Five Best Practices for Math Instruction

Sarah R. Powell, Ph.D.

Associate Professor
The University of Texas at Austin

Introduce yourself.

Describe your strengths in supporting mathematics.

Describe an opportunity for growth.

This Year

September 20	Five Best Practices for Math Instruction - Systematic and explicit instruction - Math vocabulary - Multiple representations - Fluency - Word-Problem Solving
January 30	VIRTUAL
	Word Problems? No Problem!
April 11	VIRTUAL
	Mathematics Manipulatives Mania

Today

8:30-11:30 Five Best Practices for Math Instruction
11:30-12:30 LUNCH
12:30-3:00 Five Best Practices for Math Instruction

Mathematical Pathways

$x \mid A+H$

Broad math in prek predicted K broad math

Broad math in prek predicted grade 10 broad math

Counting in K predicted grade 1 broad math

Broad math in K predicted grade 8 broad math
K math accurately predicted math performance below 10th percentile in grades 2 and 3 with 84\% correct classification

| <Sch | K | 1st | 2nd | 3rd | 4th | 5th | 6th | 7th | 8th | 9th | 10th | 11th | 12th | >Sch |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | Starr et al. (2013) Lee (2012) cohort 1 Libertus et al. (2013) Mazzocco et al. (2011 Watts et al (2014) Jordan et al. (2007)

Navarro et al. (2012) Navarro et al. (2012)
Passolunghi et al. (2012) stock et al. (2009) cohort Aunola et al. (2004) Krajewski et al. (2009a) Bodovski \& Farkas (2007) DiPerna et al. (2007) ordan et al. (2009) Missall et al. (2012) Claessens et al. (2009) Judge \& Watson (2011) Lee (2012) cohort 2 Morgan et al. (2009) Claessens \& Engel (2013) Bagliciet al. (2010) Desoete et al. (2012) LeFevre et al. (2010) LeFevre et al. (2010) Stock et al. (2010) Mazzocco \& Thompson (2005) Mazzocco et al. (2011a) Desoete \& Gregoire (2006) Locuniack \& Jordan (2008) Stock et al. (2009) cohort 2 Vukovic (2012)
Krajewski \& Schneider (2009b) Geary et al. (2012) Geary et al. (2012
Geary (2011) Geary et al. (2013) Geary et al. (2013)
Friso-van den Bos et al. (2015) Desoete et al. (2009) Bailey, Watts, et al. (2014) cohort 1 Bailey, Slegler, et al. (2014) Bailey, Watts, et al. (2014) cohort 2 Morgan et al. (2011) Jordan et al. (2013) Reigosa-Crespo et al. (2013) Siegler et al. (2012) cohort 1 Segler (2012) siegler et al. (2012) cohort Hansen et al. (2015) Bailey et al. (2012) Primi et al. (2010) Wilkins \& Ma (2002) Lee (2012) cohort 3 Spielhagen (2006) Dougherty (2003) Britt \& Irwin (2008)

| $<$ Sch | K | 1st | 2nd | 3rd | 4th | 5th | 6th | 7th | 8th | 9th | 10th | 11th | 12th | $>$ Sch |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | I P F W S F W S F W S F W S F W S F W S F W S F W S F W S F W F S W S F W S F W S

Broad math in grade 8 predicted completion of 4-year college degree

Students who took algebra in grades 8 took more advanced math courses and enrolled in 4-year colleges more often than students who took algebra in grade 9

Numeracy measured in adolescence impacted hourly earnings 7 to 15 years later

| <Sch | K | 1st | 2nd | 3rd | 4th | 5th | 6th | 7th | 8th | 9th | 10th | 11th | 12th | >Sch |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | Starr et al. (2013) Lee (2012) cohort 1 Libertus et al. (2013) Mazzocco et al. (201

Watts et al. (2014) Jordan et al. (2007) Navarro et al. (2012) Passolunghi et al. (2012) Stock et al. (2009) cohort 1 Aunola et al. (2004) Krajewski et al. (2009a) Bodovski \& Farkas (2007) DiPerna et al. (2007) Jordan et al. (2009) Jordan et al. (2009) Missall et al. (2012)
Claessens et al. (2009) Claessens et al. (2009)
Judge \& Watson (2011) Lee (2012) cohort 2 Morgan et al. (2009) Claessens \& Engel (2013) Bagliciet al. (2010) Desoete et al. (2012) LeFevre et al. (2010) LeFevre et al. (2010) tachance \& Mazzocco (2006) Lachance \& Mazzocco (2006) Mazzocco et al (201 1a) Desoete \& Gregoire (2006) Locuniack \& Jordan (2008) Stock et al. (2009) cohort 2 Vukovic (2012)
Krajewski \& Schneider (2009b) Geary et al. (2012) Geary et al. (20
Geary (2011) Geary et al. (2013) Geary et al. (2013) Desoete et al. (2009) Bailey, Watts, et al. (2014) cohort Bailey, Slegler, et al. (2014) Bailey, Watts, et al. (2014) cohort 2 Morgan et al. (2011) Jordan et al. (2013) Reigosa-Crespo et al. (2013) Segler et al. (2012) cohort Siegler et al. (2012) cohort 2 Hansen et al. (2015) Bailey et al. (2012) Primi et al. (2010) Wikins \& Ma (2002) lee (2012) cohort 3 Spielhagen (2006) Dougherty (2003) ritt \& Irwin (2008)

| \langle Sch | K | 1st | 2nd | 3rd | 4th | 5th | 6th | 7th | 8th | 9th | 10th | 11th | 12th | $>$ Sch |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | I P F W S F W S F W S F W S F W S F W S F W S F W S F W S F W F S W S F W S F W S

Mathematics in preschool predicts later mathematics

Mathematics in kindergarten predicts later mathematics

Mathematics in elementary school predicts later mathematics

Mathematics in middle school predicts later mathematics

Mathematics in high school predicts later outcomes

Computation

Problem Solving

Provide examples of how you see earlier math skills relating to later math skills.

continuum of mathematics learning

Fluently add and subtract within 5

Add and subtract within 20

Fluently add and subtract within 100
 multiply and divide within 100

Fluently add, subtract, multiply, and divide multidigit decimals

Recognize that in a multi-digit number, a digit in one place represents 10 times as much as it represents in the place to its right and $1 / 10$ of what it represents in the place to its left.

> Understand that the three digits of a threedigit number represent amounts of hundreds, tens, and ones ones

Recognize that in a multidigit number, a digit in one place represents ten times what it represents in the place to its right

Compose and decompose numbers from 11 to 19 into ten ones and some further ones

Use place value understanding to round whole numbers to the nearest 10 or 100

Compose and decompose numbers from 11 to 19 into ten ones and some further ones...

Understand that the two digits of a two-digit number represent amounts of tens and ones.

Understand that the three digits of a three-digit number represent amounts of hundreds, tens, and ones.

Recognize that in

 a multi-digitUse place value understanding to
round whole numbers to the nearest 10 or 100 .

Recognize that in a multi-digit number, a digit in one place represents 10 times as much as it represents in the place to its right and $1 / 10$ of what it represents in the place to its left.

Interpret and compute quotients of fractions, and solve word problems involving division of fractions by fractions...
 variables

Solve multi-step word problems posed with whole numbers and having whole-number answers using the four operations and division within 100 to solve word problems

Solve word problems that call for addition of three whole numbers whose sum is less than or equal to 20

> Use addition and subtraction within 100 to solve one- and two-step word problems

Solve word problems involving addition and subtraction of and subtraction of the same whole, including cases of unlike denominators

Solve real-world and math problems involving the four operations with rational numbers.

Solve addition and subtraction word problems, and add and subtract within 10

Apply

 properties of operations as strategies to multiply and divide....Fluently multiply and divide within Use 100, using olication strategies such division
as the
relationship between multiplication and division..

Comparing and Ordering Numbers

(2) Number and operations. The student applies mathematical process standards to understand how to represent and compare whole numbers, the relative position and magnitude of whole numbers, and relationships within the numeration system. The student is expected to:
(G) compare sets of objects up to at least 20 in each set using comparative language.
(H) use comparative language to describe two numbers up to 20 presented as written numerals.
(2) Number and operations. The student applies mathematical process standards to represent and compare whole numbers, the relative position and magnitude of whole numbers, and relationships within the numeration system related to place value. The student is expected to:
(E) use place value to compare whole numbers up to 120 using comparative language.

> | (F) order whole numbers up to 120 using |
| :--- |
| place value and open number lines. |
| (G) represent the comparison of two |
| numbers to 100 using the symbols $>,<$, or |

(2) Number and operations. The student applies mathematical process standards to understand how to represent and compare whole numbers, the relative position and magnitude of whole numbers, and relationships within the numeration system related to place value. The student is expected to:
(D) use place value to compare and order whole numbers up to 1,200 using comparative language, numbers, and symbols ($>$, <, or $=$).
(2) Number and operations. The student applies mathematical process standards to represent and compare whole numbers and understand relationships related to place value. The student is expected to:
(D) compare and order whole numbers up to 100,000 and represent comparisons using the symbols $>,<$, or $=$.

https://www.texasgateway.org/resource/vertical-alignment-charts-revised-mathematics-teks

An important subset of the major work in grades K-8 is the progression that leads toward middle school algebra.

K	1	2	3	4	5	6	7	8
Know number names and the count sequence Count to tell the number of objects Compare numbers Understand addition as putting together and adding to, and understand subtraction as taking apart and taking from Work with numbers 1119 to gain foundations for place value	Represent and solve problems involving addition and subtraction Understand and apply properties of operations and the relationship between addition and subtraction Add and subtract within 20 Work with addition and subtraction equations Extend the counting sequence Understand place value Use place value understanding and properties of operations to add and subtract Measure lengths indirectly and by iterating length units	Represent and solve problems involving addition and subtraction Add and subtract within 20 Understand place value Use place value understanding and properties of operations to add and subtract Measure and estimate lengths in standard units Relate addition and subtraction to length	Represent \& solve problems involving multiplication and division Understand properties of multiplication and the relationship between multiplication and division Multiply \& divide within 100 Solve problems involving the four operations, and identify \& explain patterns in arithmetic Develop understanding of fractions as numbers Solve problems involving measurement and estimation of intervals of time, liquid volumes, \& masses of objects Geometric measurement: understand concepts of area and relate area to multiplication and to addition	Use the four operations with whole numbers to solve problems Generalize place value understanding for multi-digit whole numbers Use place value understanding and properties of operations to perform multidigit arithmetic Extend understanding of fraction equivalence and ordering Build fractions from unit fractions by applying and extending previous understandings of operations Understand decimal notation for fractions, and compare decimal fractions	Understand the place value system Perform operations with multi-digit whole numbers and decimals to hundredths Use equivalent fractions as a strategy to add and subtract fractions Apply and extend previous understandings of multiplication and division to multiply and divide fractions Geometric measurement: understand concepts of volume and relate volume to multiplication and to addition Graph points in the coordinate plane to solve real-world and mathematical problems*	Apply and extend previous understandings of multiplication and division to divide fractions by fractions Apply and extend previous understandings of numbers to the system of rational numbers Understand ratio concepts and use ratio reasoning to solve problems Apply and extend previous understandings of arithmetic to algebraic expressions Reason about and solve one-variable equations and inequalities Represent and analyze quantitative relationships between dependent and independent variables	Apply and extend previous understanding of operations with fractions to add, subtract, multiply, and divide rational numbers Analyze proportional relationships and use them to solve real-world and mathematical problems Use properties of operations to generate equivalent expressions Solve real-life and mathematical problems using numerical and algebraic expressions and equations	Work with radical and integer exponents Understand the connections between proportional relationships, lines, and linear equations** Analyze and solve linear equations and pairs of simultaneous linear equations Define, evaluate, and compare functions Use functions to model relationships between quantities

 listed here are a subset of those designated as major in the assessment consortia's draft documents.
${ }_{* *}$ Depends on similarity ideas from geometry to show that slope can be defined and then used to show that a linear equation has a graph which is a straight line and conversely.
https://achievethecore.org/category/774/mathematics-focus-by-grade-level

Table A.3. Grades 6-8 Curriculum Focal Points and Connections Compared with the Expectations of the Content Standards in Principles and Standards for School Mathematics

Expectations of the Content Standards

Grade 6 Curriculum Focal Points

Number and Operations: Developing an understanding of and fluency with multiplication and division of fractions and decimals

Students use the meanings of fractions, multiplication and division, and the inverse relationship between multiplication and division to make sense of procedures for multiplying and dividing fractions and explain why they work. They use the relationship between decimals and fractions, as well as the relationship between finite decimals and whole numbers (i.e., a finite decimal multiplied by an appropriate power of 10 is a whole number), to understand and explain the procedures for multiplying and dividing decimals. Students use common procedures to multiply and divide fractions and decimals efficiently and accurately. They multiply and divide fractions and decimals to solve problems, including multistep problems and problems involving measurement.

Number and Operations: Connecting ratio and rate to multiplication and

 divisionStudents use simple reasoning about multiplication and division to solve ratio and rate problems (e.g., "If 5 items cost $\$ 3.75$ and all items are the same price, then I can find the cost of 12 items by first dividing $\$ 3.75$ by 5 to find out how much one item costs and then multiplying the cost of a single item by $12^{\prime \prime}$). By viewing equivalent ratios and rates as deriving from, and extending, pairs of rows (or columns) in the multiplication table, and by analyzing simple drawings that indicate the relative sizes of quantities, students extend whole number multiplication and division to ratios and rates. Thus, they expand the repertoire of problems that they can solve by using multiplication and division, and they build on their understanding of fractions to understand ratios. Students solve a wide variety of problems involving ratios and rates.

Algebra: Writing, interpreting, and using mathematical expressions and equations

Students write mathematical expressions and equations that correspond to given situations, they evaluate expressions, and they use expressions and formulas to solve problems. They understand that variables represent numbers whose exact values are not yet specified, and they use variables appropriately. Students understand that expressions in different forms can be equivalent, and they can rewrite an expression to represent a quantity in a different way (e.g., to make it more compact or to feature different information). Students know that the solutions of an equation are the values of the variables that

Number and Operations, Grades 6-8

Work flexibly with fractions, decimals, and percents to solve problems

Compare and order fractions, decimals, and percents efficiently and find their approximate locations on a number line

- Develop meaning for percents greater than 100 and less than 1

Understand and use ratios and proportions to represent quantitative relationships

- Develop an understanding of large numbers [identified in Grades 4 and 5 Curriculum Focal Points] and recognize and appropriately use exponential, scientific, and calculator notation
- Use factors, multiples, prime factorization, and relatively prime numbers to solve problems
- Develop meaning for integers and represent and compare quantities with them

Understand the meaning and effects of arithmetic operations with fractions, decimals, and integers

Use the associative and commutative properties of addition and multiplication and the distributive property of multiplication over addition to simplify computations with integers, fractions, and decimals

Understand and use the inverse relationships of addition and subtraction, multiplication and division, and squaring and finding square roots to simplify computations and solve problems

Select appropriate methods and tools for computing with fractions and decimals from among mental computation, estimation, calculators or computers, and paper and pencil, depending on the situation, and apply the selected methods

What is the critical math content for your students?

Instructional Platform

$\mid x A+1 \cdot 1$

What's the continuum of mathematics support?

Instructional Platform

evidence-based strategy
A method or strategy that has shown consistent and positive results

Teachers should use systematic and explicit instruction to help students develop a strong foundation for specific mathematics skills.

Students require modeling and practice on how to use the language of mathematics.
udents should use hands-on tools, virtual manipulatives, drawings, and other visuals to understand mathematics concepts and procedures.

Teachers should use fluency building activities to build counting fluency and fluency with the operations.
students should learn how to set up and solve word problems by combining an attack strategy with a focus on word-problem schemas.

Instructional Platform

INSTRUCTIONAL DELIVERY

INSTRUCTIONAL STRATEGIES

Be Explicit

$x A+1 \dot{1}$

Instructional Platform

INSTRUCTIONAL DELIVERY

Explicit

INSTRUCTIONAL STRATEGIES

Explicit Instruction
Research and information

What are your strengths?

What are your opportunities for growth?

What are your immediate next steps?

Over a half century of research supports explicit (i.e., direct, systematic) instruction.
(Stockard et al., 2018)

When compared to discovery approaches, explicit instruction demonstrates higher outcomes.
(Alfieri et al., 2011; Kroesbergen et al., 2004; Poncy et al., 2010)

Numerous meta-analyses and large-scale studies have identified explicit instruction as essential for the teaching and learning of mathematics.
(Chodura et al., 2015; Ennis \& Losinski, 2019; Jitendra et al., 2018; Kong et al., 2021; Morgan et al., 2015; Nelson \& McMaster, 2019; Powell et al., 2021).

$x A+1 \cdot 1$

MODELING
 step-by-step explanation

Planned examples

PRACTICE

Guided practice
Independent practice

SUPPORTS

Ask high-level and low-level questions
Eliciting frequent responses
Providing affirmative and corrective feedback

Modeling	MODELING	PRACTICE
includes a step-by-step explanation of how to do a math problem.	step-by-step explanation	Guided practice
	Planned examples	Independent practice
	SUPPORTS	
A teacher may do 1 modeled problem or several.	Ask high-level and Eliciting fre Providing affirmative	-level questions responses corrective feedback

"Today, we are learning about addition. This is important because sometimes you have different amounts - like money and you want to know how much money you have altogether."
"To solve 26 plus 79, first decide about the operation. should we add, subtract, multiply, or divide?"
"Add."

"How did you know we want to add?"
"There's a plus
sign."

A x A $+\cdots$
"The plus sign tells us we want to add. To add, let's use the partial sums strategy. What strategy?"
"What might partial mean?"

"We'll find parts - or partial sums - then add them together. With the partial sums strategy, we start adding in the greatest place value. What's the greatest place value in this problem?"
"So, let's add the tens. What's 20 plus 70? Use 79 your base-10 blocks or other tools."
"20 plus 70 equals
90. Let's write 90 right here below the equal line. What will we write?"
"90 is the partial sum when you add the tens. What does 90 represent?"
"It's the partial sum of adding 20 plus 70."

"Now, let's add the ones. What should we add?"

"6 plus 9 equals what? Use your base-10 blocks or other tools."
"How did you get
15?"
"We knew we had 9, then we added on 6."
"Below the 90."
"15 is the partial sum when you add the ones. Now, let's add the partial sums together. What will we add?"
"What's 90 plus 15?
Use your go-to strategy."
"How did you add those addends?"
"I added 90 plus 10 then added 5 more."
"So, when you add 26 plus 79 , the sum is 105 . Who can share how we solved this problem?"
"We used the partial sums strategy. We added the tens then added the ones. Then we added the partial sums."

What did you observe?

How would you improve this example?

Modeling
needs to include planned examples.

These examples should be sequenced so easier skills lead to more difficult skills.

MODELING
step-by-step explanation
Planned examples

SUPPORTS

Ask high-level and low-level questions
Eliciting frequent responses
Providing affirmative and corrective feedback

MODELING
 step-by-step explanation
 Planned examples

PRACTICE

Guided practice
Independent practice

SUPPORTS

Ask high-level and low-level questions
Eliciting frequent responses
Providing affirmative and corrective feedback

Select a math problem. Work with a partner to outline a step-by-step explanation.
x $\mathrm{A}+\dot{1}$

| MODELING | PRACTICE |
| :---: | :--- | | Guided practice |
| :--- |
| step-by-step explanation |
| is practice in |
| which the |

"Let's work on a problem together."

Providing affirmative and corrective feedback
"Now, you'll practice a problem on your own. Use your attack strategy!"

MODELING
 step-by-step explanation
 Planned examples
 PRACTICE
 Guided practice
 Independent practice

SUPPORTS

Ask high-level and low-level questions
Eliciting frequent responses
Providing affirmative and corrective feedback

Explicit Instruction

Describe how you would

 engage students in practice.
MODELING
 step-by-step explanation
 Planned examples

 PRACTICE

 PRACTICE
 Guided practice
 Independent practice

SUPPORTS

Ask high-level and low-level questions
Eliciting frequent responses
Providing affirmative and corrective feedback

These Supports should be used in both Modeling and Practice.

$$
\begin{array}{c|c}
\text { MODELING } & \text { PRACTICE } \\
\text { Step-by-step explanation } & \text { Guided practice } \\
\text { Planned examples } & \text { Independent practice }
\end{array}
$$

SUPPORTS

Ask high-level and low-level questions
Eliciting frequent responses
Providing affirmative and corrective feedback

During Modeling and Practice, it is essential to engage students and check for understanding.

MODELING
 step-by-step explanation
 Planned examples
 Guided practice
 Independent practice

 \section*{PRACTICE}

 \section*{PRACTICE}

 SUPPORTS

 SUPPORTS
 Ask high-level and low-level questions

Eliciting frequent responses
Providing affirmative and corrective feedback
"What is 7 times 9?"

$$
\begin{array}{c|c}
\text { MODELING } & \text { PRACTICE } \\
\text { Step-by-step explanation } & \text { Guided practice } \\
\text { Planned examples } & \text { Independent practice } \\
\text { SUPPORTS }
\end{array}
$$

Ask high-level and low-level questions
Eliciting frequent responses
Providing affirmative and corrective feedback

"Why do you use zero pairs?"
"Because a positive 1 and a negative 1 equal $0.1 \square \square$ use the zero pair to help me subtract."

MODELING
 step-by-step explanation
 Planned examples
 Independent practice

 \section*{PRACTICE}

 \section*{PRACTICE}

 \section*{Guided practice}

 \section*{Guided practice}}

SUPPORTS

Ask high-level and low-level questions

Eliciting frequent responses

Providing affirmative and corrective feedback

During Modeling and Practice, students should frequently respond. The frequent responses keeps student attention and keeps student learning active.

$$
\begin{array}{c|c}
\text { MODELING } & \text { PRACTICE } \\
\text { step-by-step explanation } & \text { Guided practice } \\
\text { Planned examples } & \text { Independent practice }
\end{array}
$$

SUPPORTS

Ask high-level and low-level questions

Eliciting frequent responses

Providing affirmative and corrective feedback

$x A+\dot{N}$

$$
\begin{array}{c|c}
\text { MODELING } & \text { PRACTICE } \\
\text { step-by-step explanation } & \text { Guided practice } \\
\hline \text { Planned examples } & \text { Independent practice }
\end{array}
$$

SUPPORTS

Ask high-level and low-level questions

Eliciting frequent responses

Providing affirmative and corrective feedback

During Modeling and Practice, students should receive immediate feedback on their responses.

$$
\begin{array}{c|c}
\text { MODELING } & \text { PRACTICE } \\
\hline \text { Step-by-step explanation } & \text { Guided practice } \\
\hline \text { Planned examples } & \text { Independent practice }
\end{array}
$$

SUPPORTS

Ask high-level and low-level questions
Eliciting frequent responses
Providing affirmative and corrective feedback
"Nice work using your word problem attack strategy."

$$
\begin{array}{c|c}
\text { MODELING } & \text { PRACTICE } \\
\text { Step-by-step explanation } & \text { Guided practice } \\
\text { Planned examples } & \text { Independent practice }
\end{array}
$$

SUPPORTS

Ask high-level and low-level questions
Eliciting frequent responses
Providing affirmative and corrective feedback

"Let's look at that again. Tell me how you added in the hundreds column."

MODELING
 step-by-step explanation
 Planned examples
 Guided practice
 Independent practice

 \section*{PRACTICE}

 \section*{PRACTICE}}

SUPPORTS

Ask high-level and low-level questions
Eliciting frequent responses
Providing affirmative and corrective feedback

Explicit Instruction

High-Level Questions

Low-Level Questions

Provide several of your

 questions.Provide examples of your feedback.

Explicit Instruction
Research and Information

What are your strengths?

What are your opportunities for growth?

通 - What are your innediate netst teps?

Teachers should use systematic and explicit instruction to help students develop a strong foundation for specific mathematics skills.

What are your strengths with explicit instruction?

What are the opportunities for growth?

What are your immediate next steps?

Teachers should use systematic and explicit instruction to help students develop a strong foundation for specific mathematics skills.

Students require modeling and practice on how to use the language of mathematics.
udents should use hands-on tools, virtual manipulatives, drawings, and other visuals to understand mathematics concepts and procedures.

Teachers should use fluency building activities to build counting fluency and fluency with the operations.
students should learn how to set up and solve word problems by combining an attack strategy with a focus on word-problem schemas.

Focus on Vocabulary

MA+

Instructional Platform

INSTRUCTIONAL DELIVERY

Explicit

Vocabulary

INSTRUCTIONAL STRATEGIES

```
Math Vocabulary
Research and Information
Use Formal Mathematics Language
\begin{tabular}{|l|l|l|}
\hline Instead of that... & say this... \\
\hline & & \\
\hline & & \\
\hline & & \\
\hline & & \\
\hline & \\
\hline & \\
\hline & \\
\hline & \\
\hline
\end{tabular}
```

Significant correlation ($r=.49$) between mathematics vocabulary and mathematics performance. Mathematics vocabulary appears most important for word-problem

$$
\begin{gathered}
\text { performance }(r=.58) \text {. } \\
(\text { Lin et al., 2021) }
\end{gathered}
$$

Early mathematics vocabulary related to mathematics and literacy.
(Hornburg et al., 2018; Purpura et al., 2017)

Students who experience difficulty with mathematics demonstrate lower mathematics vocabulary performance.
(Hughes et al., 2020; Powell \& Nelson, 2017; Powell et al., 2017; Unal et al., 2021)

$x A+1 \cdot 1$

1. Some math terms are shared with English but have different meanings

degree

$x A+E$

1. Some math terms are shared with English but have different meanings
2. Some math words are shared with English with similar meanings (but a more precise math meaning)

difference

1. Some math terms are shared with English but have different meanings
2. Some math words are shared with English with similar meanings (but a more precise math meaning)
3. Some math terms are only used in math

Rubenstein \& Thompson (2002)

1. Some math terms are shared with English but have different meanings
2. Some math words are shared with English with similar meanings (but a more precise math meaning)
3. Some math terms are only used in math
4. Some math terms have more than one meaning

5. Some math terms are shared with English but have different meanings
6. Some math words are shared with English with similar meanings (but a more precise math meaning)
7. Some math terms are only used in math
8. Some math terms have more than one meaning
9. Some math terms are similar to other content-area terms with different meanings

> divide vs. Continental
> Divide
variable vs. variably cloudy

1. Some math terms are shared with English but have different meanings
2. Some math words are shared with English with similar meanings (but a more precise math meaning)
3. Some math terms are only used in math
4. Some math terms have more than one meaning
5. Some math terms are similar to other content-area terms with different meanings
6. Some math terms are homographs

sum vs. some

eight vs. ate \qquad
base vs. bass
rows vs. rose

1. Some math terms are shared with English but have different meanings
2. Some math words are shared with English with similar meanings (but a more precise math meaning)
3. Some math terms are only used in math
4. Some math terms have more than one meaning
5. Some math terms are similar to other content-area terms with different meanings
6. Some math terms are homographs
7. Some math terms are related but have distinct meanings
hundreds vs. hundredths
numerators vs. denominator
8. Some math terms are shared with English but have different meanings
9. Some math words are shared with English with similar meanings (but a more precise math meaning)
10. Some math terms are only used in math
11. Some math terms have more than one meaning
12. Some math terms are similar to other content-area terms with different meanings
13. Some math terms are homographs
14. Some math terms are related but have distinct meanings
15. An English math term may translate into another language with different meanings
mesa vs. tabla
16. Some math terms are shared with English but have different meanings
17. Some math words are shared with English with similar meanings (but a more precise math meaning)
18. Some math terms are only used in math
19. Some math terms have more than one meaning
20. Some math terms are similar to other content-area terms with different meanings
21. Some math terms are homographs
22. Some math terms are related but have distinct meanings
23. An English math term may translate into another language with different meanings
24. English spelling and usage may have irregularities

four vs. forty

1. Some math terms are shared with English but have different meanings
2. Some math words are shared with English with similar meanings (but a more precise math meaning)
3. Some math terms are only used in math
4. Some math terms have more than one meaning
5. Some math terms are similar to other content-area terms with different meanings
6. Some math terms are homographs
7. Some math terms are related but have distinct meanings
8. An English math term may translate into another language with different meanings
9. English spelling and usage may have irregularities
10. Some math concepts are verbalized in more than one way

one-fourth vs. one quarter

1. Some math terms are shared with English but have different meanings
2. Some math words are shared with English with similar meanings (but a more precise math meaning)
3. Some math terms are only used in math
4. Some math terms have more than one meaning
5. Some math terms are similar to other content-area terms with different meanings
6. Some math terms are homographs
7. Some math terms are related but have distinct meanings
8. An English math term may translate into another language with different meanings
9. English spelling and usage may have irregularities
rhombus vs. diamond
10. Some math concepts are verbalized in more than one way
11. Informal terms may be used for formal math terms

Use formal math language

Use terms precisely

What number is in the tens place?

What digit is in the tens place? What is the value of the digit in the tens place?

135

Why this is important...

- A number refers to the entire amount.
- The 3 in the tens place value is not a number, but rather a digit in the number 135 .
- Reinforces conceptual understanding of place value.
- Emphasizes that 3 is part of the number 135 with a value of 30 .

Four point seven Four point oh seven

$$
\begin{array}{r}
4.7 \\
4.07
\end{array}
$$

Why this is important...

- Accurately shares the magnitude of the decimal.
- Emphasizes place value.

flips, slides, turns

reflections, translations, rotations

Why this is important...

- The informal language helps children remember the actions, but this vocabulary is not used on assessments.
- Use the formal mathematical terms.

Identify examples of
"Instead of ___, say ___."

Use formal math language

Use terms precisely

Math Vocabulary
Use Terms With Precision

Strategies for Teaching Mathematics Language

What are your strengths?

What are your opportunities for growth?

What are your immediate next steps?

Improper fraction Proportion

$$
\frac{8}{5}
$$

Mixed number

$$
1 \frac{3}{5}
$$

Proper fraction $\frac{2}{9}$

$$
\frac{2}{5}=\frac{8}{20}
$$

Ratio
$4: 3$
Unit fraction
$\frac{1}{6}$

Equation $9 x-4=7 x$
Expression 9x - 4
Formula $a^{2}+b^{2}=c^{2}$
Function $\quad f(x)$
Inequality $9 x-4>6 x$

Quadrilaterals

Kite

Parallelogram

Rectangle \square

Rhombus

Square

Trapezoid

Acute angle

Obtuse angle
Right $\overrightarrow{a n g l e}$

Straight angle

Acute triangle

Obtuse triangle

Right triangle

Equilateral triangle

 ΔIsosceles triangle

Scalene triangle

C

Adjacent angles

Alternate angles

Complementary angles

Corresponding angles

Supplementary angles

$$
=180^{\circ}
$$

Vertical angles

Congruent figures
$\square_{\text {Similar figures }}^{\square}$

Cylinder

Math Vocabulary

Use Terms With Precision

Strategies for Teaching Mathematics Language

What are your strengths?

Discuss terms you want

 your students to use with precision.
Use formal math language

Use terms precisely

Math Vocabulary
Use Terms With Precision

Strategies for Teaching Mathematics Language

What are your strengths?

What are your opportunities for growth?

What are your immediate next steps?

Math Vocabulary

Use Terms With Precision

Strategies for Teaching Mathematics Language

What are your strengths?

What are your opportunities for growth?
Discuss your strategy for focusing on mathematical vocabulary in your teaching.

Math Vocabulary

Use Terms With Precision

Strategies for Teaching Mathematics Language

What are your strengths?

What are your opportunities for growth?

What are your immediate next steps?

Students require modeling and practice on how to use the language of mathematics.

What are your strengths with mathematical language?

What are the opportunities for growth?

What are your immediate next steps?

Teachers should use systematic and explicit instruction to help students develop a strong foundation for specific mathematics skills.

Students require modeling and practice on how to use the language of mathematics.
udents should use hands-on tools, virtual manipulatives, drawings, and other visuals to understand mathematics concepts and procedures.

Teachers should use fluency building activities to build counting fluency and fluency with the operations.
students should learn how to set up and solve word problems by combining an attack strategy with a focus on word-problem schemas.

Use Representations

$x A+1 \cdot 1$

Instructional Platform

INSTRUCTIONAL DELIVERY

Explicit

Representations

INSTRUCTIONAL STRATEGIES

Hands-on manipulatives contribute to increases in mathematics performance.
(Bouck \& Park, 2018; Carbonneau et al., 2013; Namkung \& Bricko, 2021; Sherman \& Bisanz, 2009; strickland \& Maccini, 2012)

Virtual manipulatives contribute to increases in mathematics performance. (Bouck et al., 2020; Satsangi et al., 2016)

Other visuals (e.g., graphic organizers) contribute to increases in mathematics performance.
(Jitendra et al., 2009; Sharp \& Dennis, 2017; van Garderen, 2007; Xin,

Copyright 2023 Sarah R. Powell, Ph.D.

Modeling Fractions with Cuisenaire Rods

$x A+H$

Explore 3 virtual manipulatives.
share with a partner.

$$
2+8=10
$$

$$
x-6=8
$$

$$
\begin{array}{r}
4,179 \\
+\quad 569 \\
\hline
\end{array}
$$

What are your strengths?

What are your opportunities for growth?

What are your immediate next steps?
| A A +H
students should use hands-on tools, virtual manipulatives, drawings, and other visuals to understand mathematics concepts and procedures.

What are your strengths with multiple representations?

What are the opportunities for growth?

What materials do you need?
$x A+H$

Teachers should use systematic and explicit instruction to help students develop a strong foundation for specific mathematics skills.

Students require modeling and practice on how to use the language of mathematics.
udents should use hands-on tools, virtual manipulatives, drawings, and other visuals to understand mathematics concepts and procedures.

Teachers should use fluency building activities to build counting fluency and fluency with the operations.
students should learn how to set up and solve word problems by combining an attack strategy with a focus on word-problem schemas.

Build Fluency

$x A+1 \dot{1}$

Instructional Platform

INSTRUCTIONAL DELIVERY

Explicit

Representations
INSTRUCTIONAL STRATEGIES

Fluency

Mathematics fluency, particularly fluency with facts and computation, is related to overall mathematics performance.
(Bailey et al., 2012; Cirino et al., 2019; Koponen et al., 2007, 2017; Vukovic et al., 2014

Fact fluency practice improves mathematics fact performance.
(Burns et al., 2010; Codding et al., 2011; McCallum et al., 2004; Nelson et al., 2013; Poncy et al., 2010; schutte et al., 2015; stocker \& Kubina, 2017)

$$
\begin{aligned}
& \text { Fluency is } \\
& \text { doing } \\
& \text { mathematics } \\
& \text { easily and } \\
& \text { accurately. }
\end{aligned}
$$

Fluency in

 mathematics makes mathematics easier.Fluency
provides less stress on working memory.

Fluency helps students build confidence with
mathematics.

With fluency, it is important to emphasize both conceptual learning and procedural learning.

Addition	Subtraction
Multiplication	Division

Memorization or automaticity
 Ease and accuracy

Smatme	
	\cdots
	\| \times A+

List different types of fluency. Discuss whether they require memorization.

$x A+1 \cdot 1$

100 addition facts

Single-digit addends sum to a single- or doubledigit number

$$
\begin{aligned}
5 & \text { (addend) } \\
+\quad 4 & \text { (addend) } \\
\hline 9 & \text { (sum) }
\end{aligned}
$$

Count one set, count another set, put sets together, count sum

$$
2+3=5
$$

Change

Start with a set, add the other set, count sum

$$
2+3=5
$$

Parts put together into a total

Karly saw 4 cardinals and 5 blue jays. How many birds did Karly see?

Change

An amount that increases or decreases

Premila had \$4. Then they earned \$5 for cleaning their room. How much money does Premila have now?

$$
3+9=
$$

If you have brown eyes: What's a Total story to show addition?
If you don't have brown eyes: What's a Change/Join story to show addition?

100 subtraction facts
Subtrahend and difference are single-digit numbers and minuend is single- or double-digit number

Start with a set, take away from that set, count difference

$$
5-3=2
$$

Compare two sets, count difference

$$
5-3=2
$$

Change

An amount that increases or decreases

Bronwyn had 9 cookies. Then they ate 2 of the cookies. How many cookies does Bronwyn have now?

Difference

Greater and lesser amounts compared for a

Rachel has 9 apples. Jodie has 2 apples. How many more apples does Rachel have? (How many fewer does Jodie have?)

If you would chose beaches: What's a Change/Separate story to show subtraction?
If you would chose mountains: What's a Difference story to show subtraction?

100 multiplication facts

Multiplication of single-digit factors results in a single- or double-digit product

$$
\begin{aligned}
2 & \text { (factor) } \\
\times 3 & \text { (factor) } \\
\hline 6 & \text { (product) }
\end{aligned}
$$

Show the groups, show the amount for each group, count product

$3 \times 2=6$

Show the groups, show the amount for each group, count product

$$
3 \times 2=6
$$

Comparison

Show a set, then multiply the set

$$
3 \times 2=6
$$

Equal Groups

Groups multiplied by number in each group for a product

Rhiannon has 2 boxes of crayons. There are 12 crayons in each box. How many crayons does Rhiannon have altogether?

Comparison

Set multiplied by a number of times for a product

Vivienne had 12 stickers. Jessica had 2 times as many stickers as Vivienne. How many stickers did Jessica have?

$2 \times 5=$

If you wear glasses:

 What's an Equal Groups story to show multiplication?If you don't wear glasses: What's a Comparison story to show multiplication?

Division

90 division facts

Divisor and quotient are single-digit numbers and dividend is single- or double-digit number

$$
\left.\begin{array}{l}
8 \div 4=2 \\
\text { (dividend) } \\
\text { (divisor) }
\end{array} \text { (quotient) }\right) ~ \$
$$

Show the dividend, divide equally among divisor, count quotient

Show the dividend, make groups of the divisor, count groups

$$
8 \div 2=4
$$

Division

Groups multiplied by number in each group for a product
Stefanie has 12 pencils. She wants to share them equally among her 2 friends. How many pencils will each friend receive?

Nicole has 12 pencils. She put them into pencil pockets with 6 pencils each. How many pencil pockets did Nicole use?

$12 \div 4=$

5

If you watch Stranger Things: What's a Partitive story to show division?
If you watch Ted Lasso: What's a Quotative story to show division?

Addition

 subtractionBuild fluency with math facts.

- Addition: single-digit addends
- Subtraction: single-digit subtrahend
- Multiplication: single-digit factors
- Division: single-digit divisor


```
Fluency
    Strategies for Building Fluency
What are your strengths?
```

```
What are your immediate next steps?




\begin{tabular}{|c|c|}
\hline Addition & Subtraction \\
\hline Multiplication & Division \\
\hline
\end{tabular}

What are five ways you help students build fact fluency?

\(x A+1 \dot{1}\)
\begin{tabular}{|c|c|}
\hline Addition & Subtraction \\
\hline Multiplication & Division \\
\hline
\end{tabular}

Build fluency with
whole-number computation

Multiplication

\author{
Division
}


1009
124
\(-\quad 7\)
\begin{tabular}{|c|c|}
\hline Addition & Subtraction \\
\hline Multiplication & Division \\
\hline
\end{tabular}

> Build fluency with rational-number computation

\(\frac{9}{4}-\frac{3}{8}\)
\[
\begin{array}{r}
7.892 \\
\div \quad 0.14 \\
\hline
\end{array}
\]


\section*{Build fluency with integer computation}
\[
\begin{array}{r}
1.4 \\
+\quad-3.9 \\
\hline
\end{array}
\]

6
\(\times \quad-12\)
\(-14-(-7)=\)
\(-135 \div 2=\)

\section*{Partial Sums}
A.
\[
\begin{array}{r}
74 \\
+\quad 18 \\
\hline 80 \\
+12 \\
\hline 92
\end{array}
\]
в. \(\quad 725\)
\[
\begin{array}{r}
365 \\
+1,000 \\
+\quad 80 \\
+\quad 10 \\
\hline 1,090
\end{array}
\]

\section*{Opposite Change}
\[
\text { А. } \begin{aligned}
& 74 \xrightarrow{-4} 70 \\
&+18 \text { в. } \quad 725 \stackrel{+5}{\rightarrow} 730 \\
&+22 \\
& \hline+365 \xrightarrow{-5}+360 \\
& 1,090
\end{aligned}
\]


227
\(\begin{array}{r}+\quad 185 \\ \hline\end{array}\)

\section*{Partial Differences}
\[
\text { А. } \begin{array}{rr}
62 \\
-\quad 17 \\
+50 & 305 \\
-\quad 5 & +300 \\
\hline 45 & -90 \\
& -909 \\
\hline
\end{array}
\]


Same Change
A. \begin{tabular}{rr}
\(62 \stackrel{+3}{+} 65\) \\
\(-\quad 17 \stackrel{+3}{\longrightarrow}-20\) \\
45 & \(-\quad 96 \xrightarrow{+4} 309\) \\
\hline 209
\end{tabular}

Add Up

Partial Products
\[
\text { A. } \begin{array}{r}
24 \\
\times \quad 43 \\
\hline 800 \\
160 \\
+\quad 60 \\
+\quad 12 \\
\hline 1,032
\end{array}
\]
\(\begin{array}{r}132 \\ \times \quad 53 \\ \hline 5000 \\ 1500 \\ 1000 \\ 300 \\ +\quad 90 \\ \hline 6996 \\ \hline\end{array}\)

Area (Array)



Lattice




Partial Quotients
A. 12 \begin{tabular}{r}
158 \\
-120 \\
\hline \(\begin{array}{r}38 \\
-36 \\
2\end{array}\) \\
\\
\\
\end{tabular}\(\frac{3}{13 \mathrm{RZ}}\)
\[
\text { B. } \begin{array}{r}
4 \begin{array}{r}
8970 \\
-680 \\
\hline 290 \\
-170 \\
\hline 1720 \\
102 \\
\hline 18
\end{array} \\
\hline 20 \\
\hline 28 R 18
\end{array}
\]

Lattice

8. \(3 4 \longdiv { 9 7 0 }\) R 18



Teachers should use fluency building activities to build counting fluency and fluency with the operations.


What are your strengths with building fluency?

What are the opportunities for growth?

What are your immediate next steps?

Teachers should use systematic and explicit instruction to help students develop a strong foundation for specific mathematics skills.

Students require modeling and practice on how to use the language of mathematics.
udents should use hands-on tools, virtual manipulatives, drawings, and other visuals to understand mathematics concepts and procedures.

Teachers should use fluency building activities to build counting fluency and fluency with the operations.
students should learn how to set up and solve word problems by combining an attack strategy with a focus on word-problem schemas.

\section*{Solve Word Problems}
\(x A+1 \cdot 1\)

\section*{Instructional Platform}

INSTRUCTIONAL DELIVERY


INSTRUCTIONAL STRATEGIES


\section*{Word Problems}

Research and Information


Key words tied to operations is an ineffective wordproblem strategy.
(Karp et al., 2019; Powell et al., 2022)

Using a meta-cognitive strategy improves word-problem performance.
(Freeman-Green et al., 2015; Krawec et al., 2012; Montague et al., 2011; Swanson et al., 2014)

A focus on schemas improves word-problem performance. (Alghamdi et al., 2020; Cook et al., 2020; Flores et al., 2016; Fuchs et al., 2021; Griffin et al., 2019; Jitendra et al., 2013; Lein et al., 2020; Peltier et al., 2020; Powell et al., 2022; Xin \& Xhang, 2009; Zheng et
al., 2013)



\section*{1. Keywords tied to operations}


Lincoln had 8 pencils fewer than Roscoe. If Roscoe had 18 pencils, how many pencils did Lincoln have?

Lincoln had 8 pencils fewer than Roscoe. If Lincoln had 18 pencils, how many pencils did Roscoe have?




Description of Single-Step Word Problems ( \(n=132\) )
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Schema} & \multicolumn{2}{|l|}{Occurrence of schema} & \multicolumn{2}{|l|}{Any keyword} & \multicolumn{2}{|l|}{Schemaspecific keywords \({ }^{\text {a }}\)} & \multicolumn{2}{|l|}{Multiple keywords \({ }^{3}\)} & \multicolumn{2}{|l|}{Keyword(s) led to correct solution \({ }^{\text {a }}\)} \\
\hline & \(n\) & \% \\
\hline Total & 27 & 20.5 & 26 & 96.3 & 23 & 88.5 & 5 & 19.2 & 21 & 80.8 \\
\hline Difference & 17 & 12.9 & 17 & 100.0 & 14 & 82.4 & 2 & 11.8 & 12 & 70.6 \\
\hline Change & 11 & 8.3 & 7 & 63.6 & 5 & 71.4 & 5 & 71.4 & 2 & 28.6 \\
\hline Equal groups & 29 & 22.0 & 26 & 89.7 & 22 & 84.6 & 18 & 69.2 & 8 & 30.8 \\
\hline Comparison & 10 & 7.6 & 9 & 90.0 & 9 & 100.0 & 4 & 44.4 & 5 & 55.6 \\
\hline Ratios or proportions & 29 & 22.0 & 23 & 79.3 & 9 & 39.1 & 9 & 39.1 & 6 & 26.1 \\
\hline Product of measures & 9 & 6.8 & 9 & 100.0 & 8 & 88.9 & 1 & 11.1 & 5 & 55.6 \\
\hline \multicolumn{11}{|l|}{\({ }^{3}\) When a problem featured a keyword.} \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Schema} & \multicolumn{2}{|l|}{Occurrence of schema \({ }^{\text {a }}\)} & \multicolumn{2}{|l|}{Any keyword} & \multicolumn{2}{|l|}{Keyword(s) led to correct solution \({ }^{\text {b }}\)} \\
\hline & \(n\) & \% & \(n\) & \% & \(n\) & \% \\
\hline Total & 40 & 47.6 & 39 & 97.5 & 3 & 7.7 \\
\hline Difference & 11 & 13.1 & 11 & 100.0 & 1 & 9.1 \\
\hline Change & 21 & 23.8 & 19 & 95.0 & 1 & 5.3 \\
\hline Equal groups & 49 & 58.3 & 48 & 98.0 & 1 & 2.1 \\
\hline Comparison & 7 & 8.3 & 7 & 100.0 & 0 & 0.0 \\
\hline Ratios or proportions & 22 & 25.0 & 16 & 76.2 & 1 & 6.3 \\
\hline Product of measures & 7 & 8.3 & 7 & 100.0 & 2 & 28.6 \\
\hline
\end{tabular}
\({ }^{3}\) Sum across schemas does not equal 100 because each word problem featured more than one schema.
\({ }^{\text {b }}\) When a problem featured a keyword.

Mr. Rivera's taxable income is \(\$ 20\) each hour before taxes are taken out. Mr. Rivera worked a total of 40 hours each week for 50 weeks.

What is the dollar amount, to the nearest dollar, taken out for taxes based on Mr. Rivera's taxable income?

The temperature of a substance decreased by \(24^{\circ} \mathrm{C}\) per minute for 3 minutes. What was the overall change of the temperature of the substance?

Keywords are important to identify and understand

Keywords are the mathematical vocabulary that help an students understand what the story is about and what they need to do

Talk about keywords ("What does more than tell you about?")

But, do not tie a keyword to a specific operation!
2. Presenting problems by operation

\section*{Addition Word Problems}


What are your strengths?

What are your opportunities for growth?

What are your immediate next steps?

\section*{Teach an attack strategy}

Teach about schemas
\(x\)

\section*{RIDE}

Read the problem.
Identify the relevant information.
Determine the operation and unit for the answer.
Enter the correct numbers and calculate, then check the answer.

\section*{RICE}

\section*{RIDGES}

Read and record the problem. Illustrate your thinking. Compute.
Explain your thinking.
Read the problem.
I know statement.
Draw a picture.
Goal statement.
Equation development.
Solve the equation.

\section*{SUPER}

Slowly read the story problem twice.
Underline the question and circle the numbers you need.
picture it. Draw the scenario to show what is happening. Explain the problem with a number sentence.
Rewrite the answer in a sentence.

\section*{STAR}

\section*{SHINES}

Slowly and carefully read the problem. Highlight or underline key information. Identify the question by drawing a circle around it.
Now solve the problem. Show your work.
Examine your work for precision, accuracy, and clarity.
Share your answer by writing a sentence.

Stop and read the problem carefully.
Think about your plan and
the strategy you will use.
Act. Follow your plan and solve
the problem.
Review your answer.

\section*{SOLVE}

Study the problem.
Organize the facts.
Line up the plan.
Verify the plan with computation.
Examine the answer.

\section*{UPS \\ Understand}

Read and explain.

How will you solve the problem?

\section*{R-CUBES}

\section*{Read the problem.}

Circle key numbers.
Underline the question. Box action words.
Evaluate steps.
Solve
Set up and do the math!
, снеск
Does your answer make sense?

Share your favorite attack strategy.

\section*{Teach an attack strategy}

Teach about schemas
\(x\)

\section*{Total}

\section*{Difference}

\section*{Change}

\section*{Equal Groups}

\section*{Comparison}

\section*{Ratios/Proportions}

\section*{Total}

Parts put together into a total

Daniel saw 3 canoes and 8 kayaks. How many boats did Daniel see?

Daniel saw 11 boats. If 3 of the boats were canoes, how many were kayaks?

Total

Part

Part

Daniel saw 11 boats. 8 of the boats were kayaks, how many were canoes?

\section*{Difference}

Greater and lesser amounts compared for a difference

Adrianna has 10 pencils. Tracy has 4 pencils. How many more pencils does Adrianna have?

Adrianna has 6 more pencils than Tracy. If Tracy has 4 pencils, how many does Adrianna have?

Tracy has 6 fewer pencils than Adrianna. Adrianna has 10 pencils. How many pencils does Tracy have?

Difference

Greater amount

Lesser
amount

\section*{Change}

\section*{An amount that increases or decreases}

Nickole had 6 notebooks. Then, she bought 3 notebooks. How many notebooks does Nickole have now?

End amount

Change
amount

Start amount

Nickole had some notebooks. Then, she bought 3 notebooks. Now, Nickole has 9 notebooks. How many notebooks did she have to start with?

\section*{Change}

An amount that increases or decreases

Samantha baked 20 cookies. Then, she ate 3 of the cookies. How many cookies does Samantha have now?

Samantha baked 20 cookies. Then, she ate some of the cookies. Now, she has 17 cookies. How many cookies did Samantha eat?

End amount

Change
amount
Samantha baked some cookies. She ate 3 of the cookies and has 17 cookies left. How many cookies did Samantha bake?

Groups multiplied by number in each group for a product

Toni has 2 boxes of crayons. There are 12 crayons in each box. How many crayons does Toni have altogether?

\section*{Product}

Toni has 24 crayons. They want to place them equally into 2 boxes. How many crayons will toni place in each box?

Number in each group

Groups

Toni has 24 crayons. They put them into boxes with 12 crayons each. How many boxes did Toni use?

\section*{Comparison}

Set multiplied by a number of times for a product

Brooke ran 6 minutes. Shaleeni ran 4 times longer than Brooke. How many minutes did Shaleeni run?

Number of times

Product

\section*{Ratios/Proportions}

Description of relationships among quantities

Melissa baked cookies and brownies. The ratio of cookies to brownies was \(3: 5\). If she baked 25 brownies, how many cookies did she bake?

Emma typed 56 words in 2 minutes. At this rate, how many words could Emma type in 7 minutes?

\section*{Total}

\section*{Difference}

\section*{Change}

\section*{Equal Groups}

\section*{Comparison}

\section*{Ratios/Proportions}

\section*{Teach an attack strategy}

Teach about schemas
\(x\)

What are your strengths?

What are your opportunities for growth?

What are your immediate next steps?

Students should learn how to set up and solve word problems by combining an attack strategy with a focus on word-problem schemas.


What are your strengths with word-problem solving?

What are the opportunities for growth?

What's one thing you can start doing next week?

Teachers should use systematic and explicit instruction to help students develop a strong foundation for specific mathematics skills.

Students require modeling and practice on how to use the language of mathematics.
udents should use hands-on tools, virtual manipulatives, drawings, and other visuals to understand mathematics concepts and procedures.

Teachers should use fluency building activities to build counting fluency and fluency with the operations.
students should learn how to set up and solve word problems by combining an attack strategy with a focus on word-problem schemas.

\section*{Instructional Platform}

INSTRUCTIONAL DELIVERY


INSTRUCTIONAL STRATEGIES


https://intensiveintervention.org/intensive-intervention-math-course

National Center on
INTENSIVE INTERVENTION
at American Institutes for Research
\begin{tabular}{lllll} 
Intensive & Tools & Implementation & Intervention & Information \\
Intervention v & Charts v & Support ₹ & Materials • & For... v
\end{tabular}

\section*{Intensive Intervention in Mathematics Course Content}

NCII, through a collaboration with the University of Connecticut, developed a set of course content focused on developing educators' skills in designing and delivering intensive mathematics instruction This content is designed to support faculty and professional development providers with instructing p service and in-service educators who are developing and/or refining their implementation of intensive mathematics intervention.

Intensive instruction was recently identified as a high-leverage practice in special educations, and DBI is a research based approach to delivering intensive instruction across content areas (NCII, 2013). This course provides learners with an opportunity to extend their understanding of intensive instruction through in-depth exposure to DBI in mathematics, complete with exemplars from actual classroom teachers.

NCII, through a collaboration with the University of Connecticut and the National Center on Leadership in Intensive Interventions and with support from the CEEDAR Center『, developed course content focused on enhancing educators' skills in intensive mathematics intervention. The course includes eight modules that can support faculty and professional development providers with instructing pre-service and in-service educators who are learning to implement intensive mathematics intervention through data-based individualization (DBI). The content in this course complements concepts covered in the Features of Explicit Instruction Course and so we suggest that users complete both courses.


https://www.inclusionintexas.org/apps/pages/index.jsp?uREC ID=2155039\&type=d\&pREC ID=2169859

\section*{Teaching Math} in Middle School
Using MTSS to Meet All Students' Needs


Leanne R. Ketterlin-Geller, Sarah R. Powell,


\section*{Sarah R. Powell, Ph.D.}

Associate Professor
The University of Texas at Austin

```

