
IJRECE VOL. 2 ISSUE 2 APR-JUNE 2014 ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 61 | P a g e

Simulation Based Effort Optimization for Software Testing
Er. Shweta Sharma1, Mr.Ravi Jaiswal2, Dr.Rajesh Garg3

1M.Tech Scholar, 2Assistant Proffesor, 3Lecturer

1, 2 Ganpati Institute of Technology & Management,
3Seth Jai Parkash Polytechnic Damla, Yamuna Nagar-135001, Haryana (INDIA)

Abstract- This paper describes the use of simulation

concept in testing of software modules in a software project.

Simulation is used to observe the dynamic behavior of model

of a real or imaginary system. Indeed, by simulating the

complex system we are able to understand its behavior at low
cost. The Program Evaluation and Review Technique is a

network model that allows for randomness in weights of

software modules. In this paper, activities and nodes for

preparing network diagram are taken for software and then

simulation is applied to identify the critical and near critical

activities, so that testing process is optimized and less efforts

for software testing.

Keywords- Modules, Criticality Index, Simulation, Testing,

Software.

I. INTRODUCTION

Testing is an essential activity in software engineering.
Software Testing is a necessary part of the development or

implementation of any new software installation or up

gradation. The goal of testing is to find errors and the good

test case is the one that has maximum probability of finding

errors. Testing amounts to observing the execution of a

software system to validate whether it behaves as intended

and identify potential malfunctions [1]. Testing is the only

phase that consumes most of the time and efforts in Software

Development Life Cycle. To test and evaluate a system,

testers need to be very experienced and dedicated. So a

technique to reduce time, cost and efforts is essential to apply

and it is Simulation. Simulation is the representation of a real
life system by another system, which depicts the important

characteristics of the real system and allows experimentation

on it. Simulation is used to observe the dynamic behavior of

model of a real or imaginary system. This paper presents how

the modules are represented through the network diagram, and

various events are interconnected through each other. In this

way most optimistic, pessimistic and likely time for every

module is analyzed for calculation of critical modules in

project. Systematic arrangement of all modules and applying

specific distribution, we identify the critical and near critical

modules in software that need to be paid more attention.
Simulation very powerful technique helps in this direction.

This makes testing software modules very easy and efficient.

But otherwise, lot of time and efforts of software engineers

are consumed in testing of complex projects. They are written

in programming language, such as C++ or Java. Simulation

allow the developer to capture basic algorithmic functionality

at the same time as they focus attention on topology, timing,

criticality of modules , overall scalability and other properties
characteristics of distribution [7].

II. NETWORK REPRESENTATION FOR TESTING OF MODULES

IN SOFTWARE PROJECT

The PERT is used here for simulating software testing

process. For this, a network diagram is being prepared in

which activity is a module and nodes are the events after

completion of one or more activities. The network having

loops or cycles is always reduced to a cyclic graph and that is
easily interconnected through various nodes.[2] In order to

simulate the module network, one has to avoid loops;

otherwise it is not possible to achieve desired results. In this

paper, there are thirty modules in software project that are

considered here for testing of modules. In all there are sixteen

nodes/ events which are milestones for the software to be

simulated. These nodes are interconnected through different

modules in network diagram and each module has its weight

depending upon their use. The weights are estimated

randomly and generated using beta distribution. It has been

assumed that weight assigned to each activity follow a
Uniform distribution. A series of random weights is generated

using Box Muller transformation [3].

Fig.1. Network representation of software modules for finding critical

modules in software.

IJRECE VOL. 2 ISSUE 2 APR-JUNE 2014 ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 62 | P a g e

The developed simulator identifies the critical and near

critical activities. The description of modules is given as

follows: - Source module pertains module M1 having weight
5. Sink (ending) module is M29 having weight 4.0. Similarly,

there are other modules like M3, M4, M5 …………M30 with

varying weights. Ending modules pertains M12, M14, M15,

and M16 with weight 15, 10, 4, 4 respectively. Table 1 shows

the interconnection of activities and nodes. For example,

module M2 has Starting Node 1 and Finishing Node 5. [4][7]

Similarly activity M25 has Starting Node 11 and Finishing

Node 13 so on.

TABLE 1. START AND FINISH FOR MODULES OF FIGURE 1.

MODULES (I) S[I] F[I]

1 (M1) 1 2

2 (M2) 1 5

3 (M3) 2 3

4 (M4) 2 4

5 (M5) 2 5

6 (M6) 3 6

7 (M7) 3 7

8 (M8) 3 10

9 (M9) 4 6

10 (M10) 5 6

11 (M11) 5 9

12 (M12) 5 8

13 (M13) 6 10

14 (M14) 6 9

15 (M15) 7 13

16 (M16) 7 11

17 (M17) 8 9

18 (M18) 8 12

19 (M19) 9 10

20 (M20) 9 12

21 (M21) 10 14

22 (M22) 10 11

23 (M23) 11 13

24 (M24) 11 14

25 (M25) 12 10

26 (M26) 12 14

27 (M27) 12 16

28 (M28) 13 15

29 (M29) 14 16

30 (M30) 15 16

III. ALGORITHM

Algorithm 1: TEST_SIM (N, M, I ,S[I], F[I], MUE[I],

SIGMA[I])

Step-1: Read N, M.

Step-2: Read S[I], F[I], MUE[I] and SIGMA[I] for I =

 1,2...N.

Step-3: Set ERROR0.001, LRUN1000, FREQ [I] 0,

 CRIT [I] 0 for I= 1, N
 Set RUN1

Step-4: Repeat for I1 to N

 Generate weight samples W [I].

 [End of loop.]

Step-5: Perform forward pass.

[EFW(i)= ESW(i) + W(i) i = 1,2...N

ENW(j)= max{EFW[all activities

terminating in j]}

  j = 1,2...M

ESW(i)= ENW(S(i)) i = 1,2...N]

Step-6: Traverse the network for backward pass

 [LSW(i)= LFW(i)- W(i) i = 1,2...N

 LNW(j)= min{LSW[all activities originating in j]}

 j = 1,2...M

 LFW[every activity terminating in node j]=LNW(j)

 j = 1,2...M]

Step-7: Mark the critical activities and update freq [i].
 [IF LSW(i)- ESW(i)<= ERROR Then mark i as

 critical activity and

 Update Freq[i] = Freq[i] +1]

Step-8: Set RUNRUN + 1 [Update]

Step-9: IF RUN <= LRUN, THEN

 GoTo step (4)

 ELSE

 Calculate CRITICAL_INDEX for all activities and

 show results

 (End of IF block)

Step-10: Exit.

IV. TOOL AND PLATFORM USED FOR SIMULATION

This simulator is designed using C++ language under

Windows operating system on an Intel core i5 Compatible

machine. C++ is real time simulation language that has its

many applications in real world problems. The model

explained in this research paper is stochastic and dynamic in

nature. The next –event discrete simulation model has been

used for conducting simulation experiment. Monte Carlo
Simulation is implemented on the system to get good results

and outputs.

IJRECE VOL. 2 ISSUE 2 APR-JUNE 2014 ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 63 | P a g e

TABLE 2.INPUT DATA FOR SIMULATOR

MODULES

(I)

S[I] F[I] A[I] M[I] B[I] MUE[I] SIGMA

[I]

1 (M1) 1 2 1.68 5.08 8 5.0 1.22

2 (M2) 1 5 1 9.25 4 7.0 0.50

3 (M3) 2 3 0.3 4.42 6 4.0 0.95

4 (M4) 2 4 0.7 9.32 13 8.5 2.05

5 (M5) 2 5 0.10 9.475 10 8.0 1.65

6 (M6) 3 6 0.90 10.75 4.0 8.0 0.75

7 (M7) 3 7 2 5.0 8.0 5.0 1.00

8 (M8) 3 10 0.8 11.30 14.0 10.0 2.20

9 (M9) 4 6 0.10 11.725 19 11.0 3.15

10 (M10) 5 6 0.10 9.475 7.0 7.5 1.15

11 (M11) 5 9 0.88 7.78 10.0 20.0 4.20

12 (M12) 5 8 0.80 23.30 26 7.0 1.52

13 (M13) 6 10 2.0 8.75 20 7.0 0.25

14 (M14) 6 9 0.50 9.875 2.0 9.5 3.00

15 (M15) 7 13 0.60 5.85 6.0 3.0 0.20

16 (M16) 7 11 0.80 3.55 3.0 5.0 0.90

17 (M17) 8 9 0.90 12.275 16.0 11.0 2.75

18 (M18) 8 12 0.90 6.525 15 7.0 2.35

19 (M19) 9 10 0.90 4.775 10.0 5.0 1.75

20 (M20) 9 12 2 8 20 9.0 3.00

21 (M21) 10 14 0.02 6.245 11 7.5 2.25

22 (M22) 10 11 0.10 7.225 7 6.0 1.83

23 (M23) 10 12 0.50 7.775 14 6.0 1.15

24 (M24) 11 14 0.40 7.90 16 8.0 2.25

25 (M25) 11 13 0.50 8.375 14 8.0 2.60

26 (M26) 12 14 0.90 10.775 16 10.0 2.75

27 (M27) 12 16 0.72 17.07 21 15.0 3.38

28 (M28) 13 15 1 4.75 7 4.5 1.00

29 (M29) 14 16 1 3.25 10 4.0 1.50

30 (M30) 15 16 0.7 3.3 10 4.0 1.55

Where, A [I] = optimistic estimate for each module,

M [I] = most likely duration for each module, B [I] = most

pessimistic estimate for each module.

MUE [I] = (A [I] +4 * M [I] +B [I])/6

SIGMA [I] = ((B [I] - A [I])/6)

The simulator is provided with following fixed input:

ACT=30 (Number of modules in software), NODE=16
(Number of events in the particular software project),

LRUN=1000 (Number of simulation runs), ERROR= .001.

Average (MUE) and variance (SIGMA) for weights of

modules are shown in Table 2. User can enter values of ACT,

NODE, ERROR and LRUN in the designed simulator. If the

parameter ERROR is changed the results are also changed.

Criticality indices of activities are the outputs of the simulator

and given in the Table 3. First column in the table 3 is the

modules and other is the critical index of respective activity.

Criticality index is the measure of number of times the

corresponding module constitutes a part the critical path out of

LRUN times. The value of critical index is 1 for module M1
and near critical modules having value less than 1 are M2

(0.975), M4(0.925), M6(0.91) , M11(0.811), M13(0.95). The

values of modules M13 is 0.001, M5(0.606), M9(0.525),

M10(0.57), M12(0.416), M14(0.007), M17 (0.211), M20(

0.25), M21(0.53), M22 (0.457), M24 (0.499), M25(0.669),

M26(0.285), M27(0.41), M28(0.499), M29(0.336),

M30(0.499).

V. DISCUSSION ON RESULTS

Hence, the final output is represented in form of bar graph

on which x-axis represents the number of modules whereas y-

axis shows the criticality index of modules in the testing

software. Criticality indices of activities are the outputs of the

simulator and given in the Table 3.

Fig.2: Criticality Index bar chart

0

0.2

0.4

0.6

0.8

1

1.2

M
1

M
2

M
3

M
4

M
5

M
6

M
7

M
8

M
9

M
1

0

M
1

1

M
1

2

M
1

3

M
1

4

M
1

5

M
1

6

M
1

7

M
1

8

M
1

9

M
2

0

M
2

1

M
2

2

M
2

3

M
2

4

M
2

5

M
2

6

M
2

7

M
2

8

M
2

9

M
3

0

Critical Index

Critical Index

Module No.

C
ri

ti
ca

li
ty

In
d
ex

IJRECE VOL. 2 ISSUE 2 APR-JUNE 2014 ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 64 | P a g e

On analyzing the output is observed that criticality indices

of modules M1, M2, M4, M5, M6, M10, M11, and M13 are

more than other modules. It means that these modules should
be paid more emphasis and are more error prone as compare

to the other ones. The module numbered M1, M2, M4, M5,

M6, M10, M11, and M13 should be scheduled more carefully

as compared to other modules. Hence it saves lot of time and

efforts. Otherwise we have to test all 30 modules in this

complex software network, but with the Program Evaluation

and Review Technique (PERT) our efforts are really

optimized.

TABLE3. CRITICALITY INDEX TABLE

Modules Critical Modules

M1 1

M2 0.975

M3 0.001

M4 0.925

M5 0.606

M6 0.91

M7 0

M8 0

M9 0.525

M10 0.57

M11 0.811

M12 0.416

M13 0.95

M14 0.007

M15 0

M16 0

M17 0.211

M18 0

M19 0.861

M20 0.25

M21 0.53

M22 0.457

M23 0

M24 0.499

M25 0.069

M26 0.285

M27 0.41

M28 0.499

M29 0.336

M30 0.499

VI. CONCLUSION

Critical modules in software are as obtained as output from
simulator. Any failure in them will result in failure of software

project. Experts must be employed for scheduling critical

modules. In this way, the designed simulator will help in

finding error prone modules in the complete software without

practical implementation. Rather it helps in finding the

modules or activities in the software which have more

probability of error due to which testing phase consumes

about 60 percent of total Software Development Life Cycle

(SDLC). Hence, the overall testing cost and efforts are
minimized drastically which is the objective of this research.

This simulator will be helpful for further testing, development

and debugging of complex as well as large software systems.

VII. REFERENCES

[1] Baci, O., “Verification, Validation and Testing”, in Handbook
of Simulation, Jerry Banks, ed., John Wiley, New York, 1998

[2] Beizer,B.,“SoftwareTestingTechniques,” 2nd ed., Van Nostrand
Reinhold, New York, 1990.

[3] Banks, J., Carson, J.S. and Nelson, B.L., “Discrete-Event
System Simulation”, 2nd ed., Prentice-Hall, Upper Saddle

River, New Jersey, 1996.
[4] Law, Averill M., “Simulation modeling and Analysis”, 4th ed.,

McGraw-Hill, New York, 2008.
[5] D.S. Hira, “System Simulation”, 1st ed. S. Chand and Company

Ltd, New Delhi, 2001.
[6] Narsingh Deo, “System Simulation with Digital Computer”,

Prentice Hall of India, Eighth Edition, 2008.
[7] Matthew J. Rutherford, Antonio Carzaniga, and Alexender

L.Wolf, “Simulation-Based Testing of distributed System”

University of Colorado, Department of computer science,
technical Report CU-CS-1004-06 January 2006.

[8] Matthew J. Rutherford, Antonio Carzaniga, and Alexender
L.Wolf, “Simulation-Based Testing of distributed System”
University of Colorado, Department of computer science,
technical Report CU-CS-1004-06 January 2006.

