

## Concerns with ASCE 7-10

How will implementing ASCE 7-10 affect the roofing industry?

by Mark S. Graham

The 2010 edition of ASCE 7, "Minimum Design Loads for Buildings and Other Structures," has been published and incorporated into the *International Building Code, 2012 Edition.* ASCE 7-10 contains significant revisions to the standard's previous edition, ASCE 7-05. Several of these changes significantly will affect the wind design of buildings' exterior envelopes, including roof systems. Therefore, you should be familiar with ASCE 7-10 and its changes.

## Comparing standards

In ASCE 7-10, wind-load requirements are provided in Chapters 26-31. In ASCE 7-05, wind-load requirements were provided in Chapter 6.

ASCE 7-10 provides six primary design approaches applicable to roof systems, as well as a wind tunnel testing method, compared with three design methods contained in ASCE 7-05. ASCE 7-10 provides simplified design approaches for roof heights of 160 feet or less; ASCE 7-05 applied the simplified approach to roof heights of only 60 feet or less.

ASCE 7-10 contains three basic wind speed maps based on a 300-year, 700-year and 1,700-year mean recurrence interval, respectively. Specific building occupancy dictates map selection.

ASCE 7-05 (and ASCE 7-02 and ASCE 7-98) used one basic wind speed map based on 50- and 100-year return peak gust wind speeds. ASCE 7-05's calculation methods also included an importance factor and load factor not included in ASCE 7-10.

Comparing ASCE 7-10's basic wind speed maps to ASCE 7-05's map shows the wind speeds of the ASCE 7-10 maps are higher.

| Region                            | Building height | Calculated wind loads<br>(uplift load, Zone 1 [field of roof]) |                   |
|-----------------------------------|-----------------|----------------------------------------------------------------|-------------------|
|                                   |                 | ASCE 7-05                                                      | ASCE 7-10         |
| Kansas City, Kan. <sup>1</sup>    | 30 feet         | 20.4 pounds per<br>square foot (psf)<br>(field)                | 33.3 psf (field)  |
|                                   | 60 feet         | 23.6 psf (field)                                               | 38.6 psf (field)  |
|                                   | 150 feet        | 38.3 psf (field)                                               | 62.7 psf (field)  |
| St. Petersburg, Fla. <sup>2</sup> | 30 feet         | 42.6 psf (field)                                               | 56.7 psf (field)  |
|                                   | 60 feet         | 49.3 psf (field)                                               | 65.6 psf (field)  |
|                                   | 150 feet        | 79.9 psf (field)                                               | 106.6 psf (field) |

Wind-uplift calculation results

<sup>1</sup> For the ASCE 7-05 example for Kansas City, Kan., a basic wind speed of 90 mph, Exposure Category II and an importance factor of 1.0 were used. For the corresponding ASCE 7-10 example, a basic wind speed of 115 mph and Risk Category II were used.

<sup>2</sup> For the ASCE 7-05 example for St. Petersburg, Fla., a basic wind speed of 130 mph, Exposure Category II and an importance factor of 1.0 were used. For the corresponding ASCE 7-10 example, a basic wind speed of 150 mph and Risk Category II were used.

Wind-uplift calculation results for sample buildings comparing ASCE 7-05 with ASCE 7-10

The American Society for Civil Engineers (ASCE) claims these higher values are somewhat offset by changes in ASCE 7-10's windload calculation procedures.

The figure shows a comparison of calculated wind-uplift loads for identical sample buildings located in Kansas City, Kan., and St. Petersburg, Fla. From this example, ASCE 7-10's wind-uplift loads appear to be 33 percent to 64 percent higher than ASCE 7-05's wind-uplift loads.

In addition to changes in wind-uplift loads using ASCE 7-10, the changes in the basic wind speed maps also affect asphalt shingles, which typically are designed based on wind speeds. For example, in Kansas City, asphalt shingles with a Class D (90-mph) rating would be appropriate using ASCE 7-05's basic wind speed map. Using ASCE 7-10's maps, Class F (110 mph) or Class G (120 mph) would be necessary depending on the specific building occupancy.

## Become more aware

Because ASCE 7-10 provides different sometimes significantly different—design wind-uplift loads for buildings' roof systems, roof system designers should become familiar with the standard.

ASCE 7-10 is available from ASCE in print, CD and downloadable electronic file formats at www.asce.org.

To help designers use ASCE 7-10, NRCA is updating its online Roof Wind Designer application, which is accessible at www.roof winddesigner.com. NRCA's updated application will be available later this year. **S** 

**MARK S. GRAHAM** is NRCA's associate executive director of technical services.