
1

On the Computation of a Lower Bound on Strong
Structural Controllability in Networks

Mudassir Shabbir, Waseem Abbas, and A. Yasin Yazıcıoğlu

Abstract—Networks are strong structurally controllable if they
can be maneuvered from any initial state to any final state
independently of the coupling strengths between nodes. If a
network is not strong structurally controllable with a given set of
input nodes (leaders), then the dimension of strong structurally
controllable subspace quantifies the extent to which a network
can be controlled by the same inputs. Computing this dimension
exactly is computationally challenging. In this paper, we study
the problem of computing a sharp lower bound on the dimension
of strong structurally controllable subspace in networks with
Laplacian dynamics. The bound is based on a sequence of vectors
containing distances between leaders and the remaining nodes
in the underlying network graph. Such vectors are referred to
as the distance-leader vectors. We show analytically that the
bound is sharper than the previously known bounds. We provide
a polynomial time algorithm to compute a desired sequence
of distance-leader vectors with a fixed set of leaders, which
directly provides a lower bound on the dimension of strong
structurally controllable subspace. We also present a linearithmic
approximation algorithm to compute such a sequence, which
provides near optimal solutions in practice. Using these results,
we also explore connections between graph-theoretic properties
and length of longest such sequences in path and cycle graphs.
Finally, we numerically evaluate our results on various networks.

I. INTRODUCTION

Network controllability has been an important research topic
in the broad areas of network and cooperative control. A
primary goal is to drive a network of dynamical agents, each
of which shares information with a subset of others, to a
desired state by an external control signal given to a subset
of agents referred to as leaders. Several interesting problems
emerge in the area of network controllability and have been
addressed by researchers in recent years. For instance, how can
we characterize and relate the underlying network structure,
often modeled as graphs, to the network controllability [1], [2],
[3]? What is the minimum number of inputs (leaders) needed
to control networks, and to which nodes should we apply
such inputs within the network [4], [5], [6], [7]? Based on
the extent to which a network can be controlled, how can we
quantify its control performance [8]? Building on the classical
controllability results from linear systems theory and utilizing

M. Shabbir is with the Computer Science Department at the Information
Technology University of the Punjab, Lahore, Pakistan (Email: mudas-
sir@rutgers.edu).

W. Abbas is with the Electrical Engineering Department at the In-
formation Technology University of the Punjab, Lahore, Pakistan (Email:
w.abbas@itu.edu.pk).

A. Y. Yazıcıoğlu is with the Department of Electrical and Computer
Engineering at the University of Minnesota, Minneapolis, MN, USA (Email:
ayasin@umn.edu).

tools from graph theory, new insights on controlling networks
have been developed in recent years.

An important aspect of network controllability is the effect
of coupling strengths between agents, which are often repre-
sented by edge weights in the underlying network graph. A
coupling strength between two agents indicate the weightage
agents give to each others information while updating their
own state. For a fixed set of leaders, a network’s controllability
might change with different choices of edge weights. However,
it might be infeasible or extremely difficult in practice to
assign precise edge weights due to uncertainties, numerical
inaccuracies, and inexact system parameters. Consequently,
we desire to characterize controllability while discounting the
effect of edge weights. In other words, we want to relate
controllability purely with the structure of the underlying
network graph, and independent of edge weights. Such a
notion of controllability is referred to as the strong structural
controllability (SSC). It is easy to verify if a network is strong
structurally controllable. However, if it is not, then computing
how much of the network is strong structurally controllable,
or more precisely the dimension of strong structurally con-
trollable subspace (formally defined in Section II-B) is an
extremely challenging problem.

In this paper, we study the problem of computing a tight
lower bound on strong structural controllability of networks
with Laplacian dynamics. We consider a bound proposed in
[9] that depends on distances between nodes in a graph.
The distance based bound is useful in characterizing SSC in
terms of the underlying network structure, selecting leaders,
and exploiting trade-off between controllability and robustness
[10]. The main idea is to obtain distances between leaders
and other nodes, arrange them in vectors called distance-
leader vectors, and then construct a particular sequence of such
vectors satisfying some montonicity conditions. Computing
distances between nodes is straightforward, however, con-
structing sequences that ultimately provide bound on SSC is
computationally challenging. We provide efficient algorithms
with performance guarantees to compute such sequences.

Our main contributions are as follows:
1) We provide a dynamic programming based exact al-

gorithm to compute optimal sequence of vectors con-
sisting of distances between leaders and other nodes in
O(m(n log n + nm)) time, which directly gives a tight
lower bound on SSC of networks. Here m is the number
of leaders and n is the total number of nodes in the
network.

2) We propose an approximation algorithm that computes
near-optimal sequence of distance-leader vectors in prac-

2

tice and takes O(mn log n) time. If there exists a se-
quence of length n of distance-leader vectors, then the
network is SSC, and our greedy algorithm always returns
such a sequence if it exists.

3) We analytically show that the distance based bound on
SSC is always at least as good as other known bounds,
in particular the one based on zero forcing sets (ZFS).
In fact, the distance-based bound is significantly better
than the ZFS-based bound in practice.

4) We analyze sequences of distance-leader vectors in paths
and cycles with arbitrary leaders, thus characterizing
strong structural controllability in such graphs.

5) Finally, we numerically evaluate our results on various
graphs including Erdös-Rényi (ER) and Barabási-Albert
(BA) graphs.

A. Related Work

The notion of strong structural controllability was intro-
duced in [11] and the first graph-theoretic condition for single
input systems was presented. For multi-input systems, [12]
provided a condition to check SSC in O(n3) time, where
n is the number of nodes. Authors in [13] refined previous
results and further provided a characterization of SSC. To
check if the system is strong structurally controllable with
given inputs, an algorithm based on constrained matchings in
bipartite graphs with time complexity O(n2) was given in [3].
In [14], an algorithm with a run time linear in the number of
nodes and edges was presented to verify whether a system
is strong structurally controllable. The relationship of SSC
and zero forcing sets (ZFS) was explored in [15], [16], and it
was established that checking if a system is strong structurally
controllable with given input nodes is equivalent to checking
if the set of input nodes is a ZFS in the underlying network
graph.

Whether a network is strong structurally controllable or
not is a binary decision. The notion of strong structurally
controllable subspace [17], which is an extension of the
ordinary controllable subspace, is particularly useful to quan-
tify controllability in cases where networks are not strong
structurally controllable. In fact, the dimension of such a
subspace (formally described in Section II-B) quantifies how
much of the network is controllable in the strong structural
sense (that is, independently of edge weights) with a given set
of inputs. Some lower bounds on the dimension of SSC have
been proposed in the literature. In [17], a lower bound based on
the derived set of input nodes (leaders) was presented, which
was further studied in [18], [19]. With a single input node,
the dimension of SSC can be at least the diameter of the
underlying network graph [20]. In [9], a tight lower bound
on the dimension of SSC was proposed that was based on the
distances between leaders and remaining nodes in the graph.
The main idea was to compute a certain sequence of vectors
consisting of distances between nodes in graph. The bound was
used to explore trade-off between SSC and network robustness
in [10]. In this paper, we show that the distance-based lower
bound on the dimension of SSC is sharper than the other
bounds. Further studies in this direction include enumerating

and counting strong structurally controllable graphs for a given
set of network parameters (leaders and nodes) [21], [22],
leader selection to achieve desired structural controllability
(e.g., [4], [23], [24], [5], [7], [6]), and network topology design
for a desired control performance (e.g., [25], [26], [27], [28]).

The rest of the paper is organized as follows: Section II
introduces notations and preliminary concepts used throughout
the paper. Section III provides recursive and dynamic pro-
gramming based exact algorithms to compute a distance-based
lower bound on the dimension of SSC. Section IV presents
and analyzes a greedy approximation algorithm to compute a
lower bound on the dimension of SSC. Section V analytically
compares the distance-based bound with the zero forcing set
based bound. Section VI characterizes SSC of path and cycle
graphs using distance-leader vectors. Section VII provides a
numerical evaluation of our results, and Section VIII concludes
the paper.

II. PRELIMINARIES AND A LOWER BOUND ON STRONG
STRUCTURAL CONTROLLABILITY

A. Notations

We consider a network of n dynamical agents represented
by a simple (loop-free) undirected graph G = (V,E) where
the node set V represent agents, and the edge set E represents
interconnections between agents. An edge between vi and vj
is denoted by eij . The neighborhood of node vi is Ni , {vj ∈
V : eij ∈ V }. The distance between vi and vj , denoted by
d(vi, vj), is simply the number of edges in the shortest path
between vi and vj . Edges can be weighted, and the weighting
function w : E → R+ assigns positive weight wij to the edge
eij . These weights define the coupling strength between nodes.
If there is no edge between vi and vj , then we define wij = 0.

Each agent vi ∈ V has a state xi ∈ R and the overall
state of the system, without loss of generality, is x =[
x1 x2 · · · xn

]T ∈ Rn. Agents update states following
the Laplacian dynamics given below.

ẋi = −Lwx+Bu, (1)

where Lw ∈ Rn×n is the weighted Laplacian matrix of G
and is defined as Lw = ∆ − Aw. Here, Aw ∈ Rn×n is the
weighted adjacency matrix, in which the ijth entry is,

[Aw]ij =

{
wij if eij ∈ E,
0 otherwise, (2)

and ∆ ∈ Rn×n is a degree matrix as below.

[∆]ij =

{ ∑n
k=1Aik if i = j

0 otherwise. (3)

The matrix B ∈ Rn×m in (1) is an input matrix. m is the
number of leaders (inputs), which are the nodes to which an
external control signal is applied. Let V` = {`1, `2, · · · , `m} ⊂
V be the set of leaders, then Bij = 1 if node i ∈ v is also a
leader `j , otherwise Bij = 0.

3

B. Strong Structural Controllability (SSC)

A state xf ∈ Rn is a reachable state if there exists an input
u that can drive the network in (1) from the origin to xf in
a finite amount of time. A network G = (V,E) with edge
weights w and leaders V` is called completely controllable if
every point in Rn is reachable. Complete controllability can
be checked by computing the rank of the following matrix,
called controllability matrix.

Γ(Lw, B) = [B (−Lw)B (−Lw)
2B · · · (−Lw)

n−1B] .

Network is completely controllable if and only if the rank of
Γ(Lw, B) is n, in which case (Lw, B) is called a controllable
pair. Note that edges in G define the structure—location of
zero and non-zero entries in the Laplacian matrix—of the
underlying graph, for instance, see Figure 1. The exact values
of non-zero entries, and hence, the rank of resulting control-
lability matrix depends on the weights assigned to edges. For
a given graph G = (V,E) and V` leaders, rank(Γ(Lw, B))
might be different from rank(Γ(Lw′ , B)), where w and w′ are
two different choices of edge weights.

v1

v2 v3

v4 v5 v6

× × × 0 0 0
× × × × 0 0
× × × 0 × 0
0 × 0 × × 0
0 0 × × × ×
0 0 0 0 × ×

Fig. 1: A graph G = (V,E) and its structured Laplacian
matrix.

A network G = (V,E) with V` leaders is strong structurally
controllable if and only if (Lw, B) is a controllable pair
for any choice of non-zero edge weights w, or in other
words, rank(Γ(Lw, B)) = n for all w. At the same time,
the dimension of strong structurally controllable subspace, or
simply the dimesnion of SSC, denoted by γ(G,V`), is

γ(G,V`) = min
w

(rank Γ(Lw, B)) . (4)

Roughly, γ(G,V`) quantifies how much of the network can
be controlled with V` leaders and with any choice of edge
weights.

C. A Distance-based Lower Bound on the Dimension of SSC

We use a tight lower bound on the dimension of SSC as
proposed in [9]. The bound is based on the distances between
nodes in a graph. Assuming m leaders V` = {`1, · · · , `m},
we define a distance-leader vector for each vi ∈ V as below,

Di =
[
d(`1, vi) d(`2, vi) · · · d(`m, vi)

]T ∈ Zm.

The jth component of Di, denoted by Di,j , is d(`j , vi).
Next, we define a sequence of distance-leader vectors, called
as pseudo-monotonically increasing sequence as below.

Definition (Pseudo-monotonically Increasing Sequence
(PMI) A sequence of distance-leader vectors D is PMI if for

every ith vector in the sequence, denoted by Di, there exists
some j ∈ {1, 2, · · · ,m} such that

Di,j < Di′,j , ∀i′ > i. (5)

We say that Di satisfies the PMI property at coordinate j
whenever Di,j < Di′,j , ∀i′ > i.

An example of distance-leader vectors is illustrated in
Figure 2. A PMI sequence of length five is

D =

[[
3
0©

]
,

[
2
1©

]
,

[
0©
3

]
,

[
2
2©

]
,

[
1©
3

]]
. (6)

Indices of circled values in (6) are the coordinates at which

[
0
3

]
[

1
3

] v1

v2 v3

v4 v5 v6

[
1
1

]

[
2
2

] [
2
1

] [
3
0

]
Fig. 2: A network with two leaders V` = {`1, `2} = {v1, v6},
along with the distance-leader vectors of nodes. A PMI
sequence of length five is D = [D1 D2 · · · D5] =
[D6 D5 D1 D4 D2].

the corresponding distance-leader vectors are satisfying the
PMI property. The length of PMI sequence of distance-leader
vectors is related to the dimension of SSC as stated in the
following result.

Theorem 2.1: [9] If δ is the length of longest PMI sequence
of distance-leader vectors in a network G = (V,E) with V`
leaders, then

δ ≤ γ(G,V`). (7)

Problem: Our goal is to efficiently compute a PMI sequence
of longest length, and hence, a lower bound on the dimension
of SSC. Moreover, we would like to compare the distance-
based bound with the other known bounds analytically and
numerically.

In the next section, we provide an algorithm to compute a
longest PMI sequence, and in Section IV, we provide a greedy
approximation algorithm.

III. COMPUTING SSC BOUND – AN EXACT ALGORITHM

Main result of this section is as follows:
Theorem 3.1: Given a graph G on n vertices, and m

leaders, a longest PMI sequence of distance-leader vectors can
be computed in O(m(n log n+ nm)).
We will provide a dynamic programming based algorithm of
prescribed time complexity.

Note that the distance-leader vector Di can be viewed as a
point in Zm and problem of computing longest PMI sequence
is equivalent to finding a corresponding subsequence of such
points. We find that treating Di’s as points improves the
readability of our algorithms, so we will stick to this view for

4

the rest of the paper. With a slight abuse of notation, Di,j will
now represent coordinate j of a point Di ∈ Zm for 1 ≤ j ≤ m.
We start our discussion with a following simple fact:

Fact 3.2: Without loss of generality, we may assume that
points Di are distinct.
Otherwise we can throw away multiple copies of the same
point as duplicate points can’t satisfy the PMI property (stated
above) on any coordinate.

The following observation is crucial to our algorithms.
Observation 3.3: Given a set of points D1, D2 . . . , Dn, if

there exists a point Di and an index j such that Di,j < Di′,j

for all Di 6= Di′ then Di is a unique minimum point in
direction j and there is a longest PMI sequence which starts
with Di.

Definition (Conflict-partition) But it is possible that there is
no unique minimum in any direction. This leads us to the
definition of a conflict and conflict-partition. A conflict is a
set of points X that can be partitioned into X1,X2 . . . ,Xm

such that all points Dp ∈ Xi have Dp,i = Dq,i if Dq ∈ Xi

and Dp,i ≤ Dq,i if Dq /∈ Xi. Further, |Xi| > 1 for all i. Such
a partition is called conflict-partition or c-partition for short.1

An example of conflict is illustrated in Figure 3.
It is easy to see that a PMI sequence can’t contain all points

in a conflict. In fact, we can strictly bound the number of points
from a conflict that can be included in a PMI sequence.

Lemma 3.4: Let X1,X2 . . . ,Xm be a c-partition of a
conflict X for a given set of points. Then any PMI sequence
contains at most |X | − min(|X1|, |X2|, . . . , |Xm|) + 1 points
from X .

D1 D2 D3
· · · Da

Da+1

Da+b

Da+2

Da+3

...

i

j

Fig. 3: Pointset X = {D1, D2 . . . , Da+b} constitute a
conflict where Xi = {D1, D2, . . . , Da} and Xj =
{Da+1, Da+2, . . . , Da+b}.

Proof: Let ki = |Xi| for all 1 ≤ i ≤ m for the partition
defined in the statement, then for the sake of contradiction,
let’s assume that there is a sequence D′ that contains more
points from X . Let Dp ∈ Xi be a point that appears first in
D′. If Dp satisfies PMI property on ith coordinate then the
remaining ki−1 points with the same minimum ith coordinate
in Xi can’t be included in D′. So Dp must satisfy PMI property
on some jth coordinate for following points in the sequence,
where j 6= i. But then D′ must miss at least kj points which

1In general parts of a partition do not intersect. For the lack of a better
term, we are slightly abusing this term in the sense that parts Xi intersect at
at most one element.

have smaller or equal j coordinate by definition of conflict,
which is a contradiction. Thus claim follows.

As an example, consider points in Figure 3. There are a
points with the minimum ith coordinate and b points with
the minimum jth coordinate. If D1 is picked as first point
(among this set) we must either drop all D2, D3, . . . , Da or
all Da+1, Da+2, . . . , Da+b. Similarly if Da+1 is picked before
everyone else, we can’t pick any of Da+2, . . . , Da+b or any
of D2, D3, . . . , Da. In either choice we must lose at least
min (a− 1, b− 1) points for future consideration regardless
of positions of other points.

Note that the bound in Lemma 3.4 is tight: if we remove
|Xi| − 1 points from the smallest part of a c-partition, all
remaining points can easily satisfy the PMI property on co-
ordinate i unless some of these remaining points are included
in any other conflict.

A. Recursive Algorithm

In this section, we design a recursive algorithm that we will
covert into a dynamic programming approach in Section III-B.
First we define a few notations. In the following, Łi denotes
a list of points ordered by non-decreasing ith coordinate. Łi

j

denotes the jth point in the list Łi, and Łi
j,k is the (integer)

value of kth coordinate of Łi
j

2. Let D be a set of n points
in Zm. In the beginning we will sort all points with respect
to all coordinates. So we will get m lists {Ł1,Ł2, . . . ,Łm}
of n points each. This enables us to perform a sweep-line
(sweep-hyperplane to be precise) algorithm. We will return a
sequence D of points which is initially empty. Without loss of
generality all points in D are distinct. If there is a point Dq

in D with a unique minimum along some coordinate j, we
will add Dq at the end of current PMI sequence D, remove
Dq from all lists Łi, and recursively continue. Otherwise, if
there is no unique point Dq with a minimum value along any
axis, then for each i there are multiple points in Łi whose
ith coordinate is equal to Łi

1,i. As suggested by Lemma 3.4,
we can’t include all of these points to PMI so we need to
make a decision to include some of these points and exclude
other points. We will recursively consider all possibilities and
pick the one that results in longest PMI sequence. Details are
outlined in Algorithm 1. We state the following proposition:

Proposition 3.5: Algorithm 1 returns a longest PMI se-
quence of distance-leader vectors in time O(m(n−m)/2).
Proof: Correctness of the algorithm follows from Observa-
tion 3.3 and from the fact that we try all possibilities. As far
as time complexity is concerned, at each recursive call we may
need to explore m possibilities and we can get rid of at least
two points. This implies that the runtime follows recurrence:

T (n) ≤ m× T (n− 2)

Also at least m points must be unique minima, one along each
coordinate, so we have an upper bound of O(m(n−m)/2) on
the runtime of Algorithm 1.

2We recommend to use linked priority queues or similar data structure for
these lists so that one could easily delete a point from lists while maintaining
respective orders in logarithmic time.

5

Algorithm 1 Recursive Algorithm for PMI

1: procedure PMI-R(Ł1,Ł2 . . . ,Łm) . Recursive routine
2: if |Ł1| <= 1 then
3: return Ł1 . one point is always a PMI
4: end if
5: Xi ← {Łi

j : Łi
j,i = Li

1,i} for all i.
6: if ∃i such that |Xi| = 1 then. Check for unique min.
7: return [Łi

1 PMI-R(Ł1\Xi,Ł2\Xi, . . . ,Łm\Xi)].
8: else
9: for i ∈ 1 : m do . Check point in each direction

10: Di ← [Łi
1 PMI-R(Ł1 \Xi, . . . ,Łm \Xi)]

11: end for
12: return largest Di

13: end if
14: end procedure

An example run of the algorithm on the graph in Figure 1
with V` = {v1, v6} is illustrated in Appendix A. Algorithm 1
takes prohibitively exponential time even for the case of two
leaders. In the following, we design an algorithm that is based
on dynamic programming approach and will yield an optimal
solution in polynomial runtime when the number of leaders is
fixed.

B. Dynamic Programming Algorithm

In this section we present a dynamic programming algo-
rithm that returns length of a longest PMI sequence given
distance-leader vectors as a set of points. To obtain a longest
PMI sequence, standard augmentation methods can be easily
employed.
Let c1, c2, . . . , cm be a set of non-negative integers and
D[c1,c2,...,cm] be a longest PMI sequence in which the value at
ith coordinate of any point is at least ci. Let α[c1,c2,...,cm] be
the length of such a sequence. Our algorithm will memoize
on α[c1,c2,...,cm].

From our discussion in Section III-A, we conclude that
α[c1,c2,...,cm] can be obtained by the following recurrence:

α[c1,c2,...,cm] = max
1≤i≤m

(α[c1,c2,...,ci+1,...,cm] + 1ci), (8)

where

1ci =

{
1 if ∃ Dp s.t. Dp,i = ci and Dp,j ≥ cj ,∀j 6= i.
0 otherwise. (9)

We plan to pre-compute and memoize all required values of
α[c1,...cd] in a table. Clearly there are infinitely many possible
values for ci but we observe the following:

Observation 3.6: Let Łi
j,i, and Łi

j+1,i be ith coordinate
values of two consecutive points in Łi (as defined previously),
then

α[c1,c2,...,x,...,cm] = α[c1,c2,...,Łi
j+1,i,...,cm]

for all Łi
j,i < x ≤ Łi

j+1,i.
Observation 3.6 implies that there are at most n different

values for each variable ci, which gives at most n unique
values for α[c1,c2,...,cm]. Thus, we only keep a table of size nm

for computation and storage of solutions to all subproblems.

(a) (b) (c)

(d) (e) (f)

Fig. 4: The figure illustrates possible scenarios for PMI
recurrence as used in the dynamic program with two leaders.
Assume origin of these figures to be (1, 1). In the cases
(a), (b) and (c), there is a point on the origin which means
1ci = 1 and A1,1 = max(A1,2 + 1, A2,1 + 1). In the case (d)
there are separate points along both coordinates, so we have
A1,1 = max(A1,2 + 1, A2,1 + 1) again. In the case (e) there is
a point along y coordinate but no point along x. So we have,
A1,1 = max(A1,2+1, A2,1+0). And in the last case there are
no points x or y, so A1,1 = max(A1,2 + 0, A2,1 + 0). Terms
A1,2 and A2,1 are already pre-computed.

The details of dynamic program are in Algorithm 2. For some
intuition on the working of dynamic program, we refer the
reader to Figure 4.

Algorithm 2 PMI - Dynamic Program

1: procedure PMI-DP (Ł1,Ł2 . . . ,Łm)
2: zi be number of unique values of ith coordinate among

all points.
3: z = max(z1, z2 . . . , zm)
4: Define a m-dimensional array A with dimensions (z+

1)× (z + 1)× . . . (z + 1)
5: Let Ac1,c2,...,cm , i.e. value of A at index set
c1, c2, . . . , cm represents α[c1,c2,...,cm] as in (8).

6: for k from 1 to m do
7: Ac1,c2,...,cm ← 0 for ck = z, ck′ ≤ z, k′ 6= k.
8: end for
9: for j from z − 1 to 0 do

10: for k from 1 to m do
11: Compute Ac1,c2,...,cm for ck = j, ck′ ≤ j, k′ 6=

k using (8).
12: end for
13: end for
14: return A0,0,...,0

15: end procedure

Proposition 3.7: Algorithm 2 computes a longest PMI
sequence in time O(m × (n log n + nm)) where m is the
number of leaders and n is total number of nodes in the graph.
Proof: Correctness of Algorithm 2 follows from the correct-
ness of Algorithm 1 and Observation 3.6. Computing sorted
lists Ł1,Ł2, . . . ,Łm takes O(m × n log n) time. Each value
of Ac1,c2,...,cm can be computed by taking maximum of m
known values in the table. The value of 1ci can be computed

6

in constant time by looking up relevant Łi as defined in (9).
The table contains nm such values. Therefore running time of
this algorithm is bounded by O(m× (n log n+ nm)).

Proof of Theorem 3.1: Theorem 3.1 follows directly from
Proposition 3.7.

Remark 3.8: For the sake of implementation on plat-
forms that do not offer ready to use multi-dimensional data-
structures, we find it useful to hash the values of computed
solution to a list, and use the recursive algorithm (PMI-R)
with a check in the first line to not go through the subroutine
if the current subproblem has already been solved and hashed
once.

Remark 3.9: We note that an exact algorithm to compute
longest PMI sequence in O(mn) was proposed in [9]. However
dynamic programming solution in Algorithm 2 computes
longest PMI in much less time, that is, O(m×(n log n+nm)).

We illustrate the algorithm in detail through an example in
Appendix.

IV. COMPUTING SSC BOUND – A GREEDY
APPROXIMATION ALGORITHM

We observe that the dynamic programming algorithm de-
scribed above runs well for graphs with several hundreds of
nodes on a decent machine. However, when the number of
nodes is much higher, or when the number of leaders is large,
it becomes impractical. In the following, we propose a more
efficient greedy approximation algorithm, which gives very
close to optimal solutions in practice as illustrated numerically
in Section VII. Runtime complexity is linearithmic in the size
of the input, thus it works well for computing quite accurate
approximate PMI sequences for almost all practical networks.
The main idea behind greedy algorithm is to make locally

Algorithm 3 PMI-Greedy Algorithm

1: procedure PMI-GREEDY(Ł1,Ł2 . . . ,Łm)
2: D ← ∅ . Initially empty sequence
3: while Ł1 6= ∅ do
4: Xi ← {Łi

j : Łi
j,i = Li

1,i} for all i.
5: if ∃i such that |Xi| = 1 then . Unique min.
6: D ← [D Xi]
7: Remove Xi from all lists.
8: else
9: Let j ← arg mini |Xi| . Get smallest Xi

10: D ← [D Łj
1]

11: Remove all points in Xj from all lists.
12: end if
13: end while
14: return D
15: end procedure

optimal choices when faced with the situation in Lemma 3.4,
that is, when including a point in PMI results in discarding
a subset of points from possible future consideration. Locally
best thing to do in this case is to pick a point that results in the
loss of minimum number of other points. Details are provided
in Algorithm 3.

Proposition 4.1: Algorithm 3 computes an approximate
PMI sequence in time O(mn log n). The algorithm is an m-
approximation. Further, Algorithm also has an approximation
ratio of log n if m ≤ log n or m ≥ n

logn .

Proof: Regarding time complexity, computing sorted lists
Ł1,Ł2, . . . ,Łm takes O(m× n log n) time. Once we have m
sorted lists, we can keep the indices and count of points with
minimum coordinate value in (m + 1) Min-Priority queues
(m queues to maintain lists Ł1,Ł2, . . . ,Łm and one queue for
X1, X2 . . . , Xm). Cost of one update, or delete operation is
O(log n) in a Priority queue. Since we will update and/or
delete at most n points from m queues. In total we will
perform at most m× n deletions and m× n updates. Overall
time complexity is O(m× n log n).

Regarding m-approximation ratio, we observe that there
are at least n

m different values in at least one coordinate.
Otherwise, we may assume that we have at most n

m−1 unique
values in each coordinate. This would imply that are at most
(n
m−1)×m distinct points by the pigeonhole principle; which

contradicts that we have n unique points. As Algorithm 3 picks
all distinct values in any coordinate, returned PMI sequence
has size at least n

m .

It is obvious to see that when m is at most log n there
are at least n

logn different values in at least one coordinate
by the same argument. To see why log n-approximation ratio
holds when m is large, note that there is at least one unique
minimum point (corresponding to the leader itself) in each
of m directions so when m ≥ n

logn , the algorithm will
clearly include all of those unique points in the PMI sequence
returned. Thus, approximation ratios follows.

If there exists a PMI sequence of length n, then the network
is strong structurally controllable with a given set of leaders.
The greedy algorithm presented above always returns a PMI
sequence of length n if there exists one. We state this result
in the following lemma.

Lemma 4.2: If there exists a PMI sequence of length n,
then Algorithm 3 always returns an optimal PMI.

Proof: We observe that if there exists a PMI sequence of length
n, then by Lemma 3.4 we can’t have a conflict as defined in
Section III. In the absence of any conflict, we can always find a
unique minimum point along some coordinate. Consequently,
in Algorithm 3, statements in else will never be executed and
algorithm will return a PMI sequence of length n.

We illustrate the greedy algorithm in Appendix.

Remark 4.3: While in great many cases Algorithm 3
achieves a solution close to optimum, we observe that ex-
amples can be engineered for which this may not be a
globally optimal choice though. In the example outlined in
Figure 5, we have two leaders and points are placed at S =
{(2, 2), (2, 3), (3, 3), (3, 4), (4, 4) . . . , (k+1, k+1), (k+1, k+
2), (k+2, k+2)} and at T = {(1, 2), (1, 3), (1, 4), . . . , (1, k+
2)}. An optimal PMI has all 2k points while Algorithm 3
above may only pick k + 3 points.

7

4

2

k + 2

3

1

...

k + 1

1 2 3 · · ·

k

k + 1 k + 2

...

4

Fig. 5: Example discussed in Remark 4.3.

V. COMPARISON OF PMI-BASED AND ZERO FORCING SET
(ZFS)-BASED BOUNDS

Method of Zero Forcing Set (ZFS), described below, pro-
vides a well-known bound on the dimension of SSC. Here
we compare ZFS and PMI-based bounds, and analytically
show that the PMI-based bound is always at least as good as
the ZFS-based bound. In fact, PMI-based bound significantly
outperforms the other in practice. Thus, for the networks
considered in this paper, the PMI-based bound is the best
known bound on the dimension of SSC to the best of our
knowledge.

First, we define the notion of Zero Forcing Set (ZFS). Given
a graph G = (V,E) where each node is colored either white
or black, we repeatedly apply the following coloring rule: If
v ∈ V is colored black and has exactly one white neighbor u,
then color of u is changed to black.

Definition (Derived Set) Given an initial set of black nodes
(called input set) in G, a derived set V ′ ⊆ V is set of all black
nodes obtained after repeated application of the coloring rule
until no color changes are possible.

It is easy to see that for a given input set, the resulting derived
set is unique. Input set is called a ZFS if corresponding derived
set contains all nodes in V . These notions are illustrated in
Figure 6.

Theorem 5.1: [15], [17] Given a set of leader nodes as
input set, the size of the corresponding derived set is a lower
bound on the dimension of SSC.

v1

v2 v3

v4 v5 v6

(a)

v1

v2 v3

v4 v5 v6

(b)

Fig. 6: (a) {v1, v6} is the set of input (black) nodes. (b) Since
v5 is the only white neighbor of input node v6, the color of
v5 is changed to black by the coloring rule. {v1, v5, v6} is
the derived set of the input nodes. Note that the given set of
input nodes is not a ZFS as the derived set does not contain
all nodes in the graph.

Next, we show for a given set of leaders V`, length of the
longest PMI is always greater than or equal to the size of the
corresponding derived set. In the following, we are interested
in the derived set V ′ = {v1, v2, . . . , vk} as well as the order

Algorithm 4 ZFS-Algorithm

1: procedure ZFS(G,V`)
2: m← |V`| . V` is input set (leaders)
3: V ′ ← V` . V ′ is the derived set
4: π(v)← v for all v ∈ V ′
5: for i← m+ 1 to n do
6: if ∃v ∈ V ′ s.t. v has unique white neighbor u3.

then
7: Change the color of u to black.
8: V ′ ← [V ′ u] . insertion order is important
9: π(u)← π(v)

10: end if
11: end for
12: return V ′

13: end procedure

in which white nodes are included in V ′ as described in the
Algorithm 4

Lemma 5.2: For each node vi ∈ V ′ = [v1, v2, . . . , vk]
obtained from Algorithm 4, there exists an input node `j ∈ V`
such that vi is the only node at distance d(vi, `j) from `j .
Moreover for all indices î > i, d(vî, `j) > d(vi, `j) holds.
Proof: For each node vi in V ′, we associate with vi a parent
π(vi) ∈ V` in the input set as described in Algorithm 4. We
prove Lemma 5.2 by induction on d(vi, π(vi)).
When d(vi, π(vi)) = 0 then trivially there is an input node
(π(vi) itself) such that vi is the only node with distance 0
from it and all other nodes are farther away. Now we show
that claim is true for a node vi at distance s > 0 with the
associated input node π(vi) assuming it’s true for all nodes
at distance < s; vi is added to the derived set so it must be
the only white node in neighborhood of some vi′ , i′ < i. By
inductive hypothesis, vi′ is the only node at distance s − 1
from π(vi′) = π(vi). This implies that vi is the only node at
distance s from π(vi). As nodes following vi′ are at distance
more than s−1 from π(vi′), and vi is the only node at distance
s, all nodes following vi are at distance more than s from
π(vi). This completes the proof.

Theorem 5.3: For a given set of leaders (input set) V`,
size of the derived set is a lower bound on the length of
corresponding PMI sequence.
Proof: Let V ′ = [v1, v2, . . . , vk] be the derived set as obtained
from the Algorithm 4. By Lemma 5.2 for each vi there is an
input node `j such that d(vi, `j) < d(vî, `j), for all î > i. If Di

is the distance leader vector corresponding to node vi then the
previous statement implies that the sequence D1, D2, . . . , Dk

is a PMI sequence. Thus, for each derived set there exists a
PMI sequence of equivalent length. The claim follows.

In fact, we can show that length of PMI obtained from
greedy Algorithm 3 is also greater than or equal to the size of
the derived set.

Lemma 5.4: For a given set of leaders V`, size of the derived
set is a lower bound on the length of PMI sequence returned
by greedy Algorithm 3.

3If there are multiple such v, then we arbitrarily pick one of them.

8

Proof: Lemma 5.2 implies that for each vi in the derived set,
there is at least one input node `j such that vi is the only
node at distance d(vi, `j). It is obvious by looking at greedy
algorithm that all nodes with a unique minimum along any
coordinate are included in the returned PMI sequence. Since
vi is the only node at distance d(vi, `j) from `j it must be a
unique minimum along the coordinate corresponding to `j at
some step. Hence PMI returned by greedy contains all nodes
of a derived set.

VI. CHARACTERIZATION IN PATHS AND CYCLES

In this section, we explore connections between graph-
theoretic properties and length of longest PMI in path and
cycle graphs. As a result, we show interesting topological
bounds on the dimension of SSC in such graphs with a given
set of leader nodes. We note that our results differ from
previous works in this direction in two aspects: first, we specif-
ically study the strong structural controllability of such graphs;
second, instead of focusing on complete controllability, we
provide tight bounds on the dimesnion of SSC even when the
graph is not strong structurally controllable with a given set
of leaders [29], [30], [31].

We want to show that longest PMI sequence in a path and
cycle graph can be characterized by the distances between
leader nodes. A node with a single neighbor is called a leaf.
We start with following obvious fact.

Fact 6.1: A path graph in which a leaf is a leader has a
PMI sequence of length n.
For a graph G = (V,E), let G−S denote the subgraph of G
induced on vertices V \ S where S ⊆ V . Then we observe,

Theorem 6.2: Let G be a path graph on n nodes and let
V` be a set of m ≤ n leader nodes. Then the following holds:

(i) If the number of connected components in G−V` is less
than m+1, then PMI sequence induced by V` has length
n.

(ii) If the number of connected components in G−V` is
exactly m + 1, then V` induces a PMI sequence of
length n − a where a is the size of smallest connected
component in G−V` .

Proof: (i). Removal of a node from a path results in at most
two connected components hence G−V` has at most m + 1
such components. If the number of components is less than
m + 1 then either one of the leader nodes is a leaf or at
least two leaders nodes are adjacent. If a leaf x is chosen
as a leader then by Fact 6.1, we can get a PMI sequence
of length n. Assuming none of the leaders is a leaf node,
let vi and vi+1 be adjacent leader nodes; further assume that
i < n/2 without loss of generality. We will construct a PMI
sequence of length n based on these two leaders as follows:
[

0
1

]
,

[
1
0

]
,

[
1
2

]
,

[
2
1

]
, · · · ,

[
i− 1
i

]
,

[
i

i− 1

]
,[

i+ 1
i

]
,

[
i+ 2
i+ 1

]
, · · · ,

[
n− i

n− i− 1

]

(ii). If a smallest connected component X contains
either of the leaf nodes then G−X has a leaf leader
node and thus has a PMI sequence of length n − |X|
by Fact 6.1. If X doesn’t contain leaf nodes then there
exist two leader nodes vi, vj are adjacent to some nodes

in X . Also assume that vi is not farther away from a leaf
node than vj is. Then the following sequence of distance-
leader vectors defines a PMI sequence of claimed length:

[
0

a+ 1

]
,

[
a+ 1
0

]
,

[
1

a+ 2

]
,

[
a+ 2
1

]
, · · · ,

[
i− 1
a+ i

]
,[

a+ i
i− 1

]
,

[
a+ i+ 1

i

]
,

[
a+ i+ 2
i+ 1

]
, · · · ,

[
n− i

n− i− a− 1

]

Similarly for cycle graphs, we show the following:
Theorem 6.3: Let G be a cycle on n nodes and let V` be

a set of 2 ≤ m ≤ n leader nodes.

(i) If the number of connected components in G−V` is less
than m, then PMI sequence induced by V` has length n.

(ii) If the number of connected components in G−V` is ex-
actly m, then V` induces a PMI sequence of length n−a
where a is the size of smallest connected component in
G−V` .

Proof: (i). Removing a single node from a cycle doesn’t
affect the number of connected components. However, removal
of every subsequent node will result in at most one extra
component. Thus total number of connected components is
at most m after removal of m nodes. If the number of
components is less than m in G−V` , then at least two nodes in
V` are neighbors in G. Let v1 and v2 be an arbitrary adjacent
pair in V`, without loss of generality. We will construct a PMI
sequence of length n based on these two leaders. Consider the
nodes in G with following distance-leader vectors[[

0
1

]
,

[
1
0

]
,

[
1
2

]
,

[
2
1

]
, · · · ,

[n
2
− 1
n
2

]
,

[n
2

n
2
− 1

]]
when n is even and[[

0
1

]
,

[
1
0

]
,

[
1
2

]
,

[
2
1

]
, · · · ,

[
bn
2
c

bn
2
c

]]
when n is odd. This defines a PMI sequence of length n.

(ii). An argument identical to proof of Theorem 6.2(ii) can
be used here to prove (ii) as well.

Theorems 6.2 and 6.3 imply simple graph theoretic bounds
on the dimension of SSC in the case of path and cycle graphs.
A path (cycle) graph is strong structurally controllable with V`
leaders if G−V` has m+ 1 components (m components in the
case of cycle). An other direct implication of the above results
is the following corollary.

Corollary 6.4: Let G be a path or cycle graph and let V` be
a set of leaders, then the dimension of SSC is at least n− a,
where a is the smallest distance between any two leader nodes.

VII. NUMERICAL EVALUATION

In this section, we numerically evaluate our results on
Erdös-Rényi (ER) and Barabási-Albert (BA) graphs. In ER
graphs, any two nodes are adjacent with a probability p. BA
graphs are obtained by adding nodes to an existing graph one
at a time. Each new node is connected to m existing nodes
with the probability proportional to the degree of the nodes.

9

0.05 0.125 0.2 0.275 0.35

p

16

18

20

22

24

26
P

M
I

le
n

g
th

 DP

 Greedy

(a) ER

2 4 6 8

No. of leaders

5

10

15

20

25

P
M

I
le

n
g

th

 DP

 Greedy

(b) ER

2 3 4 5

m

20

22

24

26

28

30

P
M

I
le

n
g

th

 DP

 Greedy

(c) BA

2 4 6 8 10

No. of leaders

5

11

17

23

29

35

40

P
M

I
le

n
g

th

 DP

 Greedy

(d) BA

Fig. 7: Comparison of dynamic programming and greedy algorithms for computing PMI sequences.

10 20 30 40 50

No. of leaders

0

20

40

60

80

100

S
S

C
 l
o

w
e

r
b

o
u

n
d

 PMI

 ZFS

 Diam

(a) p = 0.06

10 20 30 40 50 60

No. of leaders

0

20

40

60

80

100

S
S

C
 l
o

w
e

r
b

o
u

n
d

 PMI

 ZFS

 Diam

(b) p = 0.1

0.04 0.06 0.08 0.1 0.12

p

0

20

40

60

80

S
S

C
 l
o

w
e

r
b

o
u

n
d

 PMI

 ZFS

 Diam

(c) |V`| = 20

0.04 0.06 0.08 0.1 0.12

p

0

20

40

60

80

100

S
S

C
 l
o

w
e

r
b

o
u

n
d

 PMI

 ZFS

 Diam

(d) |V`| = 30

Fig. 8: Comparison of PMI and ZFS-based bounds in ER graphs. Diameters of graphs are also plotted.

10 20 30 40 50

No. of leaders

0

20

40

60

80

100

S
S

C
 l
o

w
e

r
b

o
u

n
d

 PMI

 ZFS

 Diam

(a) m = 2

10 20 30 40 50

No. of leaders

0

20

40

60

80

100

S
S

C
 l
o

w
e

r
b

o
u

n
d

 PMI

 ZFS

 Diam

(b) m = 4

1 2 3 4 5 6 7

m

0

10

20

30

40

50

60

S
S

C
 l
o

w
e

r
b

o
u

n
d

 PMI

 ZFS

 Diam

(c) |V`| = 20

1 2 3 4 5 6 7

m

0

20

40

60

80

S
S

C
 l
o

w
e

r
b

o
u

n
d

 PMI

 ZFS

 Diam

(d) |V`| = 30

Fig. 9: Comparison of PMI and ZFS-based bounds in BA graphs. Diameters of graphs are also plotted.

A. Dynamic Programming and Greedy Algorithms for Com-
puting PMI Sequences

First, we compare the performance of exact dynamic
programming algorithm (Algorithm 2) and the approximate
greedy algorithm (Algorithm 3) for computing the longest
length PMI sequences. For simulations, we consider graphs
with n = 200 nodes. For ER graphs, we first plot the length
of PMI sequences computed using Algorithms 2 and 3 as a
function of p while fixing the number of leaders (selected
randomly) to be eight (Figure 7(a)). Second, we fix p = 0.075,
and plot PMI length as a function of the number of leaders
selected randomly (Figure 7(b)). We repeat similar plots for
BA graphs in Figures 7(c) and (d). We fix the number of
leaders to be eight in Figure 7(c), whereas fix m = 2 in
Figure 7(d). We mention that each point in plots in Figure 7
is an average of 50 randomly generated instances. From the
plots, it is clear that greedy algorithm, which is much faster
as compared to the DP algorithm, performs almost as good
as the dynamic programming algorithm. The lentgh of PMI
sequences returned by greedy algorithm is very close to the

length of optimal PMI sequences, and hence, we get good
lower bounds on the dimension of SSC with given sets of
leader nodes.

B. Comparison of PMI and ZFS-based Bounds

Next, we numerically compare PMI and ZFS-based bounds
on the dimension of SSC as discussed in Section V. For both
ER and BA models, we consider graphs with n = 100 nodes.
In Figures 8(a) and (b), we plot these bounds For ER graphs as
a function of number of leaders, which are selected randomly,
while fixing p = 0.06 and p = 0.1 respectively. Next, we fix
the number of leaders, 20 in Figure 8(c) and 30 in Figure 8(d),
and plot SSC bound as a function of p. As previously, each
point in the plots is an average of 50 randomly generated
instances. It is obvious that PMI-based bound significantly
outperforms the ZFS-based bound in all the cases as also
indicated by the analysis in Section V. Similar results are
obtained in the case of BA graphs and are shown in Figure 9.
We fix m = 2 and m = 3 in Figures 9(a) and (b) respectively.
Further, the number of leaders selected in Figures 9(c) and (d)

10

are 20 and 30 respectively. In all the plots, for a given set of
leaders, lengths of PMI sequences are always greater than the
derived sets, thus, PMI-based bound on the dimension of SSC
is better than the one based on the derived sets.

VIII. CONCLUSION

We studied computational aspects of a lower bound on the
dimension of SSC in networks with Laplacian dynamics. The
bound is based on a sequence of distance-leader vectors, and
is sharper than the other known bounds as we have shown
in the paper. The distance based bound has also been used
to explore trade-off between robustness and strong structural
controllability [10]. However, no efficient algorithms to com-
pute the bound were known. In this paper, we studied the
problem in detail and provided first polynomial time algorithm
to compute longest sequence of distance-leader vectors with
a fixed set of leader nodes, which directly provided a bound
on the dimension of SSC. We also presented a linearithmic
approximation algorithm to compute the sequence, which
provided near optimal solutions in practice. Using our results,
we explored connections between graph-theoretic properties
and length of longest such sequences in path and cycle graphs.
We hope to use these results to further explore trade-offs
between controllability and other desirable network properties
including its structural robustness. We also believe that the
study of finding longest distance-leader vector sequences is
an interesting direction in its own respect as it naturally gen-
eralizes Erdös-Szekeres type sequences to higher dimensions
[32], [33], [34].

REFERENCES

[1] A. Rahmani, M. Ji, M. Mesbahi, and M. Egerstedt, “Controllability of
multi-agent systems from a graph-theoretic perspective,” SIAM Journal
on Control and Optimization, vol. 48, no. 1, pp. 162–186, 2009.

[2] Y.-Y. Liu, J.-J. Slotine, and A.-L. Barabási, “Controllability of complex
networks,” nature, vol. 473, no. 7346, p. 167, 2011.

[3] A. Chapman and M. Mesbahi, “On strong structural controllability of
networked systems: A constrained matching approach.” in American
Control Conference (ACC), 2013, pp. 6126–6131.

[4] A. Olshevsky, “Minimum input selection for structural controllability,”
in American Control Conference (ACC), 2015, 2015, pp. 2218–2223.

[5] V. Tzoumas, M. A. Rahimian, G. J. Pappas, and A. Jadbabaie, “Minimal
actuator placement with bounds on control effort,” IEEE Transactions
on Control of Network Systems, vol. 3, pp. 67–78, 2016.

[6] A. Clark, B. Alomair, L. Bushnell, and R. Poovendran, “Submodularity
in input node selection for networked linear systems: Efficient algorithms
for performance and controllability,” IEEE Control Systems Magazine,
vol. 37, no. 6, pp. 52–74, 2017.

[7] C. Commault and J.-M. Dion, “Input addition and leader selection for
the controllability of graph-based systems,” Automatica, vol. 49, no. 11,
pp. 3322–3328, 2013.

[8] F. Pasqualetti, S. Zampieri, and F. Bullo, “Controllability metrics,
limitations and algorithms for complex networks,” IEEE Transactions
on Control of Network Systems, vol. 1, no. 1, pp. 40–52, 2014.

[9] A. Yazıcıoğlu, W. Abbas, and M. Egerstedt, “Graph distances and
controllability of networks,” IEEE Transactions on Automatic Control,
vol. 61, no. 12, pp. 4125–4130, 2016.

[10] W. Abbas, M. Shabbir, A. Y. Yazıcıoğlu, and A. Akber, “On the trade-
off between controllability and robustness in networks of diffusively
coupled agents.” in American Control Conference (ACC), 2019.

[11] H. Mayeda and T. Yamada, “Strong structural controllability,” SIAM
Journal on Control and Optimization, vol. 17, pp. 123–138, 1979.

[12] K. Reinschke, F. Svaricek, and H.-D. Wend, “On strong structural
controllability of linear systems,” in [1992] Proceedings of the 31st
IEEE Conference on Decision and Control. IEEE, 1992, pp. 203–208.

[13] J. C. Jarczyk, F. Svaricek, and B. Alt, “Strong structural controllability
of linear systems revisited,” in 50th IEEE Conference on Decision and
Control and European Control Conference (CDC-ECC), 2011.

[14] A. Weber, G. Reissig, and F. Svaricek, “A linear time algorithm to verify
strong structural controllability,” in 53rd IEEE Conference on Decision
and Control (CDC). IEEE, 2014, pp. 5574–5580.

[15] N. Monshizadeh, S. Zhang, and M. K. Camlibel, “Zero forcing sets
and controllability of dynamical systems defined on graphs,” IEEE
Transactions on Automatic Control, vol. 59, pp. 2562–2567, 2014.

[16] M. Trefois and J.-C. Delvenne, “Zero forcing number, constrained
matchings and strong structural controllability,” Linear Algebra and its
Applications, vol. 484, pp. 199–218, 2015.

[17] N. Monshizadeh, K. Camlibel, and H. Trentelman, “Strong targeted
controllability of dynamical networks,” in 2015 54th IEEE Conference
on Decision and Control (CDC). IEEE, 2015, pp. 4782–4787.

[18] S. S. Mousavi and M. Haeri, “Controllability analysis of networks
through their topologies,” in Decision and Control (CDC), 2016 IEEE
55th Conference on. IEEE, 2016, pp. 4346–4351.

[19] S. S. Mousavi, M. Haeri, and M. Mesbahi, “On the structural and strong
structural controllability of undirected networks,” IEEE Transactions on
Automatic Control, vol. 63, no. 7, pp. 2234–2241, 2018.

[20] S. Zhang, M. Cao, and M. K. Camlibel, “Upper and lower bounds for
controllable subspaces of networks of diffusively coupled agents,” IEEE
Transactions on Automatic control, vol. 59, pp. 745–750, 2014.

[21] S. O’Rourke and B. Touri, “On a conjecture of godsil concerning con-
trollable random graphs,” SIAM Journal on Control and Optimization,
vol. 54, no. 6, pp. 3347–3378, 2016.

[22] T. Menara, G. Bianchin, M. Innocenti, and F. Pasqualetti, “On the
number of strongly structurally controllable networks,” in American
Control Conference (ACC), 2017. IEEE, 2017, pp. 340–345.

[23] S. Pequito, S. Kar, and A. P. Aguiar, “On the complexity of the
constrained input selection problem for structural linear systems,” Au-
tomatica, vol. 62, pp. 193–199, 2015.

[24] K. Fitch and N. E. Leonard, “Optimal leader selection for controllability
and robustness in multi-agent networks,” in 2016 European Control
Conference (ECC). IEEE, 2016, pp. 1550–1555.

[25] C. O. Aguilar and B. Gharesifard, “Graph controllability classes for the
laplacian leader-follower dynamics,” IEEE transactions on automatic
control, vol. 60, no. 6, pp. 1611–1623, 2015.

[26] S. Pequito, G. Ramos, S. Kar, A. P. Aguiar, and J. Ramos, “The robust
minimal controllability problem,” Automatica, vol. 82, 2017.

[27] S. S. Mousavi, M. Haeri, and M. Mesbahi, “Robust strong structural
controllability of networks with respect to edge additions and deletions,”
in American Control Conference (ACC), 2017.

[28] M. Xue and S. Roy, “Input-output properties of linearly-coupled dynami-
cal systems: Interplay between local dynamics and network interactions,”
in 2017 IEEE 56th Annual Conference on Decision and Control (CDC).
IEEE, 2017, pp. 487–492.

[29] G. Parlangeli and G. Notarstefano, “On the reachability and observability
of path and cycle graphs,” IEEE Transactions on Automatic Control,
vol. 57, no. 3, pp. 743–748, 2012.

[30] B. She, S. Mehta, C. Ton, and Z. Kan, “Topological characterizations
of leader-follower controllability on signed path and cycle networks,”
in IEEE Conference on Decision and Control (CDC), 2018, pp. 6157–
6162.

[31] X. Liu and Z. Ji, “Controllability of multiagent systems based on
path and cycle graphs,” International Journal of Robust and Nonlinear
Control, vol. 28, no. 1, pp. 296–309, 2018.

[32] P. Erdös and G. Szekeres, “A combinatorial problem in geometry,”
Compositio Mathematica, vol. 2, pp. 463–470, 1935.

[33] W. Samotij and B. Sudakov, “On the number of monotone sequences,”
Journal of Combinatorial Theory, Series B, vol. 115, pp. 132–163, 2015.

[34] N. Linial and M. Simkin, “Monotone subsequences in high-dimensional
permutations,” Combinatorics, Probability and Computing, vol. 27,
no. 1, pp. 69–83, 2018.

APPENDIX

A. Illustration of Recursive Algorithm (Algorithm 1)

Consider a graph in Figure 1, in which nodes v1 and v6 are
leaders. A run of the Algorithm 1 to compute an optimal PMI
sequence of distance-leader vectors is illustrated in Figure 10.
Note that Łi is a list of points (distance-leader vectors) that

11

are sorted in a non-decreasing order with respect to the ith

coordinate. In our example, such lists are given below.

Ł1 =

[[
0
3

]
,

[
1
2

]
,

[
1
3

]
,

[
2
1

]
,

[
2
2

]
,

[
3
0

]]
,

Ł2 =

[[
3
0

]
,

[
2
1

]
,

[
1
2

]
,

[
2
2

]
,

[
0
3

]
,

[
1
3

]]
.

Step-wise details of the algorithm are shown in Figure 10.

B. Illustration of Dynamic Programming Algorithm (Algo-
rithm 2)

For illustration, we consider the same graph as in Figure 1,
where V` = {v1, v6}. The example run is described in
Figure 11. The values of j and k denote the loop variables
in lines 9 and 10 of the Algorithm 2 respectively. In each
iteration of j, one column and one row of the memoization
variable A is updated as shown in matrices in Figure 11. In
fact, the value of each cell in the matrix is computed from
values in the neighboring cells to the right and below using
(8). For instance, A1,0 is computed from A1,1 (neighboring
cell on the right) and A2,0 (neighboring cell below). The first
entry of the matrix, that is A0,0 returns the length of longest
PMI sequence.

C. Illustration of Greedy Algorithm (Algorithm 3)

We illustrate it on the same graph as in Figure 1. The
initial lists Ł1 and Ł2 are same as in Section A. The sets X1

and X2 (line 4 of the algorithm) are
{[

0
3

]}
and

{[
3
0

]}
respectively, as also shown in Figure 12(b). Since both sets
contain a unique minimum, the algorithm arbitrarily includes
one of these two points in the sequence, that is

[
3
0

]
in

this case. In the next two steps, the points
[

2
1

]
and

[
0
3

]
are included in the sequence. In the next step illustrated
in Figure 12(e), the sets X1 and X2 are

{[
1
2

]
,
[

2
2

]}
and

{[
1
2

]
,
[

1
3

]}
respectively. Since there is no unique

minimum, cardinalities of X1 and X2 are compared (line 9 in
the Algorithm 3) and a point from a smaller set will be chosen.
In this example,

[
2
2

]
is chosen. The sequence returned by

the algorithm is as follows:

D =

[[
3
0

]
,

[
2
1

]
,

[
0
3

]
,

[
2
2

]
,

[
1
3

]]
.

12

X1 =

{[
0
3

]}
; X2 =

{[
3
0

]}

X1 =

{[
1
2

]
,

[
1
3

]}
; X2 =

{[
3
0

]}

X1 =

{[
1
2

]
,

[
1
3

]}
; X2 =

{[
2
1

]}

X1 =

{[
1
2

]
,

[
1
3

]}
; X2 =

{[
1
2

]
,

[
2
2

]}

X1 =

{[
2
2

]}
; X2 =

{[
2
2

]}
PMI =

[[
2
2

]]

PMI-R

 L1 =

([
0
3

]
,

[
1
2

]
,

[
1
3

]
,

[
2
1

]
,

[
2
2

]
,

[
3
0

])

 L2 =

([
3
0

]
,

[
2
1

]
,

[
1
2

]
,

[
2
2

]
,

[
0
3

]
,

[
1
3

])

PMI =

[[
2
2

]]

PMI =

[[
1
2

]
,

[
2
2

]]

PMI =

[[
2
1

]
,

[
1
2

]
,

[
2
2

]]

PMI =

[[
3
0

]
,

[
2
1

]
,

[
1
2

]
,

[
2
2

]]

PMI =

[[
0
3

]
,

[
3
0

]
,

[
2
1

]
,

[
1
2

]
,

[
2
2

]]

PMI =

[

0
3

]
, PMI-R

 L1 =

([
1
2

]
,

[
1
3

]
,

[
2
1

]
,

[
2
2

]
,

[
3
0

])

 L2 =

([
3
0

]
,

[
2
1

]
,

[
1
2

]
,

[
2
2

]
,

[
1
3

])

PMI =

[

3
0

]
, PMI-R

 L1 =

([
1
2

]
,

[
1
3

]
,

[
2
1

]
,

[
2
2

])

 L2 =

([
2
1

]
,

[
1
2

]
,

[
2
2

]
,

[
1
3

])

PMI =

[

2
1

]
, PMI-R

 L1 =

([
1
2

]
,

[
1
3

]
,

[
2
2

])

 L2 =

([
1
2

]
,

[
2
2

]
,

[
1
3

])

PMI =

[

1
2

]
, PMI-R

 L1 =

([
2
2

])

 L2 =

([
2
2

])

Fig. 10: Illustration of the run of Algorithm 1 for the graph in Figure 1 with v1 and v6 as leaders.

j 3 2 1 0
k 1 2 1 2 1 2 1 2

c1 = 3 c2 = 3 c1 = 2 c2 = 2 c1 = 1 c2 = 1 c1 = 0 c2 = 0
c2 ∈ {0, 1, 2, 3} c1 ∈ {0, 1, 2, 3} c2 ∈ {0, 1, 2} c1 ∈ {0, 1, 2} c2 ∈ {0, 1} c1 ∈ {0, 1} c2 = 0 c1 = 0

A3,3 = 0 A3,3 = 0 A2,2 = 1 A2,2 = 1 A1,1 = 3 A1,1 = 3 A0,0 = 5 A0,0 = 5
A3,2 = 0 A2,3 = 0 A2,1 = 2 A1,2 = 2 A1,0 = 4 A0,1 = 4
A3,1 = 0 A1,3 = 1 A2,0 = 3 A0,2 = 3
A3,0 = 1 A0,3 = 2

4

3

2

1

0

0 0 0 0 0

0 1 2 3 4

0

0

0

0

1 0 0 0

0

1

2

4

3

2

1

0

0 0 0 0 0

0 1 2 3 4

0

0

0

0

1 0 0 0

0

1

2

1

2

3

3 2

4

3

2

1

0

0 0 0 0 0

0 1 2 3 4

0

0

0

0

1 0 0 0

0

1

2

1

2

3

3 2

4

4 3

4

3

2

1

0

0 0 0 0 0

0 1 2 3 4

0

0

0

0

1 0 0 0

0

1

2

1

2

3

3 2

4

4 3

5

Fig. 11: Illustration of the run of Algorithm 2 for the graph in Figure 1 with leaders V` = {v1, v6}.

13

`1

`20 1 2 3

1

2

3

1

`2

`1 `1

`2

(a) (b) (c) (d)

`2

`1

(e)

`1

`2

(f)

Fig. 12: Illustration of the greedy algorithm.

