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Abstract—Network discovery assumes a essential job in the 
investigation of the auxiliary highlights of complex systems. 

Since on the web systems become progressively expansive and 
complex after some time, the strategies customarily utilized for 

network revelation can't proficiently handle expansive scale 

arrange information. This presents the vital issue of how to 

successfully and productively find huge networks from complex 

systems. In this investigation, we propose a quick parallel 

network disclosure demonstrate called picas (a parallel network 

disclosure calculation dependent on rough enhancement), 

which incorporates two new strategies: (1) Mountain model, 

which works by using diagram hypothesis to surmised the 

choice of hubs required for combining, and (2) Landslide 

calculation, which is utilized to refresh the measured quality 

augmentation dependent on the approximated enhancement. 
Furthermore, the GraphX circulation registering system is 

utilized so as to accomplish parallel network discovery over 

complex systems. In the proposed model, grouping on seclusion 

is used to instate the Mountain show just as to register the 

heaviness of each edge in the systems. The connections among 

the networks are then improved by applying the Landslide 

calculation, which enables us to acquire the network structures 

of the complex systems. Broad analyses were led on genuine 

and manufactured complex system datasets, and the outcomes 

exhibit that the proposed calculation can beat the cutting-edge 

strategies, in adequacy and proficiency, when attempting to take 
care of the issue of network recognition. In addition, we 

decisively demonstrate that general time execution 

approximates to multiple times quicker than comparable 

methodologies. Viably our outcomes recommend another 

worldview for extensive scale network revelation of complex 

systems. 

 

Index Terms—Community discovery, complex networks, 

distributed computing. 

 

I. INTRODUCTION 

 Complex systems have turned out to be omnipresent in our 
day by day life, Such models incorporate online in informal 

organizations, distribution reference systems, client exchange 

systems, etc. Because of the perplexing connections among 

hubs, and the huge cardinality of systems, these systems are 
alluded to as "intricate system" [1]. Network structure, which 

starts from complex systems, alludes to a gathering of hubs 

which are collected into firmly associated gatherings, where 

there is a high thickness of inside gathering edges and a lower 

thickness of between-amass edges [2]. It is vital for the 

motivations behind research to comprehend the auxiliary 

highlights, the development of networks, the engendering of 

data, focal points proposal, and other huge highlights. 

Network disclosure is a standout amongst the most imperative 

and principal errands in system examination and has 

applications in practical forecast in Biology [3]. Early research 

in network revelation for complex systems centers essentially 
around little systems with basic structures, this is because of 

the computational troubles of putting away and investigating 

extensive scale hub and edge data. 

 Our research is motivated by the following observations: (1) 
as social networks become more and more embedded in our 

everyday lives, this intuitively has led to a critical mass of 

users, e.g., there are 13.5 billions users being active in 

Facebook each month [4]. With the growth of social networks, 

traditional community detection algorithms do not scale to the 

large number of users, the complex relationships between 

them or the rapid flux their relationships. (2) These 
increasingly complex and undetected features of large social 

networks represent missed opportunities for analyzing, 

correlating, and ultimately predicting the behavior of the users 

for the purposes of marketing, advertisement and internet 

public opinion control. (3) The study of the inner and intra 

structural features of communities in large-scale complex 

networks has direct practical theoretical applications. And 

such applications necessitate efficient and accurate algorithms. 

(4) There exists some parallelized community detection 

algorithm proposed to process large-scale data. 
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II. RELATED WORK 

 With the expanded prominence and pervasiveness of 

complex systems, the territory of research including the 

examination of auxiliary highlights inside these systems 

proceeds to earn more consideration. There have been a few 
fundamental network discovery calculations proposed since 

the origin of this territory of research, e.g., Newman et al. 

proposed the GN calculation [2], the Fast-Newman calculation 

in view of the possibility of measured quality enhancement [6] 

and the CNM calculation [7]. These techniques have been 

generally utilized in recognizing networks in systems [8]. All 

together to improve the effectiveness of network location, 

Quiet al. [9] divided the networks utilizing the ghastly cut 

technique, and the Laplacian grid. Runa et al. [10] introduced 

a basic methodology of consolidating substance and 

connection data in diagram structures. Wu et al. [11] proposed 

a question one-sided hub weighting plan to decrease the 
unimportant sub-charts and quicken network discovery. All 

the more as of late, Zhang et al. [12] prescribed upgrades to 

the CNM calculation by improving the refresh procedure of 

measured quality. Prat-Perez et al. [13] proposed the weighted 

network bunching model, which takes the triangle, rather than 

the edge, as the insignificant auxiliary theme, which shows the 

nearness of a solid connection in a chart. Ferreira et al. [14] 

proposed a technique which works to change a lot of time 

arrangement information into a practically identical arrange 

utilizing different separation capacities, so as to recognize 

gatherings of unequivocally associated hubs in complex 
systems. Shan et al. [15] planned a covering network look 

system for gathering questions. Huang et al. [16] defined the 

network location as a issue of finding the nearest bracket 

network. Li et al. [17] proposed a system to decide networks 

in a multi-dimensional system dependent on the likelihood 

dispersion of each measurement figured from the system. To 

make the procedure of network revelation more powerful, 

Mahmood et al. [18] proposed an inadequate unearthly 

bunching calculation dependent on ℓ1 standard limitations to 

discover a network mark for every hub. Whang et al. [19] 

proposed a proficient covering network identification 

calculation utilizing a seed development approach. The 
previously mentioned strategies for network recognition have 

demonstrated fundamental in progressing both the zones of 

research and application, anyway they don't address a basic 

issue, of which we endeavor to address in this examination, of 

dealing with huge scale complex system information in a 

viable and productive way. Dinette al. [20] proposed an added 

substance guess calculation for measured quality bunching 

with a consistent factor and they demonstrated that a network 

structure with particularity subjective near greatest measured 

quality might bear no likeness to the ideal network structure of 

most extreme measured quality. Shiokawa et al. [21] proposed 

a quick particularity based diagram bunching calculation by 

gradually pruning superfluous vertices/edges and advancing 

the request of vertex choices. It requires as it were 156 

seconds on a chart with 100 million hubs and 1 billion edges. 

In an unexpected way, picasis a parallel calculation by 

applying two techniques, i.e., the Mountain Model and the 
Landslide technique, which can help get high recognition 

precision with the certification of good runtime execution. So 

as to address the trouble of preparing system information, 

which for the reasons for this exploration can be thought about 

Big Data, parallel calculations were used. Prat-P'erez et al. 

[22] proposed a high caliber, adaptable and parallel network 

location approach for substantial diagrams. Be that as it may, 

because of specific confinements, it isn't suitable for 

distinguishing covering networks. Wickramarachchi et al. [5] 

introduced a productive way to deal with identifying networks 

in huge scale diagrams by improving the consecutive Louvain 

calculation and parallelizing it on the MPI structure. Viramas 
et al. [23] proposed an inner circle permeation calculation 

(CMP) in light of MapReduce to meet the fundamental 

prerequisites of memory, CPU and I/O activities. The 

outcomes exhibit that when the number of hubs are more 

noteworthy than forty thousand, the execution time surpasses 

1,000 seconds. As of late, Staudt et al. [24] parallelized the 

Louvain strategy to effectively find networks in enormous 

systems. Moon et al. [25] used vertex-driven with MapReduce 

and Graph Chi to recognize extensive charts in informal 

communities. Lu et al. [26] proposed a conductance-based 

network discovery calculation for weighted systems, and 
structured a productive information sending calculation for 

defer tolerant systems. Qiao et al. [27] proposed a parallel 

calculation for identifying networks in complex systems 

dependent on particularity, and structured new network union 

and refresh techniques. The parallel diagram grouping models 

can be connected to identify networks. Meyerhenke et al. [28] 

proposed a powerful parallel method to segment substantial 

charts of complex systems. Takahashi et al. [29] proposed a 

novel calculation SCAN-XP that performs over Intel Xeon Phi 

to bunch huge scale diagrams. In [30], an intelligent and 

adaptable diagram bunching calculation on multi-center CPUs 

was introduced. Evade et al. [31] parallelized huge numbers of 
diagram grouping calculations in the mutual memory 

multicore setting. Be that as it may, the proposed diagram 

bunching models can't be straightly connected to distinguish 

networks due to complex connections between hubs in 

complex systems. So as to address these key difficulties, the 

proficient disclosure of networks, and in a convenient what's 

more, proficient way, in this exploration we propose a novel 

network recognition show dependent on estimated 

streamlining, which is parallelized on the GraphX system [32] 

to guarantee quick calculation. Whenever analyzed with 

customary calculations, and parallel calculations, we exhibit 
that there is a reasonable and quantifiable increment in time 

execution. Also, forecast precision for this strategy is kept up 

at an extremely abnormal state. 
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III. EXISTING SYSTEM 

 Early research in community discovery for complex 

networks focuses primarily on small networks with simple 

structures; this is due to the computational difficulties of 

storing and analyzing large-scale node and edge information. 
There exists some parallelized community detection algorithm 

proposed to process large-scale data. The work done by 

Wickramarachchi et al.  Show that they can achieve fivefold 

performance improvements when using 128 parallel 

processors, but in turn requires even more resources to process 

larger networks 

A) Disadvantages 

 As social networks become more and more embedded in 
our everyday lives, this intuitively has led to a critical mass of 

users, e.g., there are 13.5 billions users being active in 

Facebook each month . With the growth of social networks, 

traditional community detection algorithms do not scale to the 
large number of users, the complex relationships. However, 

due to certain limitations in previous systems, it is not 

appropriate for detecting overlapping communities. 

 

IV. PROPOSED SYSTEM  

We propose Picasso, which is a new community detection 

model that is much faster than the most state of the art 

solutions, and improves the quality of community detection. 

Utilize graph theory for approximate optimization techniques 

in discovering large communities in complex networks. This is 

accomplished by taking into full consideration the structural 

features of communities, and in turn proposing new concepts 

and algorithms including: 

1) the boundary nodes,  

2)  the chain group for storing the weight of nodes,  

3) the Mountain model for choosing nodes to combine, and  

4) the Landslide algorithm used for updating the weights of 

the chain-group structure and the nodes in communities of the 

entire network. With the goal of efficiently processing large-

scale network data, we propose Picasso that is a parallel 

community discovery algorithm integrating the Mountain 

model and Landslide algorithm. 

A) Advantages 

Picaso can handle big complex networks, while traditional 

serial detection algorithms do not work. We have presented a 

parallel community discovery algorithm for large-scale 

complex networks, named picaso. Picaso functions by 

integrating multiple innovations, which include the Mountain 

model, a new update strategy called the Landslide algorithm, 

which is based on approximate optimization techniques and 

graph theory. 

 

V. PARAMETER STANDARDIZATION 

In a trial to form the comparison between the assorted 

algorithms utilized in the experiments, the parameter λ used in 

the Mountain model was adjusted consequently. Picaso 

chooses chain teams at the highest of Mountain model to 
roughly merge into communities by victimisation the 

parameter λ, so the choice of λ becomes integral to 

performance. during this set of experiments, it are observed 

varied the worth of λ for picaso will have a distinct effects on 

the district attorney and execution time. The results of this 

experimentation square measure. 

 

 

 
 According to Fig. four λ will increase, the prosecuting 

officer of picaso gradually decreases beneath completely 
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different datasets. In distinction, execution time seems to be 

reducing within the method. This is as a result of picaso 

chooses chain teams to merge that have boundary nodes that 

minimize discrimination among communities. particularly, 

once the peak of the Mountain model becomes low, picaso 

might opt for too several chain groups to merge, that may 
increase the possibility that associate degree incorrect 

community partition. once λ grows, there are more chain 

teams to be hand-picked, so the procedure resources are often 

totally utilised, and also the range of merging operations are 

often greatly reduced. 

 

VI. THE MOUNTAIN MODEL 

A) Basic Concepts: 

 A complex network is a graph with non-trivial 
topological features, it has the following properties: self-

organization, self-similarity, small world, and scale-free. 

Fig. 1 is an example of a network with twelve nodes and 

twenty three edges derived from a complex network. 

 

Fig: Example of a sample network 

 Definition one (Chain Group). a sequence cluster is denoted 

byCG=, wherever s is that the begin node, t is that the finish 

node,and r is that the weight between s and t, or the relation 

kind.It is value to notice that we tend to use the chain-group 

structureto store the elementary network knowledge in 

GraphX.Definition a pair of (Boundary Node). Given 

thatBN=vi ∈ C, vj∈ C′, evivj∈ E representsthe set of boundary 

nodes, where vi, vj area unit distinctnodes from the 
communities C and C′, associated evivj is anedge in the sting 

set E. 

 
 

 Given that relationships between communities isrelatively 

troublesome to spot from the worldwide perspective, itfollows 

that Equation one is additionally troublesome to calculate. 

Newmanproposed a simplified equation as shown below [2]. 

 

 

B) The Mountain Model 

 The Mountain model is integral in this research, and is 

based on modularity, approximate optimization, and grap 

theory.  

 

  It sorts the chain groups by the weights of edges. Owing to 
the feature of community structures, some chain groups in a 

community may fall down while surrounding community may 

rise like mountains. Resolutely, a suitable number of chain 

groups at the top of mountains are chosen to form new 

communities. Resolutely, a suitable number of chain groups at 

the top of mountains are chosen to form new communities. 

Fig: Example of the Mountain model. 

C) Parallel Community Detection Model 

 When the number of nodes and edges in the networks 

remain unchanged, after the community merging operation, 

the number of edges in the new community equals the sum of 

the edges in and between the two merged communities. 

Moreover, the number of edges between the new community 

and the other communities equals the sum of edges between 
the merged communities and other communities.. 
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The picaso algorithm is designed on the GraphX 

framework, but it cannot support the attributes of edges and 

nodes. In order to handle this problem, we store the node set V 

using a tuple (v, c) in picaso, where v represents the index of a 

node, and c is the index of the community which v belongsto.

 
 

 In addition, picaso stores the edge set E using a triplet (s, 

t,ΔQ), where s is the start node, t is the end node. The chain 

group can be obtained by computing the Cartesianproduct of 

V and E. The essential steps of the picaso algorithm include: 

(1) parameter initialization, (2) building the Mountain model, 

(3) merging the nodes and updating, and (4) community 

generation. Note that, in the first step, the network data is 

loaded and stored in memory, duplicated edges areeliminated, 

and the indexes of nodes are reordered.

 

D) Parameter Initialization 

 

In this phase, the task is to calculate the parameters for 

modularity incrementation w.r.t. chain groups, i.e., the number 

of nodes n , the degree of each node denoted by 

d, the number of edges m, and ΔQ. 

Algorithm 1 Parameter initialization 

Input: The preprocessed network N. 

Output: A graph G. 

1. G=graph Loader(D); 

2. m=get Edges(G); 

3. n=getNodes(G); 

4. disseminate m to each machine; 

5. for each node i∈ V do 

6.    di=getDegree(G, i); 

7.    cId=i; 

8. T=V × E; 

9. for each t ∈ T do 

10. ΔQij = 2 ∗( eij/2m− did/ 4m2 ); 

11. output G; 

As shown in Algorithm 1, the first step is to load the 

network data into memory (line 1), then calculate the number 

of edges m (line 2) and the number of nodes n (line 3) and 

disseminate m to each machine (line 4). The second step is to 

compute the degree of each node (lines 5-6), and specifies the 

node’s community index to be its node index (line 7). The 

third step is to form chain groups by using the Cartesian 

product of V and E (line 8), which determines ΔQ w.r.t the 

chain group (lines 9-10). Lastly, the new graphG is outputted 

(line 11).   

E) Constructing the Mountain model 

 

After initializing the chain group, the Mountain model is 

constructed, which works to sort the chain groups by their ΔQ. 

According to Definition 5 and Corollary 1, it is known that the 

peak of each mountain is mutually-exclusive, thus suitable 

chain groups are chosen for merging at the top ofthe 

mountains to form smaller communities with an acceptable λ 

parameter. The new index is allocated to the newcommunity. 

The algorithm is given below: 

 

Algorithm 2 Mountain model construction 

Input: The graph G=(V,E). 

Output: A preliminarily dividing community set C = 

(C1,C2,C3, ...). 

1. H=getHeight(G); 

2. λ=2 ∗ |E|/|C|; 

3. CG=V × E; 

4. for each t ∈ CG do 

5. if getAttr(t)≥ ΔQλ then 

6. V T=insert(t); 

7. for V T ̸= ∅ do 

8. n=n + 1; 

9. S′=connectComponent(S); 

10. C=insert(n, S′); 

11. S=remove(S, S′); 

12. output C; 

The basic idea of Algorithm 2 is given as follows: 

(1) Obtain the maximum height of mountains based on 

Definition 4 (line 1), compute the parameter λ, and determine 

the validity of λ (line2). 

(2) Obtain the chain group set CG by the taking Cartesian 

product of V and E (line 3). 

(3) Choose the chain groups in CG where ΔQ ≥ ΔQΛ,and 

form a new set S (lines 4-6). 
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(4) Compute the connect component of S, where nodes in 

the same connect component belong to the same community 

(line 9). Allocate a new index for the newly-formed 

community (line 10), remove the nodes that 

have been allocated (line 11), and output the preliminarily 

dividing community set C (line 12). 

 

VII. RESULT 

It is not possible to develop a system that makes all the 
requirements of the user. User requirements keep changing as 

the system is being used. Some of the future enhancements 

that can be done to this system are:As the technology emerges, 

it is possible to upgrade the system and can be adaptable to 

desired environment.Based on the future security issues, 

security can be improved using emerging technologies like 
single sign-on. 

 

VIII. CONCLUSION 

 In this research, we have presented a parallel community 
discovery algorithm for large-scale complex networks, named 

picaso. Picaso functions by integrating multiple innovations, 

which include the Mountain model, a new update strategy 

called the Landslide algorithm, which is based on approximate 
optimization techniques and graph theory. Picaso functions by 

finding the nodes that meet the condition of aggregation based 

on the Mountain model, then forms new communities and 

calculates the modularity increment between the newly formed 

communities and other communities. Future work will include 

the Experiments to test the validity of the proposed methods 

were conducted on synthetic and real large-scale complex 

network datasets. The resultsdemonstrate that picaso is more 

effective and efficient on detecting big communities in 

complex networks and addressing the case when the size of 

network nodes and edges become extremely large, e.g., more 
than 1 billion nodes. The proposed algorithm cannot guarantee 

real time performance in such a case, and will necessitate 

further innovations to produce efficiency computing of the 

modularity increment. Another challengethat will be addressed 

in future work is overlapping community recognition. This 

will require new methods for which will likely be 

implemented on the Spark platform. In conclusion, the 

methods proposed in this research work to contribute to a 

larger effort targeted at advancing the study of complex 

community evolution. Understanding the evolution of network 

structures, analysing, processing and ultimately predicting the 

behavior of participants in large-scale social networks has and 
will continue. 

 

IX. REFERENCES 

[1] A. Barabasi, R. Albert, H. Jeong, and G. Bianconi, 
“Power-law distribution of the world wide web,” Science, 

vol. 287, no. 5461,Art. No. 2115, 2000. 

[2] M. E. J. Newman and M. Girvan, “Finding and evaluating 

community structure in networks,” Physical Review E, 

vol. 69, no. 2, Art. No. 026113, 2004. 

[3] J. Lee, S. P. Gross, and J. Lee, “Improved network 

community structure improves function prediction,” 

Scientific Reports, vol. 3,no. 2, Art. No. 2197, 2013. 

[4] Wearesocial, “Gigital in 2016,” 2016. [Online]. 

Available: http://www.wearesocial.com 

[5] C. Wickramaarachchi, M. Frincuy, P. Small, and V. K. 

Prasannay, “Fast parallel algorithm for unfolding of 
communities in large graphs,” in Proceedings of 2014 

IEEE High Performance Extreme Computing Conference. 

IEEE, 2014, pp. 1–6. 

[6] M. E. J. Newman, “Fast algorithm for detecting 

community structure in networks,” Physical Review E, 

vol. 69, Art. No. 066133,2004. 

[7] A. Clauset, M. E. J. Newman, and C. Moore, “Finding 

community structure in very large networks,” Physical 

Review E, vol. 70, no. 2, Art. No. 066111, 2004. 

[8] M. E. J. Newman, Networks: an introduction. Oxford,UK: 

Oxford University Press, 2010. 
[9] J. Qiu, J. Peng, and Y. Zhai, “Network community 

detection based on spectral clustering,” in Proceedings of 

the 2014 International Conference on Machine Learning 

and Cybernetics. IEEE, 2014, pp.648–652. 

[10] Y. Ruan, D. Fuhry, and S. Parthasarathy, “Efficient 

community detection in large networks using content and 

links,” in Proceedings of the 22nd International 

Conference on WorldWideWeb. ACM, 2013,pp. 1089–

1098. 

[11] Y. Wu, R. Jin, J. Li, and X. Zhang, “Robust local 

community detection: on free rider effect and its 

elimination,” Proceedings of VLDB Endowment, vol. 8, 
no. 7, pp. 798–809, 2015. 

[12] X. Zhang, H. You, W. Zhu, S. Qiao, J. Li, Z. Zhang, and 

X. Fan, “Overlapping community identification approach 

in online social networks,” Physica A, vol. 421, pp. 233–

248, 2015. 

[13] A. Prat-P´erez, D. Dominguez-Sal, J.-M. Brunat, and J.-

L. Larriba-Pey, “Put three and three together: triangle-

driven community detection,” ACM Transactions on 

Knowledge Discovery from Data, vol. 10, no. 3, Art. No. 

22, 2016. 

[14] L. N. Ferreira and L. Zhao, “Time series clustering via 
community detection in networks,” Information Sciences, 

vol. 326, pp. 227–242, 2016. 

[15] J. Shan, D. Shen, T. Nie, Y. Kou, and G. Yu, “Searching 

overlapping communities for group query,” World Wide 

Web, vol. 19, no. 6, pp. 1179–1202, 2016. 



IJRECE VOL. 7 ISSUE 2 (APRIL- JUNE 2019)          ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE) 
 

 
 

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING 

 A UNIT OF I2OR    1004 | P a g e  

[16] X. Huang, L. V. S. Lakshmanan, J. X. Yu, and H. Cheng, 

“Approximate closest community search in networks,” 

Proceedings of the VLDB Endowment, vol. 9, no. 4, pp. 

276–287, 2015. 

[17] X. Li, M. K. Ng, and Y. Ye, “MultiComm: finding 

community structure in multi-dimensional networks,” 
IEEE Transactions on Knowledge and Data Engineering, 

vol. 26, no. 4, pp. 929–941, 2014. 

[18] A. Mahmood and M. Small, “Subspace based network 

community detection using sparse linear coding,” IEEE 

Transactions on Knowledge and Data Engineering, vol. 

28, no. 3, pp. 801–812, 2016. 

[19] J. Whang, D. Gleich, and I. Dhillon, “Overlapping 

community detection using neighborhood-inflated seed 

expansion,” IEEE Transactions on Knowledge and Data 

Engineering, vol. 28, no. 5, pp.1272–1284, 2016. 

[20] T. N. Dinh, X. Li, and M. T. Thai, “Network clustering 

via maximizing modularity: Approximation algorithms 
and theoretical limits,” in Proceedings of the 2015 IEEE 

International Conference on Data Mining. IEEE, 2015, 

pp. 101–110. 

[21] H. Shiokawa, Y. Fujiwara, and M. Onizuka, “Fast 

algorithm for modularity-based graph clustering,” in 

Proceedings of the Twenty-Seventh AAAI Conference on 

Artificial Intelligence. AAAI, 2013, pp. 1170–1176. 

[22] A. Prat-P´erez, D. Dominguez-Sal, and J.-L. Larriba-

Pey, “High quality, scalable and parallel community 

detection for large real graphs,” in Proceedings of the 

23rd International Conference on World Wide Web. 
ACM, 2014, pp. 225–236. 

[23] A. Varamesh, M. K. Akbari, M. Fereiduni, S. Sharifian, 

and A. Bagheri, “Distributed clique percolation based 

community detection on social networks using 

MapReduce,” in Proceedings of2013 5th Conference on 

Information and Knowledge Technology. IEEE, 2013, pp. 

478–483. 

[24] C. L. Staudt and H. Meyerhenke, “Engineering parallel 

algorithms for community detection in massive 

networks,” IEEE Transactions on Parallel and 

Distributed Systems, vol. 27, no. 1, pp. 171–184, 2016. 

[25] S. Moon, J. G. Lee, M. Kang, M. Choy, and J. W. Lee, 
“Parallel community detection on large graphs with 

mapreduce and graphchi,” Data and Knowledge 

Engineering, vol. 104, pp. 17–31,2016. 

[26] Z. Lu, X. Sun, Y. Wen, G. Cao, and T. L. Porta, 

“Algorithms and applications for community detection in 

weighted networks,”IEEE Transactions on Parallel 

Distributed Systems, vol. 26, no. 11, pp.2916–2926, 2015. 

[27] S. Qiao, J. Guo, N. Han, X. Zhang, C. Yuan, and C. Tang, 

“Parallel algorithm for discovering communities in large-
scale complex networks,” Chinese Journal of Computers, 

vol. 40, no. 3, pp. 687–700,2017. 

[28] H. Meyerhenke, P. Sanders, and C. Schulz, “Parallel 

graphpartitioning for complex networks,” IEEE 

Transactions on Parallel and Distributed Systems, vol. 

28, no. 9, pp. 2625–2638, 2017. 

[29] T. Takahashi, H. Shiokawa, and H. Kitagawa, “SCAN-

XP:Parallel structural graph clustering algorithm on intel 

xeon phi coprocessors,” in Proceedings of the 2nd 

International Workshop on Network Data Analytics. 

ACM, Art. No. 6, 2017. 

[30] S. T. Mai, M. S. Dieu, I. Assent, J. Jacobsen, J. 
Kristensen, andM. Birk, “Scalable and interactive graph 

clustering algorithm onmulticorecpus,” in Proceedings of 

33rd IEEE International Conference on Data 

Engineering. IEEE, 2017, pp. 349–360. 

[31] J. Shun, F. Roosta-Khorasani, K. Fountoulakis, and M. 

W.Mahoney, “Parallel local graph clustering,” 

Proceedings of the VLDBEndowment, vol. 9, no. 12, pp. 

1041–1052, 2016. 

[32] J. E. Gonzalez, R. S. Xin, A. Dave, D. Crankshaw, M. J. 

Franklin,and I. Stoica, “GraphX: Graph processing in a 

distributed dataflowframework.” in Proceedings of the 
11th USENIX Symposium onOperating Systems Design 

and Implementation, vol. 14. USENIXAssociation, 2014, 

pp. 599–613. 

[33] S. F. A. Lancichinetti, “Limits of modularity 

maximization incommunity detection,” Physical Review 

E, vol. 84, no. 6, Art. No.066122, 2011. 

[34] J. Leskovec, “SNAP: Stanford large network dataset 

collection,”2016.[Online].Available:http://snap.stanford.

edu/data/index.html 

[35] M. E. J. Newman, “The structure and function of 

complexnetworks,” SIAM Review, vol. 45, no. 2, pp. 247–

256, 2003. 

 

 

 


