
IJRECE VOL. 2 ISSUE 1 JAN-MAR 2014 ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 18 | P a g e

Review On Red Algorithm Along With Active Queue

Management
 1Karanpreet Singh Virk, 1Jatinder Singh, 1Lovepreet Kaur, 1Abhinav Bhandari

1University College of Engineering, Department of Computer Engineering, Punjabi University, Patiala,

Punjab, India

Abstract-This review paper presents Random Early

Detection (RED) gateways for congestion avoidance in

packet-switched networks. The gateway detects incipient

congestion by computing the average queue size. The gateway

could notify connections of congestion either by dropping

packets arriving at the gateway or by setting a bit in packet

headers. When the average queue size exceeds a preset
threshold, the gateway drops or marks each arriving packet

with a certain probability, where the exact probability is a

function of the average queue size. RED gateways keep the

average queue size low while allowing occasional bursts of

packets in the queue. During congestion, the probability that

the gateway notifies a particular connection to reduce its

window is roughly proportional to that connection’s share of

the bandwidth through the gateway. RED gateways are

designed to accompany a transport-layer congestion control

protocol such as TCP. The RED gateway has no bias against

bursty traffic and avoids the global synchronization of many

connections decreasing their window at the same time.
Simulations of a TCP/IP network are used to illustrate the

performance of RED gateways.

Keywords- AQM, DDoS, RED Queue Modeling, TCP

Flow, RED Parameter tuning.

I. INTRODUCTION
The traditional role of Active Queue Management (AQM)

in IP networks was to complement the work of end-system
protocols such as the Transmission Control Protocol (TCP) in
congestion control so as to increase network utilization, and
limit packet loss and delay. During the earlier days of IP
networks, the network traffic consisted mainly of bulk data
transfers. The volume of web traffic was gradually increasing.
The first formal and full proposal of an AQM scheme was
Random Early Detection (RED), introduced by[1] in 1993.
What followed was a plethora of AQM schemes proposed in
the research literature, many of which sort to improve upon
the RED algorithm itself in one aspect or another. There were,
however, AQM schemes that were completely new.
Additionally, there was also work that consisted primarily of a
rigorous analysis of RED and which consequently highlighted
its drawbacks. The design of RED and many of its variants,
though intuitive, has been, for the most part, heuristic. As a
result, parameter-tuning has been one of their main

limitations. Some researchers discovered that by applying
more formal andrigorous techniques as found in control theory
(whether it be classical control, modern control, optimal
control or nonlinear control), this limitation may be alleviated
if not eliminated. Other researchers have also invented AQM
schemes based upon optimization techniques in the context of
congestion control. With the increasingly rapid march to
convergence, i.e., data, voice, video and mobility, supported
by a common IP platform that is shared by a growing
heterogeneous set of communication technologies, the
primary focus has shifted from congestion control (though still
very important) to the more holistic theme of quality-of-
service (QoS) provisioning.

Fig.1: Active Queue Management

The main thrust of the latter is to have the network

simultaneously and efficiently service the diverse

requirements of the different types of traffic flows. In this new

(and broader) context, the role of AQM is to serve as a

mechanism for service differentiation. In the DiffServ

architecture, in particular, it works in conjunction with other

QoS mechanisms such as traffic conditioning and packet

scheduling so that their combined effect would be to, in an

average sense, distinguish one network service from another

in terms of overall end-to end delay, delay variation or jitter,

IJRECE VOL. 2 ISSUE 1 JAN-MAR 2014 ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 19 | P a g e

packet loss and bandwidth according to mutually agreed upon

service level agreements (SLAs). Based on the current

specifications for DiffServ, the main candidate AQM scheme

is based on RED (specifically RIO-C (RED In/Out and

Couple)) having a different set of parameter values for each

drop precedence. However, it may be beneficial to capitalize

on the vast AQM research that already exists, exploring those

feasible alternative schemes and approaches that can be used

in the DiffServ context so as to improve network performance

and QoS.

II. DESIGN GUIDELINES
This section summarizes some of the design goals and

guidelines for RED gateways. The main goal is to provide
congestion avoidance by controlling the average queue size.
Additional goals include the avoidance of global
synchronization and of a bias against bursty traffic and the
ability to maintain an upper bound on the average queue size
even in the absence of cooperation from transport layer
protocols. The first job of a congestion avoidance mechanism
at the gateway is to detect incipient congestion. As defined in
[8], a congestion avoidance scheme maintains the network in a
region of low delay and high throughput. The average queue
size should be kept low, while fluctuations in the actual queue
size should be allowed to accommodate bursty traffic and
transient congestion. Because the gateway can monitor the
size of the queue over time, the gateway is the appropriate
agent to detect incipient congestion. Because the gateway has
a unified view of the various sources contributing to this
congestion, the gateway is also the appropriate agent to decide
which sources to notify of this congestion. In a network with
connections with a range of roundtrip times, throughput
requirements, and delay sensitivities, the gateway is the most
appropriate agent to determine the size and duration of short-
lived bursts in queue size to be accommodated by the
gateway. The gateway can do this by controlling the time
constants used by the low-pass filter for computing the
average queue size. The goal of the gateway is to detect
incipient congestion that has persisted for a “long time”
(several roundtrip times). The second job of a congestion
avoidance gateway is to decide which connections to notify of
congestion at the gateway. If congestion is detected before the
gateway buffer is full, it is not necessary for the gateway to
drop packets to notify sources of congestion. In this paper, we
say that the gateway marks a packet, and notifies the source to
reduce the window for that connection. This marking and
notification can consist of dropping a packet, setting a bit in a
packet header, or some other method understood by the
transport protocol. The current feedback mechanism in
TCP/IP networks is for the gateway to drop packets, and the
simulations of RED gateways in this paper use this approach.
One goal is to avoid a bias against bursty traffic. Networks
contain connections with a range of burstiness, and gateways
such as Drop Tail and Random Drop gateways have a bias
against bursty traffic. With Drop Tail gateways, the more

bursty the traffic from a particular connection, the more likely
it is that the gateway queue will overflow when packets from
that connection arrive at the gateway [7]. Another goal in
deciding which connections to notify of congestion is to avoid
the global synchronization that results from notifying all
connections to reduce their windows at the same time. Global
synchronization has been studied in networks with Drop Tail
gateways and results in loss of throughput in the network.
Synchronization as a general network phenomena has been
explored in [8]. In order to avoid problems such as biases
against bursty traffic and global synchronization, congestion
avoidance gateways can use distinct algorithms for congestion
detection and for deciding which connections to notify of this
congestion. The RED gateway uses randomization in choosing
which arriving packets to mark; with this method, the
probability of marking a packet from a particular connection is
roughly proportional to that connection’s share of the
bandwidth through the gateway. This method can be
efficiently implemented without maintaining per-connection
state at the gateway. One goal for a congestion avoidance
gateway is the ability to control the average queue size even in
the absence of cooperating sources. This can be done if the
gateway drops arriving packets when the average queue size
exceeds some maximum threshold (rather than setting a bit in
the packet header). This method could be used to control the
average queue size even if most connections last less than a
roundtrip time (as could occur with modified transport
protocols in increasingly high speed networks), and even if
connections fail to reduce their throughput in response to
marked or dropped packets.

III. RED ALGORITHM

The RED algorithm calculates the average queue size
using a low pass filter with an exponential weighted moving
average. The average queue size is compared to two
thresholds: a minimum and a maximum threshold. When the
average queue size is less than the minimum threshold, no
packets are marked. When the average queue size is greater
than the maximum threshold, every arriving packet is marked.
If marked packets are, in fact, dropped or if all source nodes
are cooperative, this ensures that the average queue size does
not significantly exceed the maximum threshold. When the
average queue size is between the minimum and maximum
thresholds, each arriving packet is marked with probability pa,
where pa is a function of the average queue size avg. Each
time a packet is marked, the probability that a packet is
marked from a particular connection is roughly proportional to
that connection’s share of the bandwidth at the router. The
detailed algorithm for RED. Essentially, RED algorithm has
two separate parts. One is for computing the average queue
size, which determines the degree of burstiness that will be
allowed in the router queue. It takes into account the period
when the queue is empty (the idle period) by estimating the
number m of small packets that could have been transmitted
by the router during the idle period. After the idle period, the
router computes the average queue size as if m packets had

IJRECE VOL. 2 ISSUE 1 JAN-MAR 2014 ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 20 | P a g e

arrived to an empty queue during that period. The other is
used to calculate the packet-marking probability and then
determine how frequently the router marks packets, given the
current level of congestion. The goal is for the router to mark
packets at fairly evenly spaced intervals, in order to avoid
biases and avoid global synchronization, and to mark packets
sufficiently frequently to control the average queue size.

Initial ization

avg <- 0
count <- -1

For each packet arrival

if the queue is non-empty

avg (1-wq)*avg+wq*q

else

m←f (time-q_time)

avg←(1-ωq)m×avg

If minth ≤ avg < maxth

Increment count

Pb=(avg-minth)/(max- minth)*maxp

Pa= pb/(1-count)*pb

with probability pa :

mark the arriving packet

count <- 0

Else if maxth < avg

mark the arriving packet

count <- 0

Else count <- -1

When queue become empty

q_time <- time

Notations:

[1] Saved Variables:

avg: average queue size

q_time: start of the queue idle time
count: packets since last marked packet

[2] Fixed Parameters:

ωq : queue weight

minth: minimum threshold for queue

maxth: maximum threshold for queue

maxp: maximum value for pb

[3] Other:

pa: current packet-marking probability

q: current queue size

Time: current time

 As avg varies from minth to maxth, the packet-marking
probability pb varies linearly from 0 to

maxp :

 Pb= (avg-minth)/(max-minth)*maxp (1)

The final packet-marking probability pa increases slowly as

the count increases since the last marked

packet:

 Pa=Pb/(1-count)*Pb (2)

this ensures that the gateway does not wait too long before

marking a packet. The gateway marks each packet that arrives

at the gateway when the average queue size avg exceeds

maxth.

IV. QUEUEING MODELING FOR RED

Various analysis approaches have been proposed to model
RED mechanism and evaluate its performance. Three different
models are to be examined. In this section, classic queueing
theory issued to study the benefits (or lack thereof) brought
about by RED. In the subsequent section, a different feedback
control models will be discussed. Thomas Bonald et al.3 use
classic queueing theory to evaluate RED performance and
quantify the benefits (or lack thereof) brought about by RED.
Basically, three major aspects of RED scheme, namely the
bias against bursty traffic, synchronization of TCP flows, and
queuing delays, are studied in details and compared with those
of Tail Drop scheme to evaluate the performance of RED.

A. Bias against Bursty Traffic

We consider a router with buffer size of K packets. A
typical drop functions for RED scheme and Tail Drop scheme
are listed below. Drop function of RED and Tail Drop
scheme.

Drop function for RED scheme:

(avg – minth)/ (max – minth)*maxp = pb (3)

1 if avg < minth

D(avg) = 0 if avg > maxth

Drop function for TAIL DROP scheme:

0 if q < maximum buffer size

dq= 1 if q > maximum buffer size (4)

V. RED IMPACT ON INTERNET FLOW

Usually, TCP connections/flows can be modeled as bursty
traffic, while UDP-based application can be considered as
smooth traffic. Since TCP has congestion control mechanism
implemented at the end host, TCP connection should respond
to the packet dropping after a round trip time (RTT).
Meanwhile, UDP host neglects the packet loss and keeps
pumping data into network and let the upper layer application
take care of congestion and perhaps further retransmission.
However, this does not necessarily mean that RED algorithm
has no impact on UDP application. In fact, since RED
algorithm is implemented in routers instead of end hosts, it
has impact on all kinds of Internet traffic, including both the
TCP and UDP connections. So, it makes sense to compare
how different the influence RED algorithm has on TCP flows
from that on UDP-based applications. The key observations
are listed below. First, the overall loss rate suffered by TCP
connections when going from Tail Drop to RED will not
change much, but that the loss rate suffered by UDP/IP

IJRECE VOL. 2 ISSUE 1 JAN-MAR 2014 ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 21 | P a g e

telephony applications (whether they are rate adaptive or not)
will increase significantly. Second, average delay suffered by
the UDP packets would be much lower than with Tail Drop,
which is a key benefit in telephony applications. However, the
delay variance is such that the end-to-end delay, including the
playout delay at the destination, does not reflect the gain RED
brought to the mean delay. We can expect the audio quality
perceived at the destination to be mediocre at best.

VI. MEASURE AVERAGE QUEUE LENGTH
The RED gateway uses a low-pass filter to calculate the

average queue size. Thus, the short-term increases in the
queue size that result from bursty traffic or from transient
congestion do not result in a significant increase in the
average queue size. The low-pass filter is an exponential
weighted moving average (EWMA):

 Avg <- (1-wq)avg + wq.q (5)

The weight =@? determines the time constant of the low-pass
filter. The following sections discuss upper and lower bounds
for setting =@?. The calculation of the average queue size can be
implemented particularly efficiently when =@?is a (negative)
power of two.

A. An upper bound for wq

If wq• =?is too large, then the averaging procedure will not
filter out transient congestion at the gateway.

Assume that the queue is initially empty, with an average
queue size of zero, and then the queue increases from 0 to L
.packets over .packet arrivals. After the L.th packet arrives at
the gateway, the average queue size avgl_. is

 Avgl = ∑𝐿
𝑖=1 iwq (1-wq)L-I

 =L+1+{(1+wq)
L+1-1}/wq (6)

Figure 2 shows the average queue size avgl .for a range of
values for wq ?and L.. The x-axis shows wq ?from0.001 to 0.005,
and the ª-axis shows .from 10 to 100.For example for wq=0.001
after a queue increase from 0 to 100 packets, the average
queue size avg100 is 4.88 packets. Given a minimum threshold
and given that we wish to allow bursts of .packets arriving at
the gateway, then wq should be chosen to satisfy the following
equation for avgl < minth :

 L+1+{(1-wq)L+1-1/wq < minth (7)

Given minth=5 and L=50, for example it is necessary to
choose wq=0.0042.

This derivation uses the following identity

Fig.2: Average queue size for wq

B. A lower bound for wq

RED gateways are designed to keep the calculated average

queue size average below a certain threshold. However, this

serves little purpose if the calculated average is not a
reasonable reflection of the current average queue size. If wq,

?is set too low, then average _ responds too slowly to changes in

the actual queue size. In this case, the gateway is unable to

detect the initial stages of congestion. Assume that the queue

changes from empty to one packet, and that, as packets arrive

and depart at the same rate, the queue remains at one packet.

Further assume that initially the average queue size was zero.

In this case it takes -1/ln(1-wq) packet arrivals (with queue

remaining at one) until the average queue size avg reaches

0.63=1-1/e [35]. For wq=0.001, this takes 1000 packet

arrivals; for wq = 0.002, this takes 500 packet arrivals; for
wq=0.003, this makes 333 packet arrivals

C. Setting minth and maxth

The optimal values of minth and maxth depends on the

desired average queue size.. If the typical traffic is fairly

bursty, then minth must be correspondingly large to allow the

link one packet would result in unacceptably low link

utilization. The discussion of the optimal average queue size

for a particular traffic mix is left as a question for future

research utilization to be maintained at an acceptably high

level. For the typical traffic in our simulations, for

connections with reasonably large delay-bandwidth products,
a minimum threshold of one packet would result in

unacceptably low link utilization. The discussion of the

optimal average queue size for a particular traffic mix is left as

a question for future research. The optimal value for maxth ____

depends in part on the maximum average delay that can be

allowed by the gateway. The RED gateway functions most

effectively when max-min is larger than the typical increase in

the calculated average queue size in one roundtrip time. A

useful rule-of-thumb is to set maxth __to at least twice minth _ we

compare two methods for calculating the final packet marking

IJRECE VOL. 2 ISSUE 1 JAN-MAR 2014 ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 22 | P a g e

probability, and demonstrate the advantages of the second

method. In the first method, when the average queue size is

constant the number of arriving packets between marked

packets is a geometric random variable;in the second method

the number of arriving packets between marked packets is a

uniform random variable. The intial packet dropping
capability is calculated as:

 pb ← maxp(avg-minth)/(maxth-minth)

The parameter maxth gives the maximum value for the

packet-marking probability pb achieved when the

average queue size reaches the maximum threshold.

Method 1. Geometric random variables

In Method 1, let each packet be marked with probability pb

Let the intermarking time X ½be the number of packets that
arrive, after a marked packet, until the next packet is marked.

Because each packet is marked with probability pb:

 Prob [X=n] = (1-pb)
n-1pb (8)

Thus with Method 1, ½ is a geometric random variable

with parameter pb and E[X]=1/pb With a constant average

queue size, the goal is to mark packets at fairly regular

intervals. It is undesirable to have too many marked packets

close together, and it is also undesirable to have too long an

interval between marked packets. Both of these events can

result in global synchronization, with several connections

reducing their windows at the same time, and both of these
events can occur when X ½is a geometric random variable.

Method 2. Uniform random variable

A more desirable alternative is for X to be a uniform

random variable from {1,2…… 1/pb}. This is

achieved if the marking probability for each arriving packet is

pb/(1-count.pb), where count is the number of unmarked

packets that have arrived since last marked packet.

prob[x=n] = pb/1-(n-1)pb π(1-pb/1-ipb)=pb (9)

 = pb for 1 < n < 1/pb.

And
 Prob[X=n] = 0 for n > 1/pb. (10)

VII. EVALUATION OF RED GATEWAYS

Several general goals have been outlined for congestion
voidance schemes [14, 16]. In this section we describe how
our goals have been met by RED gateways.

A. Congestion Avoidance

 If the RED gateway in fact drops packets arriving at the
gateway when the average queue size reaches the maximum
threshold, then the RED gateway guarantees that the
calculated average queue size does not exceed the maximum

threshold. If the weight for the EWMA procedure has been set
appropriately then the RED gateway in fact controls the actual
average queue size. If the RED gateway sets a bit in packet
headers when the average queue size exceeds the maximum
threshold, rather than dropping packets, then the RED
gateway relies on the cooperation of the sources to control the
average queue size.

B. Appropriate time scale

After notifying a connection of congestion by marking a
packet, it takes at least a roundtrip time for the gateway to see
a reduction in the arrival rate. In RED gateways the time scale
for the detection of congestion roughly matches the time scale
required for connections to respond to congestion. RED
gateways don’t notify connections to reduce their windows as
a result of transient congestion at the gateway.

C. No global synchronization

The rate at which RED gateways mark packets depends on
the level of congestion. During low congestion, the gateway
has a low probability of marking each arriving packet, and as
congestion increases, the probability of marking each packet
increases. RED gateways avoid global synchronization by
marking packets at as low a rate as possible.

D. Simplicity

The RED gateway algorithm could be implemented with
moderate overhead in current networks.

E. Maximizing global power

The RED gateway explicitly controls the average queue
size. It shows that for simulations with high link utilization,
global power is higher with RED gateways than with Drop
Tail gateways. Future research is needed to determine the
optimum average queue size for different network and traffic
conditions.

F. Fairness

One goal for a congestion avoidance mechanism is
fairness. This goal of fairness is not well-defined, so we
simply describe the performance of the RED gateway in this
regard. The RED gateway does not discriminate against
particular connections For the RED gateway, the fraction of
marked packets for each connection is roughly proportional to
that connection’s share of the bandwidth. However, RED
gateways do not attempt to ensure that each connection
receives the same fraction of the total throughput, and do not
explicitly control misbehaving users. RED gateways provide a
mechanism to identify the level of congestion, and RED
gateways could also be used to identify connections using a
large share of the total bandwidth. If desired, additional
mechanisms could be added to RED gateways to control the
throughput of such connections during periods of congestion.

IJRECE VOL. 2 ISSUE 1 JAN-MAR 2014 ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 23 | P a g e

Appropriate for a wide range of environments

The randomized mechanism for marking packets is

appropriate for networks with connections with a range of

roundtrip times and throughput, and for a large range in the

number of active connections at one time. Changes in the load

are detected through changes in the average queue size, and
the rate at which packets are marked is adjusted

correspondingly. The RED gateway’s performance is

discussed further in the following section. Even in a network

where RED gateways signals congestion by dropping marked

packets, there are many occasions in a TCP/IP network when

a dropped packet does not result in any decrease in load at the

gateway. If the gateway drops a data packet for a TCP

connection, this packet drop will be detected by the source,

possibly after a retransmission timer expires. If the gateway

drops an ACK packet for a TCP connection, or a packet from

a non- TCP connection, this packet drop could go unnoticed

by the source. However, even for a congested network with a
traffic mix dominated by short TCP connections or by non-

TCP connections, the RED gateway still controls the average

queue size by dropping all arriving packets when the average

queue size exceeds a maximum threshold.

VIII. CHALLENGES AND ISSUES

The RED active queue management algorithm allows
network operators to simultaneously achieve high throughput
and low average delay. However, the resulting average queue
length is quite sensitive to the level of congestion and to the
RED parameter settings, and is therefore not predictable in
advance. Delay being a major component of the quality of
service delivered to their customers, network operators would
naturally like to have a rough a priori estimate of the average
delays in their congested routers; to achieve such predictable
average delays with RED would require constant tuning of the
parameters to adjust to current traffic conditions. Our goal is
to solve this problem with minimal changes to the overall
RED algorithm. To do so, we revisit the Adaptive RED
proposal of Feng et al. from 1997 [6, 7]. We make several
algorithmic modifications to this proposal, while leaving the
basic idea intact, and then evaluate its performance using
simulation. We find that this revised version of Adaptive
RED, which can be implemented as a simple extension within
RED routers, removes the sensitivity to parameters that affect
RED’s performance and can reliably achieve a specified target
average queue length in a wide variety of traffic scenarios.
Based on extensive simulations, we believe that Adaptive

RED is sufficiently robust for deployment in routers.

IX. CONCLUSION
In this review paper we have reviewed that RED

parameters maxth and minth and the probability of dropping
packet with random variable and uniform variable methods
helps maintaining predictable queue size. But due to
parameter over sensitivity RED somehow along the path fails

to meet the expectation as we need to tradeoff between
utilization and delay.

 ACKNOWLEDGEMENT
The authors are grateful to Mr. Abhinav Bhandari

,Assistant Professor, Department of Computer Engineering
,Punjabi University , Patiala for their support and guidance.

X. REFERENCES

[1] Active queue management; a survey, Richelle

Adams, member IEEE.

[2] J. Aweya, M. Ouellette, D. Y. Montuno and A. Chapman.
Enhancing TCP Performance with a Loadadaptive RED
Mechanism. International Journal of Network Management, V.
11, N. 1, 2001

[3] J. Aweya, M. Ouellette, D. Y. Montuno and A. Chapman. A
Control Theoretic Approach to Active Queue Management.
Computer Networks 36, 2001.

[4] W. Feng, D. Kandlur, D. Saha, and K. Shin. Techniques for
Eliminating Packet Loss in Congested TCP/IP Network. U.
Michigan CSE-TR-349-97,November 1997.

[5] W. Feng, D. Kandlur, D. Saha, and K. Shin. A Self-Configuring
RED Gateway. Infocom, Mar 1999.

[6] Victor Firoiu and Marty Borden. A Study of ActiveQueue
Management for Congestion Control. Infocom, pages 1435–
1444, 2000.

[7] S. Floyd. RED: Discussions of Setting Parameters,
November1997.http://www.aciri.org/floyd/REDparameters.txt.

[8] S. Floyd, V. Jacobson. Random early detection gateways for
congestion avoidance. IEEE/ACM Transactions on Networking
(TON) August 19932309

[9] RFC: Recommendations on Queue Management and Congestion
Avoidance in the Internet

[10] T. Bonald, M. May, and J. C. Bolot. Analytic evaluation of RED
performance. IEEE INFOCOM 2000

[11] V. Firoiu, M. Borden. A Study of Active Queue Management
for Congestion Control. IEEE INFOCOM 2000

[12] J. Padhye, V. Firoiu, D. Towsley, and J. Kurose. Modeling TCP
Throughput: A Simple Model and its Empirical Validation.
ACM SIGCOMM '98.

[13] J. Padhye, V. Firoiu, D. Towsley, and J. Kurose. A Stchastic
Model of TCP Reno Congestion Avoidance and Control.
Technical Report CMPSCI TR 99-02, Univ. of Massachusetts,
Amherst, 1999.

Karanpreet Singh Virk is a M.Tech
student at University college of

engineering, Punjabi University Patiala.
His research interests include network
security, RED algorithm and DDoS
attacks.

IJRECE VOL. 2 ISSUE 1 JAN-MAR 2014 ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 24 | P a g e

Jatinder Singh Sidhu is M.Tech student
at University College of engineering,
Punjabi university Patiala. His research
interests include network security,
Intrusion detection, Wireless Sensor

Network.

Lovepreet Kaur is a M.Tech student at

University college of engineering at
Punjabi university Patiala. Her research
interests include network security and
DDoS attacks.

Abhinav Bhandari is Asstt. Professor at

University College of engineering,

Punjabi university Patiala. His research

interests include Genetical Algorithm

and Soft Computing Algroithms in

Network Security

