Assignment Previewer

Previewer Tools	
Show New Randomization 🧔 Open in Editor 🖨 Print	
Snow: All, None Assignment Score Key Solution Help/Hints Mark Answer Format Tips	
Due: Sat, Oct 3, 2020 12:00 PM CDT Question 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	
 1. ● Question Details LarCalcET7 3.7.011. [40570] The radius <i>r</i> of a circle is increasing at a rate of 7 centimeters per minute. Find the rate of change of the area when 	.72] -
r = 38 centimeters.	
cm ² /min	
2. • Question Details LarCalcET7 3.7.013. [40569	976] -
The radius r of a sphere is increasing at a rate of 3 inches per minute.	
in. ³ /min	
(b) Find the rate of change of the volume when $r = 37$ inches	
in. ³ /min	
 3. • Question Details A ladder 25 feet long is leaning against the wall of a house. The base of the ladder is pulled away from the wall at a rate 	36] - of 2
feet per second.	
25 ft	
2 ft sec	
 (a) what is the velocity of the top of the ladder when the base is given below? 7 feet away from the wall 	
20 feet away from the wall	
ft/sec	
24 feet away from the wall	
(b) Consider the triangle formed by the side of the bouse ladder and the ground. Find the rate at which the area	of
the triangle is changing when the base of the ladder is 20 feet from the wall. ft^2/sec	
(c) Find the rate at which the angle between the ladder and the wall of the beuse is changing when the base of the	
ladder is 20 feet from the wall.	
 4. • Question Details A boat is pulled into a dock by means of a winch 12 feet above the dock of the beat 	'14] -
4 ft / sec	
Not drawn to scale	
(a) The winch pulls in rope at a rate of 4 feet per second. Determine the speed of the boat when there is 37 feet of rope	out.
ft/sec	
What happens to the speed of the boat as it gets closer to the dock?	
The speed of the boatSelect Select	
(b) Suppose the boat is moving at a constant rate of 4 feet per second. Determine the speed at which the winch pulls in	оре
when there is a total of 37 feet of rope out.	•
Tt/sec	
What happens to the speed at which the winch pulls in rope as the boat gets closer to the dock? The speed at which the winch pulls in ropeSelect	
 5. • Question Details A man 6 feet tall walks at a rate of 8 feet per second away from a light that is 15 feet above the ground (see figure). 	29] -
y y	
8	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
(a) When he is 10 feet from the base of the light, at what rate is the tip of his shadow moving?	
(b) When he is 10 feet from the base of the light, at what rate is the length of his shadow changing?	
ft/sec	
6. • Question Details LarCalcET7 3.7.042. [40565	500] -
An airplane flies at an altitude of $y = 7$ miles toward a point directly over an observer (see figure). The speed of the plane 700 miles per bour. Find the rates (in radians per bour) at which the angle of elevation θ is changing when the angle is	e is
$\theta = 30^{\circ}, \theta = 60^{\circ}, \text{ and } \theta = 70^{\circ}.$	
v mi	
θ	
Not drawn to scale	
(a) $\theta = 30^{\circ}$ rad/br	
(b) $\theta = 60^{\circ}$	
rad/hr	
(c) $\theta = 70^{\circ}$ (Round your answer to two decimal places.) rad/hr	
 7. • Question Details At a sand and gravel plant, sand is falling off a conveyor and onto a conical pile at a rate of 14 cubic feet per minute. The 	15] -
diameter of the base of the cone is approximately three times the altitude. At what rate (in ft/min) is the height of the pi changing when the pile is 2 feet high? (<i>Hint:</i> The formula for the volume of a cone is $V = \frac{1}{-\pi}\pi r^2 h$.)	e
$\frac{dh}{dt} = \int ft/min$	
dt '	
8. • Question Details	05] -
A trougn is 12 feet long and 3 feet across the top (see figure). Its ends are isosceles triangles with altitudes of 3 feet.	
² min	

13.	Question Details LarCalcET7 4.1.029.EP. [4497262]
	Consider the following function and closed interval.
	$f(x) = x^3 - \frac{3}{2}x^2, [-1, 4]$
	Find $f'(x)$.
	f'(x) =
	Find the critical numbers of f in $(-1, 4)$ and evaluate f at each critical number. (Order your answers from smallest to largest x , then from smallest to largest y .)
	$(x, y) = \left(\begin{array}{c} \\ \\ \end{array} \right)$
	$(x, y) = \left(\begin{array}{c} \\ \\ \end{array} \right)$
	Evaluate f at each endpoint of $[-1, 4]$.
	left endpoint $(x, y) = ($
	right endpoint $(x, y) = ($
	Find the absolute extrema of the function on the closed interval $[-1, 4]$.
	minimum $(x, y) = ($
	maximum $(x, y) = ($
_	
14.	• Question Details LarCalcET7 4.1.044. [4059271] -
	Find the absolute extrema of the function on the closed interval.
	$y = x^2 - 8 \ln x, [1, 5]$
	minimum $(x, y) = ($
	maximum $(x, y) = ($
15.	Cuestion Details LarCalcET7 4.1.047. [4056800] -
	Find the absolute extrema of the function (if any exist) on each interval. (If an answer does not exist, enter DNE.) f(x) = 4x - 10
	(a) [0, 5]
	minimum $(x, y) = ($
	maximum $(x, y) = \begin{bmatrix} \\ \\ \\ \\ \\ \end{bmatrix}$
	(b) [0, 5)
	minimum $(x, y) = ($
	maximum $(x, y) = \begin{bmatrix} \\ \\ \\ \\ \end{bmatrix}$
	(c) (0, <mark>5</mark>]
	minimum $(x, y) = ($
	maximum (x,y) = (
	(x, y) =
	(d) (0, 5)
	minimum $(x, y) = ($
	maximum (x,y) = (

Submit for Testing