

POLYMER MODIFIED ASPHALT EMULSIONS

Composition, Uses & Specifications for Surface Treatments

The Polymer Modified Emulsion (PME) Study

Acknowledgements

- Sponsored by:
 - Central Federal Highway Lands Division Federal Highway Administration
 - ■Mike Voth, James Sorenson
- Investigators:
 - National Center for Pavement Preservation
 - Larry Galehouse, John Johnston
 - $\square GHK$, Inc.
 - Gayle King, Helen King
 - □Industry volunteers
 - BASF, PRI, Paragon, SemMaterials, UW, others

The Problem

- ✓ Experience: polymer modification results in better short- and long-term performance
- ✓ No definitive guide
 - For selecting, specifying & using polymer emulsions
- ✓ Areas of interest
 - Use of PMEs vs. conventional emulsions
 - Optimal % polymer
 - Use on non-roadway applications (parking lots, trails, bike paths)

The Project

- Literature review & knowledge gathering sessions
 - Industry, academic, federal & local government agencies
 - On-line user/ producer survey
 - Presentations & input: AEMA/ARRA/ISSA, TRB, ETGs, AASHTO
- Draft performance spec
- Field trials
- Field guide

Findings - What Are PMEs?

- ✓ Water based, emulsified asphalt & polymer
- ✓ Performance depends on:
 - Type of polymer
 - Compatibility of polymer & asphalt

PME Chip Seal

Findings - What Are PMEs?

- ✓ Typically 1-5% polymer based on asphalt
- ✓ Polymers
 - Elastomers elastic
 - SBR latex (random)
 - SBS block copolymers
 - Natural rubber latex
 - Plastomers high modulus (stiffness)
 - EVA
- Recommend preblend prior to emulsifying

- ✓ PME recommended for all emulsion applications
 - Improve performance
 - Stiffer at high temperatures (bleeding, rutting)
 - Less brittle at low temperatures (shelling, cracking)
 - More adhesive (early chip loss, raveling, delamination)
 - Less susceptible to moisture damage
 - Less susceptible to oxidative aging (raveling, cracking)
 - More elastic fatigue resistant (chip loss, cracking)

- ✓ PME recommended for all emulsion applications
 - Caution: avoid sealing in moisture
 - Insufficient drainage
 - Saturated pavement at time of construction
 - Insufficient curing (late season application)

- ✓ Increase service life
- ✓ Prevent early failures
- ✓ Cost differentials vs. no polymer
 - Mn/DOT: total project cost ≈7% higher
 - 2008 study field projects: 4-11% higher
 - Right treatment Right road Right time www.pavementpreservation.org/toolbox/guidelines.html

✓ Chip seals

- Early & long term stone retention
- Quicker traffic return
- Fewer broken windshields
- Reduced flushing & bleeding
- Greater tolerance for quantities & aggregate embedment factor
- Increased durability
 - Better performance on high volume roads

- ✓ Slurry Seals & Microsurfacing
 - Quicker traffic return
 - Increased durability
 - PME slurry for <1000 ADT
 - PME microsurfacing for
 - >1000 ADT
 - Rut filling
 - Minimizing user delay
- ✓ Non-roadway applications similar benefits

Findings - How to Specify PME

- ✓ Current specs don't correlate with performance
- ✓ Recommendation: don't specify % polymer

Findings - How to Specify PME

Recommendations:

- Update ASTM D-244 with performancerelated tests
 - Low temp residue recovery method
 - Superpave binder tools preferred (rheometry)
 - □ Sample prep & tests adapted for emulsion treatments
 - Aging procedure for residues
 - Revise emulsion viscosity method
 - ☐ Field viscosity test
- Develop Approved Supplier Certification program
 Federal Lands Highwal
 - □ To prevent shipping & construction delays

Sample Proposed Performance Tests

Purpose	Test	Conditions	Report
Residue Recovery	Forced Draft Oven	24 hrs @ambient + 24 hrs @60°C	√% Residue
Tests on Residue from Forced Draft Oven			
High Temperature (Rutting/Bleeding)	DSR-MSCR DSR freq sweep	T _h T _h	√J _{nr} √G* & phase angle
Polymer Identifier (Elasticity/Durability)	DSR-MSCR	T _h @3200 Pa	√% Recoverable Strain
High Float Identifier (Bleeding)	DSR - non-linearity	T _h	√Test to be developed
Tests on PAV after Forced Draft Oven Residue			
Low Temperature (Aged Brittleness)	DSR freq sweep	10 & 20° C Model low T	√G* √Phase Angle
Polymer Degradation (Before/After PAV)	DSR-MSCR	T _h @3200 Pa	✓Recoverable Strain Ratio

 T_h = high pavement temp; DSR = dynamic shear rheometer MSCR = multiple stress creep recovery

Field Projects

- √ Field projects 2008 & 2009
- ✓ Tested with proposed performance tests
 - Results currently being analyzed

Utah Parks - Construction

- √ 90 miles total 9/6/08 10/17/08
 - Arches & Canyonlands Nat'l Parks,
 - Natural Bridges & Hovenweep Nat'l Monuments
- ✓ Chip Seal 1,140,000 sy (fogged)
 - SBR latex modified CRS-2LM
- ✓ Microsurfacing 60,000 sy
 - Natural latex modified Ralumac®

Utah Parks - Testing Plan

- ✓ PRI: Testing both chip & micro emulsion & aggregates
- ✓ Paragon: chip emulsion & aggregates
- ✓ BASF: chip emulsion & aggregates
- ✓ SemMaterials: micro emulsion
- ✓ NCHRP study (Shuler): chip
 emulsion & aggregates
- ✓ CFLHD Lab: acceptance testing only

Death Valley National Park

- √ 13 miles 11/11/08 11/14/08
- ✓ Chip seal 161,400 sy
 - SBR latex modified CRS-LM
- ✓ Test plan:
 - PRI: emulsion & aggregates
 - Paragon: emulsion & aggregates
 - BASF: emulsion & aggregates
 - CFLHD Lab: acceptance testing only

Dinosaur National Monument

- ✓ 11.4 miles 9/23/08 9/30/08
- ✓ Chip seal 135,000 sy
 - Neoprene modified PASS®
- ✓ Test plan:
 - PRI: emulsion & aggregates
 - CFLHD Lab: acceptance testing only

Crater Lake National Park

- 23 miles chip seal
 - Planned for late spring 2009
 - **367,000** sy
- ✓ Hope: SBS modified CRS-2P
- ✓ Testing to be determined

PME Project Status

- Preliminary report under review
 - Final report after results of 2009 project
 - Will be posted on NCPP website
- ✓ Field Guide written, published soon
- ✓ Full data available at www.pavementpreservation.org

Recommendations for Further Study

- ✓ Continue development work on performance specs for emulsions
- ✓ Include testing of unmodified emulsion
- ✓ Continue knowledge sharing of related projects
 - Coordinated by Emulsion Task Force (Pavement Preservation Expert Task Group)

Related Projects

- ✓ ASTM Committee D 4.42,
 - Low temperature recovery of emulsion residue & emulsion viscosity.
- ✓ Manual for Emulsion-Based Chip Seals for Pavement Preservation (NCHRP 14-17)
 - Scott Shuler, Colorado State University, and Amy Epps Martin, Texas A&M University.
- ✓ Emulsion Cold Mix (Asphalt Research Consortium)
 - Husain Bahia, University of Wisconsin, and Peter Sebaaly, University of Nevada at Reno.
- ✓ "Chip Seal Design and Performance" North Carolina DOT Project HWY 2004-04
 - Richard Kim, North Carolina State University.
- "Using DSR and Rheological Modeling to Characterize Binders at Low Temp"
 - Fred Turner and Mike Harnsberger, Western Research Institute.
- ✓ "Slurry/Micro-Surface Mix Design Procedure" Caltrans Contract 65A0151
 - Jim Moulthrop, Fugro, and Gary Hicks.

PME Project Status

Envisioned next steps:

- May 14-15, 2009: ETG/ETF Meeting
- August 3-7, 2009: AASHTO SOM Study results discussed with emulsion subsection
- September, 2009: Testing completed
- October, 2009: Report finalized
- November, 2009: Begin study to develop specification for AASHTO provisional adoption
- August, 2010: Provisional specification presented to AASHTO SOM for adoption
- 2009, 2010, 2012, 2014, 2016: ongoing performance monitoring of 4 project sites

Summary

- ✓ PME should be used for all emulsion applications
 - 10% increase in cost offset by increased reliability & performance
- ✓ Field Guide to be published soon
- ✓ Current specs need improvement
 - Efforts underway to develop & implement performance related specs
 - Stay tuned www.pavementpreservation.org

Thank You.

