Power Supplies

- select a dc power source to provide a suitable voltage for a particular purpose;
- understand the use of low voltage regulators i.e. L7805 and 78L05.

Mechanical Switches

- recognize and use the following types of switches: slide, toggle, rocker, push (PTM and PTB), key, micro, reed, rotary, membrane and tilt;
- understand the terms: pole, throw, normally open, normally
- closed, in relation to SPST and SPDT switches;
- use switches connected in series or parallel;
- know how to eliminate the effect of switch bounce.

Resistors

- understand and use resistors to control voltage and current in electronic circuits and use Ohms Law calculations to determine current flowing through a resistor and voltage across a resistor and determine the value of resistors in series;
- use potentiometers or variable resistors within electronic circuits;
- understand that LDRs and thermistors are types of variable resistors and know how their resistance varies with light and temperature respectively;
- determine the value of a fixed resistor by using the resistor colour code and a multimeter and use the units of measurement correctly (limited to three colour band resistors + tolerance band);
- use fixed resistors as pull-up and pull-down resistors connected to inputs;
- know that resistors are commonly available in preferred value series, i.e. E24 (5%);
- be aware that several resistors can be packaged in a single in line (SIL) resistor network or in a dual in line (DIL) IC.

Capacitors

- understand that capacitors store electrical charge;
- identify polarised and non-polarised capacitors and use the units of measurement correctly;
- identify the anode and cathode leads of a polarised capacitor;
- use a capacitor and resistor in combination to achieve a time delay;
- understand the use of capacitors to smooth a dc voltage supply.

Diodes

- understand that diodes allow current to flow in one direction only;
- identify the anode and cathode leads;
- use a diode to protect components from back electro-motive force (emf);
- use a diode to protect components against incorrect battery polarity.

Light Emitting Diodes (LEDs)

- understand that LEDs are special types of diodes that emit light;
- identify the anode and cathode leads;
- use LEDs in electronic circuits, calculate and select a suitable current limiting resistor from the E24 resistor range;
- be aware that LEDs are available as bi-colour, tri-colour, and also as IR emitters.

Bi-polar Transistors

- know how and when to use a bi-polar transistor;
- recognize the circuit symbol for an NPN bi-polar transistor and photo transistor;
- identify the base, emitter and collector leads;
- draw the circuit diagram and understand the use of a Darlington pair transistor configuration used as a transducer driver (NPN only), i.e. BC548 and BC639;
- be aware that a Darlington Pair can be packaged as a single transistor, i.e. BCX38;
- be aware that Darlington driver transistors can be packaged as a transistor array consisting of several transistors packaged in a single IC, i.e. ULN2803 and ULN2003.

Field Effect Transistors

- know how and when to use a Field Effect Transistor;
- recognise the circuit symbol for a metal oxide silicon Field Effect Transistor (MOSFET) only;
- identify the gate, drain and source leads of a MOSFET

Thyristors

- know how and when to use a thyristor;
- identify the gate, anode, and cathode leads;
- use and describe the action of a thyristor as a latch in an electronic circuit;
- understand that a thyristor latch is an example of a bistable circuit.

Relays

) understand that relays are used to interface between electrical circuits without any electrical connection by the use of magnetism.

Opto-isolators

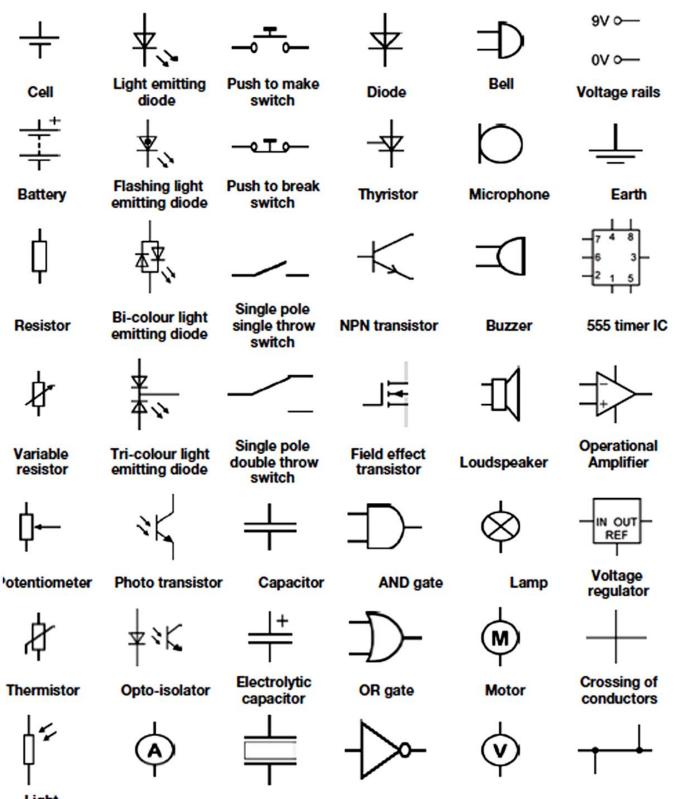
Opto-isolators use an infra-red emitting diode and a phototransistor to interface between electronic circuits without any electrical connection by the use of infra-red light.

Operational Amplifiers

- understand the function of an operational amplifier and be able to describe the use of the non-inverting and inverting inputs;
 - use operational amplifiers which require a single power supply, i.e. 3140 IC;
 - use an operational amplifier as a comparator and an inverting amplifier;

	• know how to limit the gain of an operational amplifier by using an input resistor and a feedback resistor (negative feedback		Integrated Circuits (ICs)
	only).	\square	 describe what is meant by a Dual In Line (DIL) IC package;
		Н	• identify the pin numbers on a dual in line IC;
	Logic		 describe the use of an IC socket;
\neg	a understand that logic is used when simulity require more than	\cup	• show awareness of dedicated ICs found in toys and greeting
	 understand that logic is used when circuits require more than one input; 		cards e.g. melody generators, siren generators and various other sounds.
	• use the following logic gates and construct their truth tables		
_	(limited to 2 inputs): AND, OR and NOT;		Monostable Timers
	• understand that logic gates respond to, and output, digital		
	signals and distinguish these from analogue signals.	\cup	• use a 555 IC to produce a monostable time delay and calculate th0e time period;
	Microcontrollers	\square	• understand how to adjust the time delay of the monostable.
_		\cup	
	• understand that microcontrollers are programmable integrated		Astable Circuits (Pulse Generators)
\neg	circuits;demonstrate an awareness that a programming language can	\square	• use a 555 IC as a pulse generator and calculate the frequency
	be used to integrate a variety of sub-system routines into one		of the pulses;
	program and can be downloaded onto a microcontroller;	Д	 understand equal and unequal mark space ratios;
	• use a programming method to develop sub-system routines	\cup	 understand how to adjust the frequency of the astable.
	which include the following functions: start, stop, output, wait, decision, compare, expression, increment, decrement, pulse,		Counter
	sound, count, infrared and end;		
	• be aware that decimal and binary numbers can be used to		counters to achieve simple counting i.e. 4017 IC and 4026 IC.
\square	control the logic state of outputs;		Interface Devices
	 show how sub-system routines can be combined to produce complex outcomes; 		Interface Devices Candidates should be taught to select and use an appropriate
\square	 use digital and analogue input sensors with a microcontroller; 	\cup	amplifier/transducer driver for a particular purpose limited to
	 interface microcontrollers with a transducer driver; 		Darlington drivers, op-amps, field effect transistors, bi-polar
	• interface microcontrollers with output devices which generate		transistors and thyristors.
\frown	light or sound;interface microcontroller with other types of ICs, i.e. 4017 IC		Output Devices
	and 4026 IC;	\square	Candidates should be taught to describe applications for, and use
	• use an infrared receiver and transmitter with a microcontroller.	\cup	LEDs, buzzers, lamps, bells, loudspeakers, sirens, piezo sounders,
			solenoids and seven segment displays.
	Potential Dividers		Transducer Input Devices
\Box	 use a potential divider to control voltages in a circuit; 	\square	Candidates should be taught to describe applications for, and use
	• construct a constant voltage potential divider from two fixed		LDRs, thermistors, piezos, moisture sensors and microphones.
\frown	resistors in series;		
	• construct a variable voltage potential divider from a fixed resistor and an LDR or thermistor in series;		Smart Materials
\square	• construct a potential divider consisting of an LDR or thermistor		• describe how materials can be combined and processed to
	in series with a potentiometer or variable		create more useful properties and how these changed materials
	resistor to set a threshold switching voltage.	\square	are used in industrial application;
	Electronic Switches	\Box	• be aware of the use of smart materials, i.e. electro-luminescent materials, shape memory metals, polymer fibre optical cables,
			photovoltaic cells, piezoelectric cable, semi-conductor material
	How to use transistors, logic gates and microcontrollers as		and Quantum Tunnelling Composite (QTC).
	electronic switches.		• have an awareness of the development and possible
	Timers	_	applications of nanoelectronics in the area of Design and Technology.
	Candidates should be taught to use a capacitor and resistor in		
	series to produce a time delay.		

Preliminary Exam Material;


Improving hand-eye coordination in students

Examination Date;

Tuesday 22th May 2015

Required Circuit Symbols;

Piezo crystal

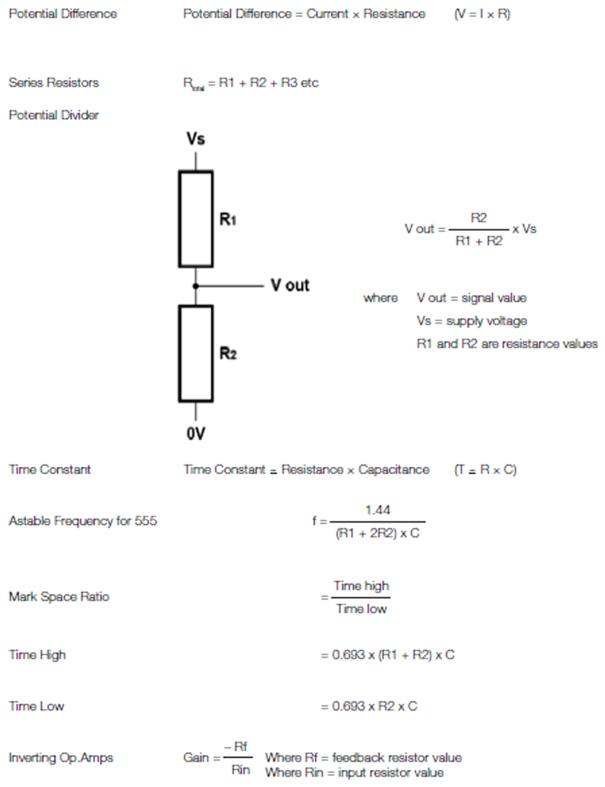
oscillator

NOT gate

Light dependent resistor

Ammeter

Joined


Conductors

Voltmeter

Required Calculations;

Calculations

Candidates should be taught to use the formulae listed below: (these formulae will be listed in the examination paper);

I

