Pigeonhole Principle

Theorem (Pigeonhole Principle)

If n pigeons are put into k pigeonholes, there exists at least 1 pigeonhole containing at least $\left\lceil\frac{n}{k}\right\rceil$ pigeons and at least 1 pigeonhole containing at most $\left\lfloor\frac{n}{k}\right\rfloor$ pigeons.

Proof. First, assume that every pigeonhole contains at most $\left\lceil\frac{n}{k}\right\rceil-1$ pigeons. Since

$$
\lceil x\rceil-1<x
$$

for all real x, then there are less than

$$
k\left(\left\lceil\frac{n}{k}\right\rceil-1\right)<k\left(\frac{n}{k}\right)=n
$$

pigeons. This is a contradiction. The second part can be proven similarly with

$$
\lfloor x\rfloor+1>x
$$

for all real x.

Corollary (Usual definition)

If $n+1$ pigeons are put into n pigeonholes, then there exists one hole that contains at least 2 pigeons.

Remark

In contest problems, it is usually designed so that there is exactly 1 more pigeon than the number of pigeonholes.

Example 1

51 distinct numbers are chosen from the integers between 1 and 100 , inclusively. Prove that 2 of these 51 numbers are consecutive.

Proof. Let the 50 pairs of consecutive integers

$$
\{1,2\},\{3,4\}, \ldots,\{99,100\}
$$

be the pigeonholes and the 51 numbers be the pigeons. Then two of the 51 numbers must be in the same pigeonholes. Therefore, there are 2 consecutive integers among the 51 chosen integers.

Example 2

10 distinct integers are chosen from 1 to 100 , inclusively. Prove that there exists 2 disjoint non-empty subsets of the chosen integers such that the 2 subsets have the same sum of elements.

Proof. The maximum possible sum of the 10 integers is

$$
91+92+\cdots+100=955
$$

Therefore, let

$$
1,2,3 \ldots, 955
$$

be the pigeonholes. Next, there are

$$
2^{10}-1=1023
$$

number of distinct nonempty subsets. These will be the pigeons. Therefore, there exists at least 1 pigeonhole with 2 pigeons. Call these two sets A and B. Next, observe that $A \backslash(A \cap B)$ and $B \backslash(A \cap B)$ are disjoint sets with the same sum. Therefore, there exists two disjoint subsets with the same set.

Example 3

Prove that if 9 distinct points are chosen in the integer lattice \mathbb{Z}^{3}, then the line segment between some two of the 9 points contains another point in \mathbb{Z}^{3}.

Proof. Reduce each coordinate of the 9 points modulo 2 to get 9 points in \mathbb{Z}_{2}^{3}. Since \mathbb{Z}_{2}^{3} only has 8 points, then two of the 9 points, a and b, must be the same element in \mathbb{Z}_{2}^{3}. Thus, $a+b=0 \in \mathbb{Z}_{2}^{3}$. This means that all three entries of $a+b \in \mathbb{Z}^{3}$ are even. Therefore, $\frac{1}{2}(a+b) \in \mathbb{Z}^{3}$.

Example 4

Prove that for every set $X=\left\{x_{1}, \ldots, x_{n}\right\}$ of n real numbers, there exists a nonempty subset S of X and an integer m such that

$$
\left|m+\sum_{s \in S} s\right| \leq \frac{1}{n+1}
$$

Proof. First, for a number x define $[x]:=x-\lfloor x\rfloor$. Now, consider

$$
\left[x_{1}\right],\left[x_{1}+x_{2}\right],\left[x_{1}+x_{2}+x_{3}\right], \ldots,\left[x_{1}+x_{2}+\cdots+x_{n}\right]
$$

If any of these are in

$$
\left[0, \frac{1}{n+1}\right],\left[\frac{n}{n+1}, 1\right]
$$

then we are done. If not, consider the n numbers as the pigeons and the $n-1$ intervals

$$
\left[\frac{1}{n+1}, \frac{2}{n+1}\right],\left[\frac{2}{n+1}, \frac{3}{n+1}\right],\left[\frac{3}{n+1}, \frac{4}{n+1}\right], \cdots,\left[\frac{n-1}{n+1}, \frac{n}{n+1}\right]
$$

as the pigeonholes. Therefore, there exists two numbers in the same interval,

$$
x_{1}+\cdots+x_{k}, x_{1}+\cdots+x_{k+m}
$$

Taking their difference gives

$$
x_{k+1}+\cdots+x_{k+m}
$$

which lies within a distance of $\frac{1}{n+1}$ of an integer.

Example 5

Given nine points inside the unit square, prove that some three of them form a triangle whose area does not exceed $\frac{1}{8}$.

Proof. First, divide the square into four equal squares. Since there are 9 points, by Pigeonhole Principle, there exists a box with at least 3 points. It remains to show that given three points in a square, the area is at most $\frac{1}{2}$ of the area of the square.
Cut the square into two rectangles by passing a line through a vertex of the triangle. Since the area of a triangle is $\frac{1}{2} b h$ and the area of a rectangle is $b h$. Therefore, in each of the rectangles, the triangle has an area of at most $\frac{1}{2} b h$. Adding the two inequalities for both rectangles, the result follows.

Example 6

6 points are drawn on a plane such that no three are collinear. All edges between every pair of points are painted red or blue. Prove that there is a monochromatic triangle.

Proof. First, pick one point and call this point A. By Pigeonhole Principle, there are 3 edges painted in the same color. Without loss of generality, assume this colour is red and the three edges are $A B, A C$, and $A D$. If any of $B C, B D$, or $C D$ is red, then there exists a red triangle. Otherwise, $B C, B D$, and $C D$ are all blue which forms a blue triangle.

Practice Problems

1. Given 50 distinct positive integer strictly less than 100 , prove that some two of them sum to 99 .
2. Given 11 integers. Prove that two of them have the same unit digit.
3. There are 5 points in a square of side length 2 . Prove that there exists 2 of them having a distance not more than $\sqrt{2}$.
4. 27 points are aligned so that each row has 9 points and each column has 3 points. Each point is painted red or blue. Prove that there exists a monochromatic rectangle.
5. Prove that at any party there are two people who have the same number of friends at the party (assume that all friendship are mutual).
6. Let S be a set of n integer. Prove that there is a subset of S, the sum of whose elements is a multiple of n.
7. Prove that if 101 integers are chosen from the set $\{1,2,3, \ldots, 200\}$ then one of the chosen integers divides another.
8. Prove that for some integer $k>1,3^{k}$ ends with 0001 .
9. Let n be a positive integer. Show that there is a positive multiple of n whose digits are all 0 's and 1 's.
10. Define $[x]:=x-\lfloor x\rfloor$ for all $x \in \mathbb{R}$. Let $0<d<1$. Prove that in the sequence

$$
\{\sqrt{2}, 2 \sqrt{2}, 3 \sqrt{2}, \ldots\}
$$

there exists a term x such that $0<[x]<d$.
11. Show that some pair of any 5 points in the unit square will be at most $\frac{\sqrt{2}}{2}$ units apart.
12. Show that some pair of any 8 points in the unit square will be at most $\frac{\sqrt{5}}{4}$ units apart.
13. 76 points are aligned so that each row has 19 points and each column has 4 points. Each point is painted red, blue, or yellow. Prove that there exists a monochromatic rectangle.
14. A salesman sells at least 1 car each day for 100 consecutive days selling a total of 150 cars. Show that for each value of n with $1 \leq n<50$, there is a period of consecutive days during which he sold a total of exactly n cars.

