
	
 1	

Supplemental Materials for: Liu, Y., Reichle, E. D., & Gao, D.-G. (2012). Using

reinforcement learning to examine dynamic attention allocation during reading.

Cognitive Science. Manuscript submitted for review.

Yanping Liu

Sun Yat-Sen University, China

Erik D. Reichle

University of Pittsburgh, U.S.A.

&

Ding-Guo Gao

Sun Yat-Sen University, China

Note: This is a draft; please do not cite without permission.
Address correspondence to:

Erik D. Reichle
University of Pittsburgh
635 LRDC, 3939 O’Hara St.
Pittsburgh, PA 15260 U.S.A.
e-mail: reichle@pitt.edu

	
 2	

These supplementary materials describe a theoretical framework that specifies

how complex behaviors that seemingly require an explicit "teaching signal" for

error-driven learning (Rumelhart, Hinton, & Williams, 1986) might instead be

acquired via simple reinforcement (Sutton & Barto, 1998). This framework includes

algorithms that specify the evolution of artificial neural network topologies capable of

learning of large-scale, complex problems using only information about the quality of

a network's performance.

Figure 1 is a schematic diagram illustrating our algorithms for implementing

macro- and microscopic evolution to generate artificial network topologies that are

capable of solving large, complex problems via error-driven reinforcement learning.

This process starts by first generating a population of simple genomes that express

themselves as individual networks (i.e., as phenotypes). Each network is then trained

on the same problem using the (residual) reinforcement-learning algorithm to adjust

the network’s connection weights. A microscopic evolutionary algorithm (i.e.,

CMA-ES; Hansen, 2006; Hansen & Kern, 2004; Hansen, Müller, & Koumoutsakos,

2003; Hansen & Ostermeier, 2001; Igel, Hansen, & Roth, 2007; Suttorp, Hansen, &

Igel, 2009) is then used to “nudge” the evolutionary process towards a better solution.

Each network’s performance (i.e., fitness) is then evaluated by summing the reward

that it received. If the overall fitness of the population fails to improve (i.e., stagnates),

then the evolutionary process is “nudged” towards a better solution by increasing the

mutation rate via simulated annealing. Finally, the individual networks are allowed to

generate the next generation via cloning the fittest individual, and via mutation and

crossover. We will now describe this approach in the following three sections,

explaining how our approach: (1) selects the appropriate macrostructure (i.e., network

topology) and (2) simulates the emergence of the microstructure (i.e., specific

connection weights) that support (3) reinforcement learning.

Figure 1

Macroscopic Evolution. Efficient biological evolution entails safeguards to

	
 3	

protect any innovations of the phenotype that offer a selective advantage (in terms of

ecological fitness) to the genotype, while simultaneously detecting homology between

genotypes and minimizing the structural complexity of the genotype. These

safeguards maximize the efficiency of biological evolution by minimizing the overall

size of the evolutionary “search space” that must be “traversed” to produce organisms

that are fit enough to compete and survive in specific ecological niches. Our method

of generating network topologies uses an algorithm (NeuroEvolution	
 of	
 Augmenting	

Topologies,	
 or	
 NEAT;	
 Stanley	
 &	
 Miikkulainen,	
 2002) that was specifically designed

to instantiate these three efficiency strategies as follows: First, innovations in network

topology are protected (so that they have a reasonable chance of propagating from one

generation of networks to the next) by speciation, or the evolution of separate species

that comprise distinct populations of networks that have unique topologies and that

only reproduce within their own population. Second, homologous genotypes can be

identified by historical “markers” (i.e., identifiers that reflect each network’s

evolutionary history) to allow for efficient identification and alignment of the

genomes during the crossover stage of reproduction. And finally, the structural

complexity of the genotypes is minimized by beginning the process of evolution with

the simplest possible network topology—single-layer networks containing only input

and output units.

In our approach, each genome is a linear array of genes that represents each

network’s topology. There are two basic types of genes: (1) node genes that determine

the functional role of each node (i.e., input, output, or hidden unit) in the network, and

(2) connection genes that determine the patterns of connectivity among the nodes in

the network. Figure 2 is a schematic diagram showing the relationship between a

single example genome (i.e., the genotype) and the network that it instantiates (i.e.,

the phenotype). As indicated, each node gene indicates the functional role of a node

and provides a unique identifier for that node (e.g., represented by integers in Fig. 2).

Likewise, each connection gene indicates the identities of the two nodes that are being

connected, the initial weight or strength (i.e., represented by the parameter ω) of the

connection and whether or not that connection has been enabled (i.e., set equal to a

	
 4	

value of 0 or ω), and a unique identifier for that connection (again, as represented by

the integers in Fig. 2). The unique mutation identifiers provide a numerical index that

can be used to reference each new innovation that occurs across successive

generations. (In the exposition below, this index will be called the innovation

number.)

Figure 2

The complexity of the network topology increases over successive generations

through genetic mutation. These mutations can affect both the number and type of

nodes in a network, as well as the pattern of connectivity among the nodes. These two

basic types of “connective” mutations are shown in Figure 3. New nodes are added to

a network by replacing the connection between two existing nodes with an

intermediary node that connects to the two original nodes (e.g., as shown in the left

panel of Fig. 3). The new connections joining the new node to the original two are

automatically enabled to ensure that the mutation affects the network’s overall fitness.

And similarly, mutations can affect the pattern of network connectivity by joining two

previously unconnected nodes (e.g., as shown in the right panel of Fig. 3) or changing

the strength of an existing connection between two nodes. The probability that each

type of mutation (i.e., adding a node, adding a connection, or modifying a connection)

will occur is determined probabilistically, with the overall rates of each respective

type of mutation being controlled by the parameters πadd-node, πadd-link, and πmutate-link

(for a complete list of the parameter values associated with macroscopic evolution,

see Tables 1-5).

Figure 3

Tables 1-5

The precise manner in which connections are modified also depends upon the

“severity” of a mutation, which is determined probabilistically using the parameter

	
 5	

δseverity. With probability δseverity, the mutation is considered to be “severe” and the

connection is modified in one of the following mutually exclusive ways. With

probability ccold-gauss, the mutation in the existing connection is simply canceled, and

with probability 1 – cgauss, the connection strength is sampled from a Gaussian

distribution with µw = ω (i.e., the initial weight value) and σw = 0.5. However, with

probability cgauss – ccoldgauss, the connection strength is sampled from a Gaussian

distribution with µw = 0 and σw = 0.5. The genes coding connections also have some

probability, cturn-on-off, of being turned on or off, so that connections that are enabled

become disabled and vice versa. Finally, with the insertion of a new connection, there

is some probability that two previously unconnected nodes cannot be found; when this

happens, the parameter πattempt-mutation specifies the number of attempts that are made to

locate the nodes before the effort is halted.

The problem of aligning two genomes during crossover is computationally

inexpensive because innovation numbers provide a basis for rapidly comparing any

two genomes. Those genes that are identical between two parent genomes are said to

match, and those that do not match are in either disjoint or excess, depending on

whether they occur within or outside (respectively) of the range of innovation

numbers of the other parent’s genome. Using such information, crossover between the

genomes of any two parents can occur in three different ways, as shown in Figure 4.

Figure 4

In single-point crossover, an innovation number is randomly selected from the set

of matching innovation numbers. All of the genes to the left of this point in one

parent’s genome (including disjoint genes but not excess genes because the latter by

definition do not exist to the left of the crossover point) are then copied to the genome

of the offspring, and all of the genes to the right of this point in the other parent’s

genome (including both disjoint and excess genes) are also copied to the genome of

the offspring. If the gene at the crossover point happens to correspond to a connection

weight, then that particular connection weight in the offspring is set equal to the mean

of those connection weights in the two parents.

	
 6	

In multipoint crossover, each of the two possible values of all matching genes has

an equal probability of being copied to the offspring’s genome. And because all

disjoint and excess genes can also be copied to the offspring’s genome, the offspring’s

genome can become longer than the genome of either parent. This crossover method

ensures that the offspring inherits both the shared and unique genes from both of its

parents, thereby increasing both the combinatory and exploratory potential of this

method relative to single-point crossover.

Finally, multipoint-average crossover is identical to multipoint crossover except

that, rather than randomly assigning those matching genes representing the connection

weights of one of the parents to the offspring, the offspring will instead inherit a gene

for a connection weight that is the mean of the parents’ two connection weights.

Each successive generation of networks is generated using some combination of

the three aforementioned crossover methods in conjunction with both cloning and

mutation. More specifically, with each new generation, individual offspring can be

produced in three ways, determined in a probabilistic manner: (1) via cloning or

copying the genome of a network from one generation to the next; (2) via mutating a

genome (using one of the methods described above) and then copying the mutated

genome to the next generation; and (3) via one of the three crossover methods that

were described above. As will be indicated below, the genome of the fittest individual

in each species is simply cloned from one generation to the next; each remaining

individual has a probability equal to pmutate-only of having a mutation introduced into its

genome (as described above) and that genome being copied to the next generation,

and a probability of 1 – pmutate-only of reproducing via crossover. With the latter, the

method of crossover is determined probabilistically, with the probability of

single-point, multipoint, and multipoint-average being specified by the parameters

psingle-point, pmultipoint, and pmultipoint-average, respectively. Following crossover, the genome

is left intact with probability pmate-only and a mutation is introduced to the genome with

probability 1 – pmate-only. Finally, although crossover typically occurs between two

individuals from the same species, it can with some small probability, cinter-species,

occur between two individual from different species, sometimes resulting in offspring

	
 7	

that are more fit than either parent.

Using these evolutionary methods, populations of networks having complex and

diverse topologies can evolve. However, because networks having simpler topologies

tend to optimize more rapidly than networks having more complex topologies, the

process of adding nodes and connections initially causes more complex networks to

be less fit. One method for preventing more complex network topologies from being

prematurely removed from the population is to allow speciation, or the emergence of

new “species” of networks (i.e., networks having more complex topologies) so that

they can compete within their own more specialized ecological niches. By doing this,

more complex networks are protected so that they have time to optimize their

structures to their particular niches.

The process of speciation is also made computationally efficient by using the

innovation numbers and by using the number of disjoint (D) and excess (E) genes as a

metric of genome compatibility. The main intuition of this method is that pairs of

genomes that contain large numbers of disjoint and/or excess genes are unlikely to

share much of their evolutionary history, and are thus more likely to represent distinct

species. This intuition is instantiated using a measure of the compatibility distance of

two genomes. This distance, δ, is a linear combination of D, E, and

€

W , or the mean

weight differences of matching genes, and is specified by Equation 1:

(1)

€

δ =
c1D
N

+
c2E
N

+ c3W

In Equation 1, c1, c2, and c3 are coefficients to weight the relative contributions of

the three relevant factors (i.e., excess genes, disjoint genes, and the mean weight

difference of matching genes), and N is the number of genes in the longer of the two

genomes and is used to normalize genome length. Any two genomes having a

compatibility distance exceeding some pre-specified threshold, δc, are considered to

belong to separate species and thus (usually) prohibited from breeding. In sorting

genomes into species, each genome is grouped with the first species for which δ < δc,

so that no genome belongs to more than one species.

Another potential problem associated with speciation is that one species can grow

	
 8	

without bounds, taking over the entire population. To prevent this from happening,

the number of individuals within a species is increased/decreased according to

whether its total fitness is above/below the mean fitness of the population of species.

This is done using Equation 2:

(2)

€

N j
' =

fi, ji=1

N j∑
f

where

€

N j
' is the number of individuals in species j adjusted for global mean fitness, as

specified by the right side of the equation. There, Nj is the non-adjusted number of

individuals in species j, fi,j is the adjusted (relative) fitness of individual i of species j

(as given by Equation 3), and

€

f is the mean fitness (i.e., the mean of fi,j) of the entire

population.

(3)

€

fi, j =
f i, j
raw − fworst

N j

In Equation 3,

€

fi, j
raw is the raw fitness of individual i of species j (which normal

takes on a negative value) and fworst is the worst raw fitness in the population.

Equation 3 differs from the original NEAT algorithm (Stanley & Miikkulainen, 2002)

in that the denominator is the square root of Nj rather than Nj to take advantage of

fitter species. The size of each species is thus adjusted so that the number of

individuals in more fit species tends to increase and the number of individuals in less

fit species tends to decline. With each new generation, a certain percentage

(determined by the parameter csurvival) of the best performing (i.e., most fit) of each

species is allowed to randomly produce the next generation of for their species.

A fitness amplification assumption is also added to the original NEAT algorithm

that allows the fittest individual in the population to have the unique opportunity to

contribute a copy of its genome (i.e., a clone of itself) to the next generation. This is

done using Equation 4, where fbest is the adjusted fitness value of the best-performing

member of a species, and cbest is an amplification coefficient that enhances that fitness

value so as to ensure that that individual contributes a copy of itself to the next

generation.

	
 9	

(4)

€

fbest← cbest fbest

To further enhance the reproductive advantage of better species and thereby

increase the probability of evolution being successful, a “delta coding” procedure is

introduced that “steals” or eliminates a certain number of offspring, doffspring-stolen, from

whatever species has improved the least. In a similar manner, when the least fit

species has not improved over a certain number of generations, ddrop-off-age, its overall

fitness is reduced; to protect younger species, their fitness is increased by an

amplification factor, dage-signifance.

It is worth emphasizing that the algorithm as described so far is biased to favor

networks having simple topologies. The reason for this is that the addition of nodes

and/or connections is not without cost: As the topology of a network increases, so too

does the inherent difficult associated with evaluating its contribution to a network’s

fitness. Thus, by starting the evolutionary process with the simplest possible networks

(i.e., networks without hidden units), more complex topologies are only retained if

they are justified on the grounds that they increase a network’s fitness.

Finally, the probability of mutation is determined by a simulated annealing

process (Černý, 1985; Kirkpatrick, Gelatt, & Vecchi, 1983) in which the overall

probability is initial some large value but then declines with each successive

generation. (The “simulated annealing” metaphor comes from metallurgy, were the

initial high temperature of a metal is slow decreased over time so that the atoms can

align in a way that ensures high tensile strength.) The rate of this decline is controlled

by a “temperature” parameter T, and the probabilities of adding a new node, πadd-node,

or a new connection link, πadd-link, to a network are given by Equations 5 and 6,

respectively:

(5)

€

πadd −node =max ψ1,min ψ2,x()[], where

€

x← x − 1
k1T

(6)

€

πadd − link =max ψ3,min ψ4 ,x()[], where

€

x← x − 1
k2T

where Ψ1 and Ψ2 respectively represent the lower and upper limits for the probability

of adding a node via mutation, Ψ3 and Ψ4 respectively represent the lower and upper

	
 10	

limits for the probability of adding a link via mutation, and k1 and k2 represent

coefficients for adjusting the probabilities of adding nodes and links, respectively.

Similarly, in Equation 7, Ψ5 andΨ6 respectively represent the lower and upper limits

for the probability of reproduction via mutation only, Δ is a parameter that control

how much the probability is incremented per generation, and k3 is a dynamic

coefficient that is set equal to -1 if the fitness of the population fails to improve by

some criterion, cannealing (otherwise, k3 is set equal to 1). Finally, if the fitness of the

population fails to improve, the values of the πadd-node and πadd-link are set equal to the

starting values.

(7)

€

pmutate−only =max ψ5,min ψ6,x()[], where

€

x← x + k3Δ

Microscopic evolution. Our algorithm for microscopic evolution of network

connection weights is based on the Covariance Matrix Adaptation Evolution Strategy

(CMA-ES; Hansen, 2006; Hansen & Kern, 2004; Hansen et al., 2003; Hansen &

Ostermeier, 2001; Igel et al., 2007; Suttorp et al., 2009) and provides a stochastic

method for parameter optimization of non-linear, non-convex functions. As such, it is

particularly useful for “rugged” parameter landscapes comprised of discontinuities

and local optima (e.g., sharp “ridges”) and is thus well suited to solve ill-conditioned

and non-separable problems. Some modifications of the CMA-ES algorithm were

necessary, however, to make it more amenable to the problem of evolving network

connection weights.

The general intuition behind the algorithm is that, rather than training a network

across a series of trials to find the set of connection weights that allow a network to

solve some problems, the connection weights are instead evolved. To understand how

this is done, it is first necessary to understand that the weights themselves can be

represented as a vector, and that the elements of this vector can be sampled to find

values that allow a network to solve a particular problem. In essence, this is what the

CMA-ES algorithm does: During each learning trial, a set of vectors representing

possible connection weight solutions to the problem are sampled from a sampling

distribution, and then a new mean and covariance of a sampling distribution are

	
 11	

computed that reflect the fitness of these sampled vectors. This whole process is

repeated until either a solution meeting some goodness-of-solution criterion has been

reached, or a stopping criterion has been reached.

During each trial t + 1, the λ individual vectors (i.e., candidate solutions

consisting the connection weights) are sampled using Equation 8:

(8)

€

xk
t+1~

€

N x w
t(),σ2 t()C t()() ,

€

k =1,...,λ

where

€

N x w
t(),σ2 t()C t()() is a normally distributed vector with mean

€

x w
t() , sampling

variance σ2(t), and covariance matrix C(t). (For a complete list of the parameter values

associated with microscopic evolution, see Tables 6-10.) This provides a simple

method for sampling candidate vectors of connection weights using a multi-normal

distribution, with the covariance matrix determining the degree to which sampling

proceeds in a cautious versus audacious manner.

Tables 6-10

The mean of the sampling distribution is computed using the weighted average of

the individual sampled vectors using Equation 9:

(9)

€

x w
t() = wixi:λ

t()
i=1

µ

∑

with the constraints that wi > 0 for all values of i and

€

wi =1
i=1

µ

∑ , and with the index

i:λ denoting the i-th best individual. By combining the best connection weight vectors

in this weighted manner, the mean of the sampling distribution approaches the target

solution over time.

Returning to Equation 8, C(t) represents the correlation between different

connection weights within a neural network, and σ2(t) modulates the variability

associated with the sampling distribution. Both terms are therefore vital to the success

of the algorithm. Over trials, C(t) changes as a function of both the evolutionary path,

which as its name suggests, controls the global orientation or trajectory of the

evolutionary process, thereby allowing it to converge towards a solution. C(t) is

updated using Equation 10, were ccov is a parameter that controls the rate of change,

	
 12	

µcov is a parameter for weighting between the rank-one and rank-µ update, and the

terms

€

Pc
t+1()

 and

€

S t+1() are specified by Equations 11 and 12, respectively.

(10)

€

C t+1() = 1− ccov()C t() + ccov
1

µcov
Pc

t+1() + ccov 1−
1

µcov

⎛

⎝
⎜

⎞

⎠
⎟ S t+1()

(11)

€

Pc
t+1() = pc

t+1() pc
t+1()[]T

(12)

€

S t+1() =
wi

σ2 t()i=1

µ

∑ xi:λ
t+1() − x w

t()[] xi:λt+1() − x w
t()[]

T

In Equation 11, the term

€

pc
t+1() is specified by Equation 13, which accumulates the

differences between the mean connection-weight sampling distribution vectors across

successive trials:

(13)

€

pc
t+1() = 1− cc()pct() +Hσ

t+1() cc 2 − cc()
µeff

σ t() D t+1()

where cc is learning rate for accumulation for the rank-one update of the covariance

matrix, and

€

Hσ
t+1() =1 if

€

pσ
t+1()

1− 1− cσ()2τ
< 1.4 +

2
n +1

⎛

⎝
⎜

⎞

⎠
⎟ E N 0,I()() ; otherwise,

€

Hσ
t+1() = 0. (In the preceding conditional statement, the index τ denotes the number of

completed trails.) The term µeff is the variance effective selection mass, which is

related to recombination weights and is constrained so that

€

µeff =1 wi
2

i=1

µ

∑ . Finally,

the last term in Equation 13 is the actual difference between mean sampling

distribution vectors across successive trials and is specified by Equation 14:

(14)

€

D t+1() = x w
t+1() − x w

t()()

Finally, the sampling variance in Equation 8, σ2(t), controls the overall rate of change

in the evolutionary process. The value of σ2(t)during any given trial is given by

Equation 15, in which the term is specified by Equation 16.

(15)

€

σ t+1() =σ t() exp cσ
dσ

pσ
t+1()

E N 0,I()()
−1

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

(16)

€

pσ
t+1() = 1− cσ()pσt() + cσ 2 − cσ()B t()E −1 t()BT t()

µeff

σ t() D t+1()

	
 13	

In Equation 16, the orthogonal matrix, B(t), and the diagonal matrix, E(t), are

obtained via principal component analysis of C(t) using the matrix theorem:

€

C t() = B t()E 2 t()BT t() . In Equation 15,

€

E N 0,I()() is the expected length of pσ under

random selection and is given by Equation 17:

(17)

€

E N 0,I()() =
2Γ n +1

2
⎛

⎝
⎜

⎞

⎠
⎟

Γ
n
2
⎛

⎝
⎜
⎞

⎠
⎟

≈ n 1− 1
4n

+
1
21n2

⎛

⎝
⎜

⎞

⎠
⎟

where n denotes the number of search-space dimensions, which in this application

simply corresponds to the number of connection weights.

As indicated above, our algorithm modifies the standard CMA-ES algorithm (as

described so far) to automatically inflate the population size, λ, and the number of trial

iterations for the stopping condition, τstop, whenever the algorithm stagnates, or stops

converging towards a better solution. This is done using Equations 18 and 19,

respectively, where o denotes the number of generations over which the algorithm has

stagnated, and ρ is a parameter that denotes the default number of generations.

(18)

€

λ = 4 + 3ln n + o()[]

(19)

€

τstop = ρ 1+ o()

Furthermore, to improve microscopic evolution, especially when the population is

trapped in local maxima, the sampling variance in initial trial, σ(0), is defined

according to its stagnation level using Equation 20. By increasing the sample, the

population may thereby escape the local maxima point.

(20)

€

σ 0() =min σmax,σd + oσ ln o +1()[]

where σmax represents the upper limit of initial sampling variance, σd represents the

default sampling variance, and oσ represents a coefficient for scaling the effect of

stagnation.

Finally, a fitness criterion can also be used to stop the evolutionary process. That

is, if the fitness of the network, f, exceeds some fitness threshold, fstop, or the trial

iteration exceeds some criterion, τstop, then the microscopic evolution of the

	
 14	

connection weights is halted.

Reinforcement Learning. Reinforcement learning refers to a general class of

machine-learning algorithms in which performance is “shaped” using a single training

signal corresponding to the reward/punishment that is associated with specific actions

and/or the states that result from those actions (Sutton & Barto, 1998). Of central

importance to this notion is the idea of reward prediction error, usually denoted by δ,

which represents the reward that an artificial agent anticipates in response to a

particular action and the state that then results from that action. This is represented in

Equation 21, in which R represents the immediate reward that is received from

executing the action, x represents a particular state that the agent can be in at time t,

and the value function V represents the value associated with the state. The parameter

γ is a discount parameter that determine how much the reward that is anticipated to

result from the next state, xt+1, is weighed against the immediate reward; small values

of γ thus make the agent “greedy” in that it tends to prefer actions that result in large

immediate rewards, whereas large values of γ cause the agents to prefer actions that

result in rewards over the long run. (For a complete list of the parameter values

associated with reinforcement learning, see Table 11.)

(21)

€

δ = R + γV xt+1() −V xt()

One way to implement this algorithm within a neural network is to use the

standard error-driven back-propagation algorithm (Rumelhart, et al., 1986), training

the network using each state at time t, xt, as the input, and allowing the resulting state

at time t+1, xt+1, as the output. The teaching signal for the desire output is then R

+γV(xt+1), and the weight for any given connection in the network is adjusted during

learning using Equation 22:

(22)

€

Δwdirect = α R + γV xt+1() −V xt()[] ∂V xt()
∂w

where α is a learning rate parameter that controls the rate of convergence and the

subscript “direct” denotes the name of this algorithm. Although this direct algorithm

has been used successfully in many applications (Tesauro, 1990, 1992), it is not

	
 15	

guaranteed to converge for general function-approximation systems (Baird, 1995).

To develop such an algorithm, the problem can be restated as being one of

predicting the outcome of a deterministic Markov chain, with the goal being to

specify a value function that, for any given state, xt, will give the value of the

immediate reward and the successor state, xt+1, thereby satisfying the Bellman

equation (Bellman, 1957):

(23)

€

V xt() = R +γV xt()

where <> is the expected value of all possible successor states, xt+1. For a system

having a finite number of states, the optimal value function, V*, will provide a unique

solution to the above equation, and any value function that is suboptimal will result in

an inequality called the Bellman residual. For a system with n states, the mean

squared Bellman residual is given by Equation 24, and provides a direct measure, E,

of the degree to which a given policy is suboptimal. And because the value of E is

bounded, it suggests an alternative to the direct algorithm for adjusting the connection

weights in a neural network function approximation system: by performing stochastic

gradient descent on E.

(24)

€

E =
1
n

R +γV xt+1() −V xt()
x

∑
2

Under the assumption that V is parameterized by the set of connection weights,

the adjustment to any given weight w following a transition from xt to xt+1 with reward

R is specified by Equation 25:

(25)

€

Δwresidual−gradient = −α R + γV xt+1() −V xt()[] γ ∂
∂w

V xt+1() − ∂
∂w

V xt()
⎡

⎣ ⎢
⎤

⎦ ⎥

where the “residual-gradient” subscript denotes the name of the algorithm,

residual-gradient. For a system with a finite number of states, E will equal 0 only if V

= V*. And critically, this residual-gradient algorithm is guaranteed to converge, thus

making it ideally suited for training neural networks to be function-approximation

systems. The one limitation of this algorithm, however, is that it is slow (Baird, 1995;

Williams & Baird, 1993). This limitation makes the algorithm impractical for

large-scale problems of the type that might be of interest to psychologists (e.g.,

	
 16	

Reichle & Laurent, 2006). This limitation results in the following quandary: Whereas

the direct algorithm is rapid, it is not guaranteed to converge, especially for large

problems; in contrast, the residual-gradient algorithm is guaranteed to converge, but is

slow, especially for large problems. Because both algorithms are based on gradient

descent, however, the solution to this problem is fairly straightforward: One simply

combines the two algorithms so that the adjustment to any given connection weight w

is simply some weighted average of the adjustments given by the direct and

residual-gradient algorithms. This is done using Equation 26:

(26)

€

Δwresidual = 1−φ()Δwdirect + φΔwresidual−gradient

where the subscript “residual” denotes that this is the residual algorithm. In the

equation, the parameter φ modulates the degree to which the direct and residual

gradient algorithms contribute to the adjustment of a given weight, w. Our algorithm

thus benefits from the strengths of the direct and residual-gradient algorithms by

combining the speed of the former with the convergence of the latter.

	
 17	

References

Baird, L. C. (1995). Residual algorithms: Reinforcement learning with function

approximation. In A. Prieditis & S. Russell (Eds.), Machine Learning:

Proceedings of the Twelfth International Conference on Machine Learning

(ICML95) (pp. 30-37). San Mateo, CA: Morgan Kaufman.

Bellman, R. (1957). Dynamic programming. Princeton, NJ: Princeton University

Press.

Černý, V. (1985). Thermodynamical approach to the traveling salesman problem: An

efficient simulation algorithm. Journal of Optimization Theory and

Applications, 45, 41-51.

Hansen, N. (2006). The CMA evolution strategy: A comparing review. In J. A.

Lozano, P. Larrañaga, I. Inza, & E. Bengoetxea (Eds.), Towards a New

Evolutionary Computation . Advances in estimation of distribution algorithms

(Vol. 192, pp. 75-102). Berlin: Springer.

Hensen, N. & Kern, S. (2004). Evaluating the CMA evolution strategy on multimodal

test functions. In X. Yao, E. Burke, J. A. Lozano, J. Smith, J. J.

Merelo-Guervós, J. A. Bullianaria, J. Rowe, P. Tino, A. Kabán, & H.-P.

Schwefel (Eds.), Eighth International Conference on Parallel Problem

Solving from Nature (PPSV VIII), Vol. 3242 (pp. 282-291). Berlin: Springer.

Hansen, N., Müller, S. D., & Koumoutsakos, P. (2003). Reducing the time complexity

of the derandomized evolution strategy with covariance matrix adaptation

(CMA-ES). Evolutionary Computation, 11, 1-18.

Hansen, N. & Ostermeier, A. (2001). Completely Derandomized Self-Adaptation in

Evolution Strategies. Evolutionary Computation, 9, 159-195.

Igel, C., Hansen, N., & Roth, S. (2007). Covariance matrix adaptation for

multi-objective optimization. Evolutionary Computation, 15, 1-28.

Kirkpatrick, S., Gelatt, C. D., & Vecchi, M. P. (1983). Optimization by simulated

annealing. Science, 220, 671-680.

Reichle, E. D. & Laurent, P. A. (2006). Using reinforcement learning to understand

the emergence of “intelligent” eye-movement behavior during reading.

	
 18	

Psychological Review, 113, 390-408.

Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning representations

by backpropagating errors. Nature, 323, 533-536.

Stanley, K. O. & Miikkulainen, R. (2002). Evolving neural networks through

augmenting topologies. Evolutionary Computation, 10, 99-127.

Sutton, R. S. & Barto, A. G. (1998). Reinforcement learning: An introduction.

Cambridge, MA: MIT Press.

Suttorp, T., Hansen, N., & Igel, C. (2009). Efficient covariance matrix update for

variable metric evolution strategies. Machine Learning, 75, 167-197.

Tesauro, G. (1990). Neurogammon: A neural-network backgammon program.

Proceedings of the International Joint Conference on Neural Networks (vol.3,

pp. 33-40). San Diego, CA: IEEE Press.

Tesauro, G. (1992). Practical issues in temporal difference learning. Machine

Learning, 8, 257-277.

Williams, R. J., & Baird, L. C. (1993). Tight performance bounds on greedy policies

based on imperfect value functions. Northeastern University Technical Report

NU-CCS-93-14, November.

	
 19	

Table 1: Parameters controlling mutation.

Parameter Description Value

ccold-gauss
probability of canceling weight
mutation in existing connection

0.1, if	
 δseverity =	
 true;
0.3, otherwise

cgauss
= 1 – probability of sampling new
connection from distribution having
the same mean connection strength

0.3, if	
 δseverity = true;
0.5, otherwise

cturn-on-off
probability of turning on/off the
selected connection gene 0.2

δseverity
probability of “severe” connection
weight mutation

0.5

πadd-link Probability of adding connection 0.6
πadd-node Probability of adding node 0.2

πattempt-mutation
Number of attempts to locate “lost”
nodes 50

πmutate-link Probability of connection mutation 0.9

σw Standard deviation of mutated
connection distribution 0.5

	
 20	

Table 2: Parameters controlling the reproduction of offspring.

Parameter Description Value
cbest fitness amplification coefficient for best genome 3

cinter-species probability of inter-species mating 0.2
csurvival percent of genome per species that survives 0.2

p population size 120
pmate-only probability of reproducing only via mating 0.2
Pmultipoint probability of multipoint crossover 0.6

pmultipoint-average probability of multipoint-average crossover 0.4
pmutate-only probability of mutating only 0.3
psingle-point probability of single-point crossover 0.3

	
 21	

Table 3: Parameters controlling the compatibility distance metric.

Parameter Description Value
c1 scaling factor for disjoint genes 1
c2 scaling factor for excess genes 1
c3 scaling factor for gene differences 2
δc minimal distance for 2 genomes to be in same species 3

	
 22	

Table 4: Parameters controlling the “delta coding” procedure.

Parameter Description Value
dage-significance age amplification factor 1

ddrop-off-age generations after which poor species are penalized 2000
doffspring-stolen number of offspring eliminated from unfit species 10

	
 23	

Table 5: Parameters controlling simulated annealing.

Parameter Description Value
cannealing criterion for simulated annealing 10

Δ increment for adjusting pmutate-only 0.01
k1 coefficient for adjusting probability of adding node 20
k2 coefficient for adjusting probability of adding link 10
ψ1 lower probability limit of adding node 0.02
ψ2 upper probability limit of adding node 0.04
ψ3 lower probability limit of adding link 0.1
ψ4 upper probability limit of adding link 0.2
ψ5 lower limit of pmutate-only 0.3
ψ6 upper limit of pmutate-only 0.5	

	
 24	

Table 6: Parameters controlling the initial settings.

Parameter Description Value
C(0) covariance matrix I (i.e., identity matrix)

€

pc
0() evolutionary path for covariance matrix 0

€

pσ
0() evolutionary path for variance 0

σmax upper limit for sample variance 1.0
σd default value for sample variance 0.5

oσ coefficient for scaling stagnation effect 0.01

	
 25	

Table 7: Parameters controlling the Covariance Matrix Adaptation.

Parameter Description Value

cc

learning rate for
accumulation for
rank-1 update of the
covariance matrix

4 / (n+4)

ccov
initial learning rate
for covariance matrix
update

€

1
µcov

2

n + 2()
2 + 1− 1

µcov

⎛

⎝
⎜

⎞

⎠
⎟ min 1,

2µeff −1
n + 2()2 + µeff

⎛

⎝
⎜ ⎜

⎞

⎠
⎟ ⎟

µcov
Weighting between
rank-1 and rank-m
update

µeff

	
 26	

Table 8: Parameters controlling the step size.

Parameter Description Value

cσ learning rate for accumulation of
step-size control

€

µeff + 2
n + µeff + 3

dσ damping for step-size update

€

1+ 2max 0,
µeff −1
n +1

−1
⎛

⎝
⎜ ⎜

⎞

⎠
⎟ ⎟ + cσ

	
 27	

Table 9: Parameters controlling selection and recombination.

Parameter Description Value
λ candidate sample size 4+[3 ln(n+o)]
µ parent size λ/2

µeff variance effective selection mass

€

1
wi
2

i=1

µ

∑

€

wi=1...µ Recombination weights

€

ln µ +1() − ln i()
ln µ +1() − ln j()[]j=1

µ

∑

	
 28	

Table 10: Parameters controlling the stopping conditions.

Parameter Description Value
fstop fitness stopping criterion best fitness in history
ρ default stopping coefficient 1000

	
 29	

Table 11: Initial parameters for the reinforcement learning of network connection

weights.

Parameter Description Value
α learning rate 0.05
γ discount rate 0.9
φ balance rate 0.5

	
 30	

Figure Captions

Figure 1. A schematic diagram of the evolutionary process, in its entirety. The top

box shows the population, which consists of N species of genotypes and their

resulting phenotype networks. Each generation is trained on a problem using the

residual-gradient reinforcement-learning algorithm. The micro-evolution (e.g.,

CMA-ES algorithm) is then used to sample network connection weights, so as to

“nudge” the improvement of overall fitness. The reproduction procedure is allowed to

produce the next generation via mutation, crossover, or cloning, as determined

probabilistically.

Figure 2. An example showing the coding and mapping of a single genotype (in the

top panel) onto its corresponding phenotype, an artificial neural network (in the

bottom panel). As indicated, the genotype codes node identity and type, as well as

information about connections between nodes, including their pattern of connectivity,

weight, innovation number, and whether or not they are enabled.

Figure 3. An example illustrating two types of mutations: On the left, the mutation

results in the addition of a node, while on the right, the mutation results in the addition

of a connection weight between two nodes.

Figure 4. The top panel shows the genomes of two parents, along with the

corresponding networks. The middle panel shows the two genomes aligned, as would

occur during crossover. The bottom panel shows the three different crossover methods

(single-point, multipoint, and multipoint-average) and the resulting offspring

phenotypes.

	
 31	

Figure 1.

	
 32	

Figure 2.

	
 33	

Figure 3.

	
 34	

Figure 4.

