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Abstract: A networked system can be made resilient against adversaries and attacks if
the underlying network graph is structurally robust. For instance, to achieve distributed
consensus in the presence of adversaries, the underlying network graph needs to satisfy
certain robustness conditions. A typical approach to making networks structurally robust
is to strategically add extra links between nodes, which might be prohibitively expensive.
In this paper, we propose an alternative way of improving network’s robustness, that is by
considering heterogeneity of nodes. Nodes in a network can be of different types and can
have multiple variants. As a result, different nodes can have disjoint sets of vulnerabilities,
which means that an attacker can only compromise a particular type of nodes by exploiting a
particular vulnerability. We show that, by such a diversification of nodes, attacker’s ability to
change the underlying network structure is significantly reduced. Consequently, even a sparse
network with heterogeneous nodes can exhibit the properties of a structurally robust network.
Using these ideas, we propose a distributed control policy that utilizes heterogeneity in the
network to achieve resilient consensus in adversarial environment. We extend the notion of
(r, s)-robustness to incorporate the diversity of nodes and provide necessary and sufficient
conditions to guarantee resilient distributed consensus in heterogeneous networks. Finally we
study the properties and construction of robust graphs with heterogeneous nodes.
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1. INTRODUCTION

A key aspect of networked and cooperative systems is
that participating agents rely on local interactions to
achieve complex global tasks such as area coverage, net-
work formation and flocking (for instance, see Mesbahi
and Egerstedt (2010); Ren et al. (2005)). The success of
various distributed control algorithms depend on agents
sharing true information with each other and updating
their states according to the predefined update proto-
cols. However, if a small subset of agents do not adhere
to the designed control protocols and share incorrect
information with neighbors, the overall performance of
the system is adversely impacted, and the overall net-
work objective might not be achieved. For instance, in
the distributed consensus problem, which is one of the
most widely studied problem in distributed computing
and network control systems, a single malicious node can
prevent all the other nodes from converging to a com-
mon state, which is the overall network objective. Con-
sequently, resilience of distributed control algorithms to
malicious agents is an important issue.

A typical approach to improving resilience of distributed
algorithms in networks is to exploit the underlying net-
work structure. In fact, it has been shown that highly
connected and structurally robust networks are more re-
silient to adversarial intrusions. For instance, to achieve
distributed consensus, there are algorithms that guaran-
tee consensus in the presence of misbehaving nodes if the

underlying network graph satisfies certain connectivity
and robustness conditions, for instance LeBlanc et al.
(2013); Park and Hutchinson (2017); Tseng and Vaidya
(2015). A common aspect in all these solutions is that
the underlying network must satisfy certain robustness
and connectivity conditions, which ultimately result in
highly dense graphs. Although these solutions perform
well, the high connectivity requirements might limit the
scope of these solutions, especially in sparse networks.
For instance, in many practical scenarios, where the com-
munication links are formed based on proximity, it might
be difficult or prohibitively expensive to establish new
communication links between agents. Thus, an interest-
ing question is how can we improve the resilience of
such distributed algorithms in sparse networks? In other
words, how can we make sparse networks act like highly
connected or robust networks without adding communi-
cations links?

In this paper, we propose an alternative way of improving
network’s robustness, that is by utilizing the notion of
diversity of nodes. In simple words, diversity means that
nodes in a network are of different types and have many
variants. Nodes might be different based on their hard-
ware implementation, software, resources etc. A conse-
quence of having diverse implementations is that nodes
might have disjoint vulnerability sets, and by exploiting
a particular vulnerability, an attacker can only impact the
nodes belonging to that particular type. Thus, diversifica-
tion effectively limits the attacker’s ability to compromise



a large number of nodes within the network, and hence
improves the network’s robustness. We modify a typically
used notion of network robustness (as in LeBlanc et al.
(2013)) to include the effect of nodes’ diversity, and then
utilize it to design a resilient distributed consensus al-
gorithm that guarantees convergence even in sparse net-
works. Our main contributions are:

• We formalize the notion of (r, s)-robustness with color-
ing that takes into account the effect of nodes’ diver-
sity by assigning colors to nodes. Then, we show that
the robustness properties of the graph, even a sparse
one, can be significantly improved by appropriately
introducing diversity of nodes instead of adding ex-
tra edges with in the network.

• We propose a resilient distributed consensus algo-
rithm and determine conditions—in terms of (r, s)-
robustness with coloring—that guarantee consensus
among normal nodes in the presence of adversaries.

• We also discuss the construction of (r, s)-robust
graphs with colors. Finally, we provide simulations
that verify our results.

The concept of diversification of nodes has been em-
ployed previously in computer networks as an effective
security mechanism (e.g. see O’Donnell and Sethu (2004);
Newell et al. (2015); Alarifi and Du (2006)). Apart from
diversification of nodes, an alternative approach to im-
prove the structural robustness is by making few care-
fully chosen nodes as trusted (immune to attacks by hard-
ening), for instance Dziubiński and Goyal (2013); Abbas
et al. (2019). Trusted nodes can help to design distributed
algorithms that achieve resilient consensus (Abbas et al.
(2018)) and resilient estimation (Mitra et al. (2018)), how-
ever, the assumption of guaranteeing the true operation
of trusted nodes at all times is highly optimistic, and may
require large investment to harden such agents.

The rest of the paper is organized as follows: Section 2
provides a network model and formulates the problem.
Section 3 discusses the diversity paradigm and introduces
the notion of (r, s)-robustness with coloring. Section 4
presents a resilient distributed consensus algorithm with
a detailed analysis. Section 5 discusses construction of
robust heterogeneous networks. Section 6 provides simu-
lation results, and finally, Section 7 concludes the paper.

2. NETWORK MODEL AND PROBLEM
FORMULATION

A multi-agent system is modelled by an undirected graph
G(V ,E). The vertex set V corresponds to agents (e.g robots,
sensors), whereas the the edge set E represents the com-
munication model among the agents. An edge between
node i and j shows the information exchange between
nodes and is represented by (i, j) = (j, i). The neighbour-
hood of node i is defined as N (i) = {j ∈ V : (i, j) ∈ V},
and the closed neighborhood is N [i] = N (i) ∪ {i}. We use
the terms nodes, vertices and agents interchangeably. At
any time instant t, each node has a state value denoted
by xi(t) ∈ R. Based on the application, the state value can
be a sensor measurement, position variable, optimization
parameter, opinion or any other quantity of interest. We
assume that all nodes interact synchronously with each

other. Our network is heterogeneous in the sense that
nodes are of different types.

Node types There are multiple types (or variants) of
nodes in the network, and each node belongs to a spe-
cific type. We denote node types by a set of colors Γ =
{C1,C2, · · · ,Cn}. All nodes of type i are assigned color Ci .
Nodes can be of different types based on their hardware
platforms, software, resources, or due to other implemen-
tation or functional features. Moreover, each node in the
network is either normal or adversarial as defined below:

Normal nodes A normal node is the one that always
updates its state according to a predefined update rule
based on the values of nodes in N [i], for instance,

xi(t + 1) = f ({xj (t)}), j ∈N [i]. (1)

Adversarial nodes Adversarial nodes are the ones that
are compromised by an attacker (for instance, by ex-
ploiting vulnerabilities), and therefore, do not follow the
state update rule (1). They can change their state values
arbitrarily. We consider that all adversarial nodes must
belong to the same type, that is, they all have the same
color. Adversarial nodes may feed others with malicious
and misleading information, thus preventing the network
to achieve the required global objective. We note that a
normal node knows the colors of its neighbors, but does
not know the type (color) of adversarial nodes.

Threat models and scopes If an adversary node shares the
same state value at time t with all of its neighbors, then
it is commonly known as a malicious adversary. Similarly,
an adversarial node sending different values to different
nodes in its neighbors at time t is commonly referred to as
the byzantine adversary. The scope of the threat is usually
defined in terms of the number of adversarial nodes in
the network, for instance using F-total and F-local models
LeBlanc et al. (2013). In our case, F-total model means
that there are at most F adversarial nodes (of the same
color) in the network. Similarly, F-local model means that
the neighborhood of any node in the network contains at
most F adversarial nodes of the same color.

2.1 Objective: Resilient Consensus

Here, our objective is to design a distributed control
policy for the normal agents such that agreement and
safety conditions are satisfied in the presence of adversar-
ial agents. Agreement condition requires the asymptotic
convergence of normal nodes state values to a common
value (consensus), whereas safety condition requires that
at all times, the state value of any normal node is within
the interval defined by the maximum and minimum
of the initial values of normal nodes. More precisely,
to achieve resilient consensus, the following conditions
must be satisfied:

(1) As t→∞, xi(t) = xj (t) = x for all normal nodes i,j.
(2) Let M[t] and m[t] denotes the maximum and mini-

mum values of normal nodes at any time step t. For
all normal nodes i ∈ V , m[0] ≤ xi(t) ≤M[0]



3. DIVERSITY FOR IMPROVING NETWORK’S
STRUCTURAL ROBUSTNESS

Heterogeneity in networks has been studied in many dif-
ferent contexts by researchers across various disciplines.
One such aspect is the diversification of nodes, which
broadly means that nodes in a network are of different
types, and have multiple variants. Our goal is to exploit
diversity of nodes to effectively improve the network’s
structural robustness. In other words, we explore if it is
possible to limit an attacker’s ability to change the un-
derlying network structure by having a variety of nodes.
Diversification of nodes can be achieved by employing
different operating systems, software packages, and hard-
ware platforms. Owing to distinct implementations of
such variants, they typically have disjoint exploitation
sets and vulnerabilities. As a result, an attacker cannot
compromise devices of different types (with disjoint vul-
nerabilities) by exploiting a particular vulnerability at a
time. In fact, an attacker can only compromise devices
belonging to the same type or class by exploiting a par-
ticular vulnerability specific to that class. This effectively
limits attackers ability to attack nodes in the network.
Thus, if we assign colors to nodes depending on the par-
ticular type they belong to, then the attacker can only
attack nodes of the same color by exploiting the vulnera-
bilities corresponding to that particular type. Building on
this simple yet key observation, we model the diversity
of nodes to improve network’s robustness in adversarial
environment.

We consider that each node belongs to a specific node
type, which is represented by a color, and each node is
then assigned a unique color.

Definition 1 (Coloring) Let Γ = {C1,C2, . . .Cn} be the set
of colors, then coloring C is the assignment of colors from
Γ to nodes in V , that is

C : V −→ Γ (2)

The number of colors used in the heterogeneous network
is represented by C. For the ease of notation, we denote
the color assigned to node i by Ci .
Definition 2 (Mono-chromatic and Poly-chromatic Sub-
sets) A subset of nodes S ⊆ V where |S | > 1 is mono
chromatic, if all nodes in S have the same color, that is
Ci = Cj , ∀i, j ∈ S. Otherwise S is poly-chromatic.

To measure network robustness and quantify the effect
of adversarial nodes on the overall performance of the
network, we utilize the notion of (r, s) − robustness as in
LeBlanc et al. (2013). This notion has turned out to be
very useful in analyzing the resilience of distributed algo-
rithms, in particular distributed consensus, in adversarial
set-ups. Next, we modify the notion of (r, s)-robustness to
incorporate the diversification of nodes.

Definition 3 (r-valid node) For a positive integer r and a
subset S ⊂ V , a node v ∈ S is an r-valid node if at least one
of the following is satisfied:

(i) v has at least r mono-chromatic neighbors outside of
S (that is, in N (v) \ S).

(ii) v has at least two neighbors with different colors
outside of S.

Definition 4 ((r, s)-robustness with coloring) Let r, s > 1
be two positive integers, and S1 and S2 be non-empty,
disjoint subsets of V . Let X rS1

and X rS2
be the set of r-

valid nodes in S1 and S2 respectively. A graph G(V ,E) is
(r, s)-robust with coloring if at least one of the following is
always satisfied:

(i) |X rS1
| = |S1|.

(ii) |X rS2
| = |S2|.

(iii) (X rS1
∪X rS2

) is mono-chromatic and |X rS1
∪X rS2

| ≥ s.
(iv) (X rS1

∪X rS2
) is poly-chromatic.

The condition (iv) above requires at least two distinct
colored r-valid nodes in S1 ∪ S2. We note that if all nodes
in the network are of the same color, then the above
definition is exactly the notion of (r, s)-robustness defined
in LeBlanc et al. (2013). An illustrations of conditions (iii)
and (iv) are given in Figure 1.

(a) (b)

Fig. 1. Conditions (iii) and (iv) for (r, s)-robustness with coloring.

The main idea here is that a graph that is (r, s)-robust
(with only one color) can be (r ′ , s′)-robust with (multiple)
colors for r ′ > r and s′ > s. In other words, it is possible to
make sparse networks highly robust with colors assigned
appropriately to nodes. We also note that (r, s)-robustness
can only be improved using colors if the underlying
graph is at least (2,2)-robust. Similarly, we define the
notion of r-robustness with coloring, which will be used
to analyze the resilient consensus in the case of F-local
adversary model, as below:

Definition 5 (r-robustness with coloring) A graph is r-
robust with coloring, if for any pair of non-empty disjoint
subset S1,S2 ⊂ V , at least one of the subsets must contain
a node that has at least r-neighbours of any color or
at least three distinct color neighbours outside of its
respective set.

It must be noted that r-robustness can only be improved
using colors if the underlying graph is at least 3-robust.
We also note that the notion of r-robustness with coloring
and (r, s)-robustness with coloring differ with respect to
the validity of node having poly-chromatic neighbour-
hood. Hence (r,1)-robustness with coloring does not cor-
respond to r-robustness with coloring except in networks
with only one type of nodes. We explain the significance
of colors and the notion of (r, s)-robustness with coloring
in the examples below.

3.1 Examples

The graph in Figure 2(a) is (2,2)-robust with one color.
However, if we use three colors such that nodes in the
set {1,2,3,4,5,7} are assigned color C1, node 6 is assigned
C2, and node 8 has color C3, then the graph becomes



(4,4)-robust with three colors. Similarly, the graph in
2(b) is not (3,3)-robust if all the nodes have the same
color. By using three colors, the graph becomes (5,5)-
robust, for instance, if nodes in {1,2,5,6,9} have color C1,
nodes in {7,8,10} have C2 and nodes in {3,4} are assigned
C3. Finally, the graph in Figure 2(c) is 3-robust which
becomes 5-robust with three colors, where nodes in the
sets {1,4,5,6,10,11}, {2,3} and {7,8,9} have colors C1,C2
and C3 respectively.

(a) (b) (c)

Fig. 2. (a) (4,4)-robust graph with colors. (b) (5,5)-robust graph with
colors. (c) 5-robust graph with colors.

These examples emphasize that diversity of nodes in the
network can be used to significantly improve the robust-
ness of the network. A network can exhibit the proper-
ties of highly connected and structurally robust networks
without adding additional communication links. Figure
3 shows the comparison of adding additional links to
the nodes coloring (diversification) approach. It is ob-
served that diversification could improve robustness in
networks, especially in cases where adding communica-
tion links are prohibitively expensive or is not feasible.
Moreover, it is interesting to note that multiple coloring
schemes can be utilized to achieve the desired robustness.

(a) (b) (c)

Fig. 3. (a) A (2,2)-robust graph with one color nodes. (b) Six edges
must be added to make the graph (4,4)-robust. (c) Graph becomes
(4,4)-robust by appropriately introducing three colors.

4. RESILIENT CONSENSUS PROTOCOL WITH
COLORING (RCP-C)

In this section, we present a distributed state update rule
for normal nodes, which we term as Resilient Consensus
Protocol with Coloring (RCP-C) that guarantees consensus
among normal nodes in heterogeneous networks under
certain robustness conditions discussed later. The main
idea is that, at any time step t, node i collects values from
all of its neighbors, but considers only a subset of them
to update its state. We note that every node knows the
colors of its neighbors, but does not know the color of
adversarial nodes. The values of neighbors considered by
i are explained below:

First, a node determines F largest and F smallest values
corresponding to nodes in Ni(t). Let such nodes be de-
noted by Ri(t) and Ri(t) respectively. The node i always

considers values of nodes in Ni(t)\ (Ri(t)∪Ri(t)). Here, F
is a given parameter, and is an upper bound on the num-
ber of adversaries (under the F-total or F-local models).
Second, based on the colors of nodes inRi(t) (respectively
Ri(t)), node i groups values into various subsets. Then, i
ignores all the values in the subset containing the max-
imum (minimum) value, and considers all the values in
the remaining subsets.

Next, we formally present the steps in the algorithm
below, and illustrate in Figure 4.

(1) At each time step t, node i receives state values from
its neighbours Ni(t).

(2) The neighbouring nodes Ni(t) are categorized into
two sets N i(t) and N i(t) based on their state values
as follows:

N i(t) ={l ∈Ni(t) : xl(t) > xi(t)}
N i(t) = {l ∈Ni(t) : xl(t) < xi(t)}

Next, define Ri(t) = N i(t) if |N i(t)| < F. Otherwise,
Ri(t) consists of the F nodes inN i(t) with the highest
state values. Similarly, defineRi(t) =N i(t) if |N i(t)| <
F. Otherwise Ri(t) consists of the F nodes in N i(t)
with the lowest state values. Finally, we define

Ri(t) =Ri(t)∪Ri(t)
(3) Based on the number of colors in the neighborhood

of node i, Ri(t) is divided into different subsets,

{V i1(t),V
i
2(t), · · ·V iC(t)}, where V

i
k(t) contains the val-

ues in Ri(t) corresponding to nodes with color Ck .

Consider V
i
M (t) to be the subset containing the max-

imum value in Ri(t). 1 Moreover, define

Di(t) =Ri(t) \V
i
M (t).

Similarly, divide Ri(t) into subsets, {V i1(t), · · ·V iC(t)},
and consider V im(t) to be the subset containing the
minimum value in Ri(t). Then, define

Di(t) =Ri(t) \V
i
m(t).

Finally, we define

Di(t) =Di(t)∪Di(t).
(4) Each normal node i updates its value according to

the following rule:

xi(t + 1) =
∑

j∈[(Ni [t]\Ri (t)]∪Di (t)
wij (t)xj (t) (3)

Here, wij (t) represents the weight that is assigned to the
value of node j by node i at time step t 2 . An illustration
of various steps of the algorithm is given in Figure 4.

The RCP-C differs from the conventional Weighted Mean
Subsequent Reduced (WMSR) algorithm (LeBlanc et al.
(2013)) in step-3. This step allows the algorithm to utilize
the diversity of nodes in the network and extract useful
information based on the colors (types) of nodes in the
neighbourhood.

1 Ties are broken arbitrarily.
2 ∑n

j=1wij = 1, where wij ≥ α for some 0 < α < 1.



Ri(t)

Ri(t)

Ni[t] \ Ri(t)

V
i
1(t) V

i
C (t)· · ·

V i
1
(t) V i

C
(t)· · ·

V
i
M (t)

xi(t)

F -largest

F -smallest

(a) (b)

V i
m

(t)

[(Ni[t] \ Ri(t)] ∪ Di(t)

(c)

Fig. 4. Illustration of steps followed in RCP-C. (a) Node i computes
F largest (and F smallest) values with respect to node’s own value
(Steps 1 and 2). (b) Based on the colors of neighbors, node i groups
values inRi (t) (respectivelyRi (t)) and ignores all the values in the
group containing the maximum (minimum) value (Step 3). (c) All
remaining values in (a) and (b) are considered in the update rule
of node i (Step 4).

4.1 Analysis

Next, we analyze RCP-C algorithm, and provide neces-
sary and sufficient conditions to guarantee resilient con-
sensus in the presence of adversaries (F-total and F-local
models) in heterogeneous networks. The main results are
stated below.
Theorem 4.1. Let G(V ,E) be a time invariant heteroge-
neous network, in which each node is assigned a color
from the coloring set Γ = {C1,C2, · · · ,Cn}, and each normal
node follows RCP-C. Then,

(1) under the F-total malicious model, resilient asymp-
totic consensus is achieved if and only if the underly-
ing graph topology is (F+1,F+1)-robust with colors.

(2) Similarly, under the F-local malicious model, resilient
asymptotic consensus is achieved if the underlying
graph topology is (2F + 1)-robust with colors.

The proof of Theorem 4.1 is given in Appendix A.

5. CONSTRUCTION AND PROPERTIES OF
HETEROGENEOUS ROBUST GRAPHS

In this section, first we discuss the construction of (r, s)-
robust graphs with colors. Since the exact computation of
(r, s)-robustness is computationally challenging, even if
all the nodes are of the same color (as discussed in Zhang
et al. (2015)), it is useful to develop approaches to grow
networks by adding nodes while preserving robustness.
Theorem 5.1. Let G(V ,E) be an (r, s)-robust graph with
colors. Then the graph G′(V ∪ {unew},E ′) obtained by
adding a new vertex unew to G(V ,E) is also (r, s)-robust
with colors if any of the following holds.

(1) unew is adjacent to at least r + s − 1 mono-chromatic
nodes.

(2) unew is adjacent to at least max(r, s) nodes of color Ck
and one node of any other color Cj , j , k.

(3) unew is adjacent to at least three distinct color nodes.

The proof of Theorem 5.1 is given in Appendix B.

Similarly, it can be shown that the property of r-robustness
with colors remain preserved if a new node is adjacent to
r nodes of any color, or it is adjacent to three distinct color
nodes in the existing graph.

Next, we analyze the robustness conditions that guaran-
tee consensus of normal nodes implementing RCP-C if
all the nodes of the same color are compromised. Here,
note the difference with the earlier attack model in which
at most F nodes of the same color could be adversaries
(under the F-total or F-local set-up). For this, we need to
introduce the notion of mono-chromatic robust graphs.

Definition 6 (Mono-chromatic robust) A graph G(V ,E)
with coloring C is mono-chromatic robust, if for any pair
of non-empty disjoint subset S1,S2 ⊂ V , at least one of
the subsets contains a node that has at least three distinct
color neighbours outside of its respective set.

Since every normal node has neighbors with multiple col-
ors in a mono-chromatic robust graph, it always considers
a value from a normal neighbor to update its state. A node
will always have normal neighbor as all the adversarial
nodes are of the same color. This gives us the following:
Theorem 5.2. Under RCP-C all normal nodes will reach
resilient asymptotic consensus in the presence of any
number of malicious adversaries of the same color if the
underlying graph topology is mono-chromatic robust.

Proof of Theorem 5.2 is given in Appendix B.

Further, we analyze the requirement on minimum num-
ber of colors necessary to achieve mono-chromatic ro-
bust graphs and provide sharp bounds for some spe-
cific graph classes that can be made mono-chromatic ro-
bust by a careful assignment of colors to nodes. These
graph classes include F-elemental graphs (discussed in
Guerrero-Bonilla et al. (2017)) that are inherently 2F + 1-
robust and 3-robust graphs with certain conditions on the
neighbourhood of each node.
Theorem 5.3. Given a graph G(V ,E) with coloring C, at
least five colors (C = 5) are required to make the graph
mono-chromatic robust. For F-elemental graphs (F > 2)
the bound is sharp.

Proof of Theorem 5.3 is given in Appendix B.
Theorem 5.4. A 3-robust graph in which at least three
nodes in the neighbourhood of each vertex are pairwise
adjacent, then the number of colors required to make
such G(V ,E) mono-chromatic robust is upper bounded by
the chromatic number 3 of G(V ,E).

Proof of Theorem 5.4 is given in Appendix B.

Based on the above results, a mono-chromatic robust
graph of n nodes can be constructed by starting with a
complete graph on five nodes (K5) graph and assigning
each vertex a unique color. New nodes are added in the
network by connecting them with three distinct color
nodes in the existing network.

3 Minimum number of colors assigned to nodes such that no two
adjacent nodes have the same color.



6. SIMULATION RESULTS

To validate our proposed RCP-C algorithm in hetero-
geneous networks, we provide simulations for both F-
total and F-local malicious models and compare our ap-
proach with existing WMSR algorithm in homogeneous
networks. Under the F-total malicious model, we con-
sider the network shown in Figure 5(a) which is (2,2)-
robust with one color. It means only one malicious node
can be tolerated (using WMSR algorithm). Thus, if nodes
3,7,8 are malicious, consensus is not achieved as shown
in Figure 5(a). However, by an appropriate assignment
of colors to nodes (as shown in Figure 5(b)), the same
network becomes (4,4)-robust with three colors and can
handle up to three malicious nodes. If normal nodes im-
plement RCP-C, consensus is guaranteed even with an
attack of three malicious nodes as illustrated in Figure
5(b). Similarly, the network considered for F-local model
simulation is shown in Figure 5(c). The network is 3-
robust with one color and can tolerate at most 1 malicious
node in the neighbourhood of any node. If we consider
F = 2, and nodes 2 and 3 to be malicious, consensus is
not achieved under WMSR algorithm. However, the same
network becomes 5-robust with three colors as shown in
Figure 5(d). Under RCP-C, normal nodes achieve resilient
asymptotic consensus as illustrated in Figure 5(d).

(a) F-total model (WMSR) (b) F-total model (RCP-C)

(c) F-local model (WMSR) (d) F-local model (RCP-C)

Fig. 5. Comparison of WMSR and RCP-C under the F-total and F-local
malicious models.

7. CONCLUSIONS

This paper proposed an alternative way to improve struc-
tural robustness in networks by incorporating the diver-
sification of nodes. We showed that the attacker’s ability
to change the underlying network could be significantly
reduced by deploying diverse nodes. This could effec-
tively lead to a higher robustness in networks, even if
they are sparse originally. To account for the robustness of
heterogeneous network, we proposed the notion of (r, s)-
robustness with coloring. We studied the resilient consen-
sus problem and proposed a distributed algorithm that
took into account the diversity of nodes in the network
and provided conditions in terms of (r, s)-robustness with
coloring to guarantee consensus in the presence of adver-
saries. In future, we would like to generalize the attack
model by allowing multiple types of nodes to be attacked.
Moreover, assigning appropriate types (colors) to nodes
to achieve desired robustness is computationally chal-
lenging, and we aim to provide efficient algorithms for
this problem.
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Appendix A. PROOFS

A.1 Proof of Theorem 4.1 (a)

In order to prove the theorem, we use similar arguments
used in the proof of Theorem 1 in LeBlanc et al. (2013).

Proof : (Necessity) Under the F-total malicious model (F +
1,F + 1)-robustness with coloring is a necessary condition.

Let us consider a graph G that is not (F + 1,F + 1)-robust
with coloring. Hence there would exist some non-empty
disjoint subsets S1 and S2 which do not satisfy any of the
conditions in Definition 4. Therefore, there would be at
most F nodes in S1∪S2 that have two distinct color nodes
or F+1 neighbours outside of their respective set (|X F+1

S1
∪

X F+1
S2
| ≤ F). Moreover, we also know that (X F+1

S1
∪ X F+1

S2
)

is mono-chromatic otherwise condition (iv) in Definition
4 would be satisfied. As there can be F adversaries in
the network under the F-total model, we assume that
all valid nodes (X F+1

S1
∪ X F+1

S2
) are malicious. Moreover,

we know that none of the conditions in Definition 4 is
satisfied by G. Hence for some i ∈ {1,2} |X F+1

Si
| < |Si |, this

implies that there would exist at least one normal node
in both S1 and S2, say x1 and x2, that has at most F
mono-chromatic neighbours outside of its respective set.
Now consider that, all nodes in S1 have state values a
and state value in S2 be b, where b > a. The state values
of all nodes in V \ (S1 ∪ S2) are assigned values in the
interval (a,b). Malicious nodes keep their values constant
throughout. Both x1 and x2 ignores all values (F or less)
outside of their respective set. Hence consensus would
not be achieved.

(Sufficiency) (F + 1,F + 1)-robustness with coloring is a
sufficient condition under F-total malicious model.

Let A denotes the adversarial nodes in the network, then
N = V \ A corresponds to the set of normal nodes. We
define M[t] = maxi∈N xi(t) and m[t] = mini∈N xi(t). We
know that all nodes in (Ni[t]\Ri(t))∪Di(t) contains values
in the interval [m[t],M[t]] and the update rule is defined
as the convex combination of values in the interval. We
deduce that m[t] and M[t] are monotone and bounded
functions of t and thus both have some limits denoted by
Am and AM respectively. In order to achieve consensus
among the normal agents we need to show that AM = Am.
We will assume that AM > Am and then show that such an
assumption leads to contradiction allowing us to prove
AM = Am. Let AM > Am and define a constant εo such
that AM − εo > Am + εo. At any time instant t and for any
positive number εi , we define

SM (t,εi) = {j ∈ V : xj (t) > AM − εi} (A.1)

Sm(t,εi) = {j ∈ V : xj (t) < Am + εi} (A.2)

SM (t,εi) have all nodes whose state values are greater
than AM − εi . Similarly Sm(t,εi) have nodes with values
less than Am + εi . It must be noted that SM (t,εi) and
Sm(t,εi) contain both the normal and malicious nodes.
Now let X F+1

M (t,εi) ⊆ SM (t,εi) be a subset of valid nodes,
that is, each node inX F+1

M (t,εi) have F+1 mono-chromatic
neighbours or two distinct color neighbours outside of
SM (t,εi). Similarly X F+1

m (t,εi) ⊆ Sm(t,εi) be the subset of

valid nodes in Sm(t,εi).
Now fix ε < αN

1−αN where N = |N | denotes total number
of normal nodes and here εo > ε > 0. From the definition
of convergence, we know that there exist a tε such that
for any time instant t > tε, M[t] and m[t] are bounded by
AM + ε and Am − ε.
Consider non-empty disjoint subsets SM (tε,εo) and Sm(tε,εo).
From the definition of εo, we note that SM (tε,εo) and
Sm(tε,εo) are disjoint. Since the graph G is (F + 1,F + 1)-
robust with coloring and there can be at most F adver-
saries in the network. Hence there would always exist one
normal valid node in XM (tε,εo)∪Xm(tε,εo). Without loss
of generality, we assume that such a valid node (say i) is
in XM (tε,εo)∩N . Next, we show that

xi(tε + 1) ≤ AM − ε1, ε1 < εo (A.3)

In order to compute xi(tε + 1), node i consider values of
nodes in the set (N [k] \Ri(t))∪Di(t) (as defined in RCP-
C Algorithm). As the node i has at least F + 1 mono-
chromatic nodes or two distinct color neighbours outside
of the set with values less than its own. Thus node i would
always consider a value lesser than its own while comput-
ing xi(tε + 1). The maximum value of such a neighbour is
AM − εo as it lies in V \ SM (tε,εo). The maximum value
that node i, receives from its neighbours in SM (tε,εo) is
M[tε]. Since the update rule is the convex combination of
the state values of the neighbours and each combination
coefficient is lower bounded by α. In the worst case, as-
signing the maximum weight to the highest value we get

xi(tε + 1) ≤ (1−α)M(tε) +α(AM − εo)
≤ (1−α)(AM + ε) +α(AM − εo)

≤ AM −αεo + (1−α)ε

= AM − ε1

where ε1 = αεo − (1 − α)ε and ε1 < εo. We can repeat the
same steps if node i ∈ X F+1

m . Hence

xi(tε + 1) ≥ Am + ε1 (A.4)

As a consequence of the A.3 and A.4 at least one of the
following is true

• The number of normal nodes in SM (t + 1,ε1)∩N is
strictly lesser than the normal nodes in SM (t,εo)∩N
e.g |SM (t + 1,ε1)∩N | < |SM (t,εo)∩N |.

• |Sm(t + 1,ε1)∩N | < |Sm(t,εo)∩N |.
Note that SM (t + 1,ε1) and Sm(t + 1,ε1) are disjoint as
ε1 < εo. Next, we define εj = εj−1 − (1 −α)ε for any j ≥ 1.
Note that εj < εj−1. Then for any time step tε + j, the
above analysis can be repeated as long as SM (tε + j,εj )
and Sm(tε+ j,εj ) contain normal nodes. Since the number
of normal nodes are finite, there exist a time step tε + k
such that at least one of the following is always satisfied:

(a) SM (tε + k,εk) = ∅, which implies that the maximum
value of any normal node at time step tε + k is upper
bounded by AM − εk , or

(b) Sm(tε + k,εk) = ∅, which implies that the minimum
value of the normal nodes is lower bounded by Am +
εk .

If εk > 0, then (a) implies a contradiction to the fact that
M[t] converges monotonically to AM and (b) contradicts



to the fact that the m[t] converges monotonically to Am.
Next, we show that εk > 0.

εk = αεk−1 − (1−α)ε = αkεo − (1−αk)ε
≥ αNεo − (1−αN )ε (A.5)

Since ε < αN

1−αN , we get εk > 0 which gives the desired
contradiction, thus proving that AM = Am.

A.2 Proof of Theorem 4.1 (b)

Proof : (Sufficiency) 2F + 1-robustness with coloring is a
sufficient condition under the F-local malicious model.
We can construct the sufficiency proof using the same
approach and arguments as followed in proof of the
Theorem 4.1 (a). Recall N denotes the set of all normal
nodes. For F-Local malicious model, it must be noted
that when considering the non-empty disjoint subsets
SM (tε,εo) ∩ N and Sm(tε,εo) ∩ N defined in the proof
of Theorem 4.1 (a) (the main difference here is that we
are considering only normal nodes), at least one of the
set contains a node that has at least 2F + 1 or three
distinct color neighbours outside of its respective set
as the underlying graph is 2F + 1-robust with coloring.
Recall that at most F (or less) monochromatic nodes can
be compromised, thus there would exist a normal node in
(SM (tε,εo)∩N ∪Sm(tε,εo)∩N ) that will utilize the value
of at least one normal node value outside of SM (tε,εo) or
Sm(tε,εo) sets.

Appendix B. PROOFS

B.1 Proof of Theorem 5.1

Proof : Let S
′
1 and S

′
2 be any two non-empty disjoint

subsets in G′ . For such S
′
i where i ∈ {1,2} , there can be

three cases (a) unew < S
′
i (b) {unew} = S

′
i (c) unew ∈ S

′
i .

In the first case, since G is (r, s)-robust with coloring,
hence at least one of the condition in Definition 4 is
satisfied directly by S

′
1 and S

′
2 in G′ .

In case (b), under all three clauses of the theorem unew
would be a valid node hence condition (i) or (ii) is satis-
fied in Definition 4.
In (c), we can assume that unew ∈ S

′
2 without loss of gen-

erality. Let S1 = S
′
1 and S2 = S

′
2 \ {unew}. As the graph G

is (r, s)-robust with coloring hence the subset S1 and S2
satisfy at least one of the conditions in Definition 4. If any
of the conditions among (i), (iii) or (iv) is satisfied by S1
and S2 in graph G then same condition would be satisfied
by S

′
1 and S

′
2 in G′ .

Now, let us assume condition (ii) is satisfied among all
conditions in G which is |X rS2

| = |S2|. If |X rS2
| is poly-

chromatic then (iv) gets satisfied so we can assume that
S2 consist of mono-chromatic valid nodes only. Moreover,
since only condition (ii) is satisfied among all conditions
in Definition 4 hence |X rS1

|+ |X rS2
| < s and |X rS2

| = |S2|. This
implies that S2 can have at most s − 1 nodes.
Under the clause (i), if unew in G

′
is connected to at least

r+s−1 mono-chromatic nodes, then it must be connected
to at least r mono-chromatic nodes outside S

′
2. Similarly

under the clause (ii) of the theorem, if unew ∈ G
′

is con-
nected to max(r, s) nodes of Ck and one node of Cj , then
unew would be connected to at least r mono-chromatic, or
two distinct colors neighbours outside of S

′
2 making unew

a valid node. Under the clause (iii) of the theorem, if unew
in G′ is connected to three distinct color nodes, it would
always be connected to at least two distinct colors nodes
outside of S

′
2.

B.2 Proof of Theorem 5.2

Proof : The theorem can be proved using the same ap-
proach and arguments as followed in proof of the The-
orem 4.1 (a). Note that N denotes the set of all nor-
mal nodes. For mono-chromatic robust graphs, it must
be noted that when considering the non-empty disjoint
subsets SM (tε,εo) ∩N and Sm(tε,εo) ∩N defined in the
proof of Theorem 4.1 (a), at least one of the set contains
a node that has at least three distinct color neighbours
outside of its respective set. As nodes of only one color
are compromised, thus there would exist a normal node
in (SM (tε,εo)∩N∪Sm(tε,εo)∩N ) that will utilize the value
of at least one normal node value outside of SM (tε,εo) or
Sm(tε,εo) sets.

B.3 Proof of Theorem 5.3

Proof : Let G(V ,E) be a colored r-robust graph with four
colors (C = 4). Let S1 and S2 be any arbitrary non-empty
disjoint subsets. Without loss of generality, for some i ∈
{1,2} and j ∈ {3,4}, we consider S1 = {l ∈ V : C(l) ∈
Ci} and S2 = {l ∈ V : C(l) ∈ Cj }. Then, there does not
exist any node in S1 or S2 which has three distinct color
neighbours outside of its respective set. Hence mono-
chromatic robustness can never be achieved with lesser
than five colors in the network.

Definition 7 (F-elemental graph) An F-elemental graph
is a graph with |V | = 4F + 1 nodes that is r-robust with
r = 2F + 1 for some positive integer value of F.

(Sharpness of bound for F-elemental graphs) Given an F-
elemental G(V ,E) graph (F > 2), the number of vertices
are |V | = 4F + 1 and there exist a set V ′ ⊆ V (|V ′ | = 2F)
such that all nodes in V ′ are connected to all vertices in V
(Guerrero-Bonilla et al., 2017, Proposition 1). Assign five
distinct colors to nodes in V ′ . Then there can be two cases

• For some i ∈ {1,2}, Si ∩V
′

= ∅: Since each node in V ′

is connected to all vertices in V . Then each node in
Si is adjacent to five distinct color nodes outside of
their respective set allowing all of them to meet the
condition in Definition 5.

• For some i ∈ {1,2}, Si ∩V
′
, ∅: Without loss of gener-

ality, we can assume that S1 ∩V
′
, ∅. If S1 = V ′ then

all nodes in S2 have five distinct color neighbours.
If |S1 ∩ V

′ | < |S1| then there would exist at least one
node in S1 or S2 that has at least three distinct color
nodes outside of its respective sets.



B.4 Proof of Theorem 5.4

Proof : For a graph Gwhich is 3-robust (all nodes are of the
same color), for every pair of non-empty disjoint subsets
S1 and S2 there exists a node v in S1 ∪ S2 that has at least
three neighbours outside of its respective set. Moreover,
each vertex in G has at least three neighbours that are
pair wise adjacent. By assigning color to the nodes in
the graph such that no two adjacent nodes share the
same color (proper coloring), v would always have three
distinct color neighbours making G a mono-chromatic
robust graph.


