved by multiple-time-around (MTA) processing • target size ≥ laser footprint • full FOV of 60° • roll angle ±5°


- $\begin{array}{l} \textbf{Assumptions for calculation of the Area Acquisition Rate} \\ \bullet 20\% \text{ overlap of neighboring flight strips. This overlap covangle of $\pm 5^\circ$ or a reduction of flight altitude AGL of 20%.} \\ \end{array}$

Typical ENOHD

Calculated under assumption of an angular step width of 0.012° and an aircraft speed higher than 10kn.

RIEGL VQ®-780i Main Dimensions

Technical Data RIEGL VQ®-780i

Laser Product Classification

Class 3B Laser Product according to IEC60825-1:2014 The following clause applies for instruments delivered into the United States: Complies with 21 CFR 1040.10 and 1040.11 except for deviations pursuant to Laser Notice No. 50, dated June 24, 2007.

The instrument must be used only in combination with the appropriate laser safety box.

Range Measurement Performance

as a function of laser power setting, PRR, and target reflectivity

Laser Power Level	100%						
Laser Pulse Repetition Rate (PRR) 1)	150 kHz	250 kHz	350 kHz	500 kHz	700 kHz		
Max. Measuring Range $^{2/3)}$ natural targets $\rho \geq 20 \%$ natural targets $\rho \geq 60 \%$	4500 m	3700 m	3200 m	2800 m	2400 m		
	6800 m	5600 m	5000 m	4300 m	3800 m		
Max. Operating Flight Altitude	5600 m	4600 m	4100 m	3500 m	3100 m		
Above Ground Level (AGL) ^{2) 4)}	18300 ft	15000 ft	13400 ft	11500 ft	10200 ft		
NOHD ^{5) 7)}	370 m	290 m	240 m	200 m	170 m		
ENOHD ^{6) 7)}	2450 m	1900 m	1600 m	1340 m	1120 m		
Max. Number of Targets per Pulse 8) 9)	15	15	14	10	7		

Laser Power Level	100%	50%	25%	12%	6%
Laser Pulse Repetition Rate (PRR) 1)	1000 kHz	1000 kHz	1000 kHz	1000 kHz	1000 kHz
Max. Measuring Range $^{2/3}$ natural targets $\rho \geq 20\%$ natural targets $\rho \geq 60\%$	2050 m 3300 m	1500 m 2450 m	1100 m 1800 m	780 m 1300 m	560 m 940 m
Max. Operating Flight Altitude Above Ground Level (AGL) ^{2) 4)}	2700 m 8800 ft	2000 m 6500 ft	1450 m 4800 ft	1050 m 3400 ft	770 m 2520 ft
NOHD ^{5) 7)} ENOHD ^{6) 7)}	140 m 940 m	95 m 650 m	61 m 430 m	36 m 260 m	21 m 150 m
Max. Number of Targets per Pulse 8) 9)	5	5	5	5	5

- Topical values for average PRR
 Typical values for average conditions and average ambient brightness; in bright sunlight the operational range may be considerably shorter and the operational flight altitude may be considerably lower than under an overcast sky.
 The maximum range is specified for flat targets with size in excess of the laser beam diameter, perpendicular angle of incidence, and for atmospheric visibility of 40 km. Range amiguities have to be resolved by multiple-time-around processing.
 Typical values for reflectivity p ≥ 60 %, max. effective FOV 60°, additional roll angle ± 5°
 Nominal Ocular Hazard Distance, based upon MPE according to IEC 60825-1:2014, for single line condition
 Extended Nominal Ocular Hazard Distance, based upon MPE according to IEC 60825-1:2014, for single line condition
 NOHD and ENOHD have been calculated for a typical angular step width of 0.012° (which means non-overlapping laser footprints), and an aircraft speed higher than 10 km. NOHD and ENOHD increase when using overlapping laser footprints which may be intended e.g. for power line mapping.
 With online waveform processing: monitoring data output: first pulse
- 8) With online waveform processing; monitoring data output: first pulse
 9) If the laser beam hits, in part, more than one target, the laser's pulse power is split accordingly. Thus, the achievable range is reduced.

Minimum Range 10) Accuracy 11) 12) Precision 12) 13) Laser Pulse Repetition Rate Effective Measurement Rate Echo Signal Intensity Laser Wavelength Laser Beam Divergence

Scanner Performance Scanning Mechanism Scan Pattern Scan Angle Range Total Scan Rate Angular Step Width Δθ Angle Measurement Resolution

100 m 20 mm 20 mm up to 1 MHz up to 666 kHz @ 60° scan angle provided for each echo signal near infrared \leq 0.18 mrad @ 1/e 14 , \leq 0.25 mrad @ 1/e 2 15

rotating polygon mirror parallel scan lines $\pm 30^{\circ} = 60^{\circ}$ 20 16) - 300 lines/sec $0.006^{\circ} \le \Delta \theta \le 0.18^{\circ} \, ^{17)} \, ^{18)}$ 0.001°

- 10) Limitation for range measurement capability, does not consider laser safety issues! The minimum range for valid reflectivity values is 250 m.
- 11) Accuracy is the degree of conformity of a measured quantity to its actual (true) value.
- 12) Standard deviation one sigma @ 250 m range under RIEGL test conditions.
- 13) Precision, also called reproducibility or repeatability, is the degree to which further measurements show the same result.
- 14) Measured at the 1/e points. 0.18 mrad correspond to an increase of 18 cm of beam diameter per 1000 m distance.
- Measured at the 1/e² points. 0.25 mrad correspond to an increase of 25 cm of beam diameter per 1000 m distance
- 16) The minimum scan rate depends on the selected
- 17) The minimum angular step width depends on the
- selected laser PRR.

 18) The maximum angular step width is limited by the maximum scan rate.

Technical Data to be continued at page 8

Technical Data RIEGL VQ®-780i (continued)

Data Interfaces

Configuration Monitoring Data Output Digitized Data Output Synchronization

Camera interface

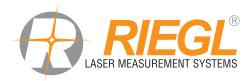
General Technical Data

Power Supply / Current Consumption Main Dimensions (length x width x height) Weight

Protection Class

Max. Flight Altitude operating / not operating Temperature Range operation / storage

1) Mean Sea Level


TCP/IP Ethernet (10/100/1000 MBit/s) TCP/IP Ethernet (10/100/1000 MBit/s)

High-speed data link to RIEGL Data Recorder DR1560i Serial RS232 interface, TTL input for 1 pps synchronization pulse, accepts different data formats for GNSS-time information 2 x power, RS232, 1 pps, trigger, exposure

18 - 32 V DC / typ. 150 W 425 mm x 212 mm x 331 mm approx. 20 kg

IP54

18500 ft (5600 m) above MSL¹⁾ / 18500 ft (5600 m) above MSL -5° C up to $+40^{\circ}$ C / -10° C up to $+50^{\circ}$ C

RIEGL Laser Measurement Systems GmbH Riedenburgstraße 48
3580 Horn, Austria
Phone: +43 2982 4211 | Fax: +43 2982 4210
office@riegl.co.at
www.riegl.com

RIEGL USA Inc.Orlando, Florida | info@rieglusa.com | www.rieglusa.com

RIEGL Japan Ltd.
Tokyo, Japan | info@riegl-japan.co.jp | www.riegl-japan.co.jp

RIEGL China Ltd.

Beijing, China | info@riegl.cn | www.riegl.cn

