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These supplementary materials describe a theoretical framework that specifies 

how complex behaviors that seemingly require an explicit "teaching signal" for 

error-driven learning (Rumelhart, Hinton, & Williams, 1986) might instead be 

acquired via simple reinforcement (Sutton & Barto, 1998). This framework includes 

algorithms that specify the evolution of artificial neural network topologies capable of 

learning of large-scale, complex problems using only information about the quality of 

a network's performance. 

Figure 1 is a schematic diagram illustrating our algorithms for implementing 

macro- and microscopic evolution to generate artificial network topologies that are 

capable of solving large, complex problems via error-driven reinforcement learning. 

This process starts by first generating a population of simple genomes that express 

themselves as individual networks (i.e., as phenotypes). Each network is then trained 

on the same problem using the (residual) reinforcement-learning algorithm to adjust 

the network’s connection weights. A microscopic evolutionary algorithm (i.e., 

CMA-ES; Hansen, 2006; Hansen & Kern, 2004; Hansen, Müller, & Koumoutsakos, 

2003; Hansen & Ostermeier, 2001; Igel, Hansen, & Roth, 2007; Suttorp, Hansen, & 

Igel, 2009) is then used to “nudge” the evolutionary process towards a better solution. 

Each network’s performance (i.e., fitness) is then evaluated by summing the reward 

that it received. If the overall fitness of the population fails to improve (i.e., stagnates), 

then the evolutionary process is “nudged” towards a better solution by increasing the 

mutation rate via simulated annealing. Finally, the individual networks are allowed to 

generate the next generation via cloning the fittest individual, and via mutation and 

crossover. We will now describe this approach in the following three sections, 

explaining how our approach: (1) selects the appropriate macrostructure (i.e., network 

topology) and (2) simulates the emergence of the microstructure (i.e., specific 

connection weights) that support (3) reinforcement learning. 
------------ 
Figure 1 

------------ 
Macroscopic Evolution. Efficient biological evolution entails safeguards to 
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protect any innovations of the phenotype that offer a selective advantage (in terms of 

ecological fitness) to the genotype, while simultaneously detecting homology between 

genotypes and minimizing the structural complexity of the genotype. These 

safeguards maximize the efficiency of biological evolution by minimizing the overall 

size of the evolutionary “search space” that must be “traversed” to produce organisms 

that are fit enough to compete and survive in specific ecological niches. Our method 

of generating network topologies uses an algorithm (NeuroEvolution	
  of	
  Augmenting	
  

Topologies,	
  or	
  NEAT;	
  Stanley	
  &	
  Miikkulainen,	
  2002) that was specifically designed 

to instantiate these three efficiency strategies as follows: First, innovations in network 

topology are protected (so that they have a reasonable chance of propagating from one 

generation of networks to the next) by speciation, or the evolution of separate species 

that comprise distinct populations of networks that have unique topologies and that 

only reproduce within their own population. Second, homologous genotypes can be 

identified by historical “markers” (i.e., identifiers that reflect each network’s 

evolutionary history) to allow for efficient identification and alignment of the 

genomes during the crossover stage of reproduction. And finally, the structural 

complexity of the genotypes is minimized by beginning the process of evolution with 

the simplest possible network topology—single-layer networks containing only input 

and output units. 

In our approach, each genome is a linear array of genes that represents each 

network’s topology. There are two basic types of genes: (1) node genes that determine 

the functional role of each node (i.e., input, output, or hidden unit) in the network, and 

(2) connection genes that determine the patterns of connectivity among the nodes in 

the network. Figure 2 is a schematic diagram showing the relationship between a 

single example genome (i.e., the genotype) and the network that it instantiates (i.e., 

the phenotype). As indicated, each node gene indicates the functional role of a node 

and provides a unique identifier for that node (e.g., represented by integers in Fig. 2). 

Likewise, each connection gene indicates the identities of the two nodes that are being 

connected, the initial weight or strength (i.e., represented by the parameter ω) of the 

connection and whether or not that connection has been enabled (i.e., set equal to a 
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value of 0 or ω), and a unique identifier for that connection (again, as represented by 

the integers in Fig. 2). The unique mutation identifiers provide a numerical index that 

can be used to reference each new innovation that occurs across successive 

generations. (In the exposition below, this index will be called the innovation 

number.) 
------------ 
Figure 2 

------------ 
The complexity of the network topology increases over successive generations 

through genetic mutation. These mutations can affect both the number and type of 

nodes in a network, as well as the pattern of connectivity among the nodes. These two 

basic types of “connective” mutations are shown in Figure 3. New nodes are added to 

a network by replacing the connection between two existing nodes with an 

intermediary node that connects to the two original nodes (e.g., as shown in the left 

panel of Fig. 3). The new connections joining the new node to the original two are 

automatically enabled to ensure that the mutation affects the network’s overall fitness. 

And similarly, mutations can affect the pattern of network connectivity by joining two 

previously unconnected nodes (e.g., as shown in the right panel of Fig. 3) or changing 

the strength of an existing connection between two nodes. The probability that each 

type of mutation (i.e., adding a node, adding a connection, or modifying a connection) 

will occur is determined probabilistically, with the overall rates of each respective 

type of mutation being controlled by the parameters πadd-node, πadd-link, and πmutate-link 

(for a complete list of the parameter values associated with macroscopic evolution, 

see Tables 1-5). 
------------- 
Figure 3 

------------- 
 

------------- 
Tables 1-5 
------------- 

The precise manner in which connections are modified also depends upon the 

“severity” of a mutation, which is determined probabilistically using the parameter 
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δseverity. With probability δseverity, the mutation is considered to be “severe” and the 

connection is modified in one of the following mutually exclusive ways. With 

probability ccold-gauss, the mutation in the existing connection is simply canceled, and 

with probability 1 – cgauss, the connection strength is sampled from a Gaussian 

distribution with µw = ω (i.e., the initial weight value) and σw = 0.5. However, with 

probability cgauss – ccoldgauss, the connection strength is sampled from a Gaussian 

distribution with µw = 0 and σw = 0.5. The genes coding connections also have some 

probability, cturn-on-off, of being turned on or off, so that connections that are enabled 

become disabled and vice versa. Finally, with the insertion of a new connection, there 

is some probability that two previously unconnected nodes cannot be found; when this 

happens, the parameter πattempt-mutation specifies the number of attempts that are made to 

locate the nodes before the effort is halted. 

The problem of aligning two genomes during crossover is computationally 

inexpensive because innovation numbers provide a basis for rapidly comparing any 

two genomes. Those genes that are identical between two parent genomes are said to 

match, and those that do not match are in either disjoint or excess, depending on 

whether they occur within or outside (respectively) of the range of innovation 

numbers of the other parent’s genome. Using such information, crossover between the 

genomes of any two parents can occur in three different ways, as shown in Figure 4. 
------------- 
Figure 4 

------------- 
In single-point crossover, an innovation number is randomly selected from the set 

of matching innovation numbers. All of the genes to the left of this point in one 

parent’s genome (including disjoint genes but not excess genes because the latter by 

definition do not exist to the left of the crossover point) are then copied to the genome 

of the offspring, and all of the genes to the right of this point in the other parent’s 

genome (including both disjoint and excess genes) are also copied to the genome of 

the offspring. If the gene at the crossover point happens to correspond to a connection 

weight, then that particular connection weight in the offspring is set equal to the mean 

of those connection weights in the two parents. 
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In multipoint crossover, each of the two possible values of all matching genes has 

an equal probability of being copied to the offspring’s genome. And because all 

disjoint and excess genes can also be copied to the offspring’s genome, the offspring’s 

genome can become longer than the genome of either parent. This crossover method 

ensures that the offspring inherits both the shared and unique genes from both of its 

parents, thereby increasing both the combinatory and exploratory potential of this 

method relative to single-point crossover. 

Finally, multipoint-average crossover is identical to multipoint crossover except 

that, rather than randomly assigning those matching genes representing the connection 

weights of one of the parents to the offspring, the offspring will instead inherit a gene 

for a connection weight that is the mean of the parents’ two connection weights. 

Each successive generation of networks is generated using some combination of 

the three aforementioned crossover methods in conjunction with both cloning and 

mutation. More specifically, with each new generation, individual offspring can be 

produced in three ways, determined in a probabilistic manner: (1) via cloning or 

copying the genome of a network from one generation to the next; (2) via mutating a 

genome (using one of the methods described above) and then copying the mutated 

genome to the next generation; and (3) via one of the three crossover methods that 

were described above. As will be indicated below, the genome of the fittest individual 

in each species is simply cloned from one generation to the next; each remaining 

individual has a probability equal to pmutate-only of having a mutation introduced into its 

genome (as described above) and that genome being copied to the next generation, 

and a probability of 1 – pmutate-only of reproducing via crossover. With the latter, the 

method of crossover is determined probabilistically, with the probability of 

single-point, multipoint, and multipoint-average being specified by the parameters 

psingle-point, pmultipoint, and pmultipoint-average, respectively. Following crossover, the genome 

is left intact with probability pmate-only and a mutation is introduced to the genome with 

probability 1 – pmate-only. Finally, although crossover typically occurs between two 

individuals from the same species, it can with some small probability, cinter-species, 

occur between two individual from different species, sometimes resulting in offspring 
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that are more fit than either parent. 

Using these evolutionary methods, populations of networks having complex and 

diverse topologies can evolve. However, because networks having simpler topologies 

tend to optimize more rapidly than networks having more complex topologies, the 

process of adding nodes and connections initially causes more complex networks to 

be less fit. One method for preventing more complex network topologies from being 

prematurely removed from the population is to allow speciation, or the emergence of 

new “species” of networks (i.e., networks having more complex topologies) so that 

they can compete within their own more specialized ecological niches. By doing this, 

more complex networks are protected so that they have time to optimize their 

structures to their particular niches. 

The process of speciation is also made computationally efficient by using the 

innovation numbers and by using the number of disjoint (D) and excess (E) genes as a 

metric of genome compatibility. The main intuition of this method is that pairs of 

genomes that contain large numbers of disjoint and/or excess genes are unlikely to 

share much of their evolutionary history, and are thus more likely to represent distinct 

species. This intuition is instantiated using a measure of the compatibility distance of 

two genomes. This distance, δ, is a linear combination of D, E, and 

€ 

W , or the mean 

weight differences of matching genes, and is specified by Equation 1: 

(1) 

€ 

δ =
c1D
N

+
c2E
N

+ c3W  

In Equation 1, c1, c2, and c3 are coefficients to weight the relative contributions of 

the three relevant factors (i.e., excess genes, disjoint genes, and the mean weight 

difference of matching genes), and N is the number of genes in the longer of the two 

genomes and is used to normalize genome length. Any two genomes having a 

compatibility distance exceeding some pre-specified threshold, δc, are considered to 

belong to separate species and thus (usually) prohibited from breeding. In sorting 

genomes into species, each genome is grouped with the first species for which δ < δc, 

so that no genome belongs to more than one species. 

Another potential problem associated with speciation is that one species can grow 
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without bounds, taking over the entire population. To prevent this from happening, 

the number of individuals within a species is increased/decreased according to 

whether its total fitness is above/below the mean fitness of the population of species. 

This is done using Equation 2: 

(2) 

€ 

N j
' =

fi, ji=1

N j∑
f

 

where

€ 

N j
'  is the number of individuals in species j adjusted for global mean fitness, as 

specified by the right side of the equation. There, Nj is the non-adjusted number of 

individuals in species j, fi,j is the adjusted (relative) fitness of individual i of species j 

(as given by Equation 3), and

€ 

f is the mean fitness (i.e., the mean of fi,j) of the entire 

population. 

(3) 

€ 

fi, j =
f i, j
raw − fworst

N j

 

In Equation 3, 

€ 

fi, j
raw  is the raw fitness of individual i of species j (which normal 

takes on a negative value) and fworst is the worst raw fitness in the population. 

Equation 3 differs from the original NEAT algorithm (Stanley & Miikkulainen, 2002) 

in that the denominator is the square root of Nj rather than Nj to take advantage of 

fitter species. The size of each species is thus adjusted so that the number of 

individuals in more fit species tends to increase and the number of individuals in less 

fit species tends to decline. With each new generation, a certain percentage 

(determined by the parameter csurvival) of the best performing (i.e., most fit) of each 

species is allowed to randomly produce the next generation of for their species. 

A fitness amplification assumption is also added to the original NEAT algorithm 

that allows the fittest individual in the population to have the unique opportunity to 

contribute a copy of its genome (i.e., a clone of itself) to the next generation. This is 

done using Equation 4, where fbest is the adjusted fitness value of the best-performing 

member of a species, and cbest is an amplification coefficient that enhances that fitness 

value so as to ensure that that individual contributes a copy of itself to the next 

generation. 
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(4) 

€ 

fbest← cbest fbest  

To further enhance the reproductive advantage of better species and thereby 

increase the probability of evolution being successful, a “delta coding” procedure is 

introduced that “steals” or eliminates a certain number of offspring, doffspring-stolen, from 

whatever species has improved the least. In a similar manner, when the least fit 

species has not improved over a certain number of generations, ddrop-off-age, its overall 

fitness is reduced; to protect younger species, their fitness is increased by an 

amplification factor, dage-signifance. 

It is worth emphasizing that the algorithm as described so far is biased to favor 

networks having simple topologies. The reason for this is that the addition of nodes 

and/or connections is not without cost: As the topology of a network increases, so too 

does the inherent difficult associated with evaluating its contribution to a network’s 

fitness. Thus, by starting the evolutionary process with the simplest possible networks 

(i.e., networks without hidden units), more complex topologies are only retained if 

they are justified on the grounds that they increase a network’s fitness. 

Finally, the probability of mutation is determined by a simulated annealing 

process (Černý, 1985; Kirkpatrick, Gelatt, & Vecchi, 1983) in which the overall 

probability is initial some large value but then declines with each successive 

generation. (The “simulated annealing” metaphor comes from metallurgy, were the 

initial high temperature of a metal is slow decreased over time so that the atoms can 

align in a way that ensures high tensile strength.) The rate of this decline is controlled 

by a “temperature” parameter T, and the probabilities of adding a new node, πadd-node, 

or a new connection link, πadd-link, to a network are given by Equations 5 and 6, 

respectively: 

(5) 

€ 

πadd −node =max ψ1,min ψ2,x( )[ ], where 

€ 

x← x − 1
k1T

 

(6) 

€ 

πadd − link =max ψ3,min ψ4 ,x( )[ ], where 

€ 

x← x − 1
k2T

 

where Ψ1 and Ψ2 respectively represent the lower and upper limits for the probability 

of adding a node via mutation, Ψ3 and Ψ4 respectively represent the lower and upper 



	
   10	
  

limits for the probability of adding a link via mutation, and k1 and k2 represent 

coefficients for adjusting the probabilities of adding nodes and links, respectively. 

Similarly, in Equation 7, Ψ5 andΨ6 respectively represent the lower and upper limits 

for the probability of reproduction via mutation only, Δ is a parameter that control 

how much the probability is incremented per generation, and k3 is a dynamic 

coefficient that is set equal to -1 if the fitness of the population fails to improve by 

some criterion, cannealing (otherwise, k3 is set equal to 1). Finally, if the fitness of the 

population fails to improve, the values of the πadd-node and πadd-link are set equal to the 

starting values. 

(7) 

€ 

pmutate−only =max ψ5,min ψ6,x( )[ ], where 

€ 

x← x + k3Δ  

Microscopic evolution. Our algorithm for microscopic evolution of network 

connection weights is based on the Covariance Matrix Adaptation Evolution Strategy 

(CMA-ES; Hansen, 2006; Hansen & Kern, 2004; Hansen et al., 2003; Hansen & 

Ostermeier, 2001; Igel et al., 2007; Suttorp et al., 2009) and provides a stochastic 

method for parameter optimization of non-linear, non-convex functions. As such, it is 

particularly useful for “rugged” parameter landscapes comprised of discontinuities 

and local optima (e.g., sharp “ridges”) and is thus well suited to solve ill-conditioned 

and non-separable problems. Some modifications of the CMA-ES algorithm were 

necessary, however, to make it more amenable to the problem of evolving network 

connection weights. 

The general intuition behind the algorithm is that, rather than training a network 

across a series of trials to find the set of connection weights that allow a network to 

solve some problems, the connection weights are instead evolved. To understand how 

this is done, it is first necessary to understand that the weights themselves can be 

represented as a vector, and that the elements of this vector can be sampled to find 

values that allow a network to solve a particular problem. In essence, this is what the 

CMA-ES algorithm does: During each learning trial, a set of vectors representing 

possible connection weight solutions to the problem are sampled from a sampling 

distribution, and then a new mean and covariance of a sampling distribution are 
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computed that reflect the fitness of these sampled vectors. This whole process is 

repeated until either a solution meeting some goodness-of-solution criterion has been 

reached, or a stopping criterion has been reached. 

During each trial t + 1, the λ individual vectors (i.e., candidate solutions 

consisting the connection weights) are sampled using Equation 8: 

(8) 

€ 

xk
t+1~

€ 

N x w
t( ),σ2 t( )C t( )( ) ,

€ 

k =1,...,λ  

where

€ 

N x w
t( ),σ2 t( )C t( )( )  is a normally distributed vector with mean

€ 

x w
t( ) , sampling 

variance σ2(t), and covariance matrix C(t). (For a complete list of the parameter values 

associated with microscopic evolution, see Tables 6-10.) This provides a simple 

method for sampling candidate vectors of connection weights using a multi-normal 

distribution, with the covariance matrix determining the degree to which sampling 

proceeds in a cautious versus audacious manner. 
-------------- 
Tables 6-10 
-------------- 

The mean of the sampling distribution is computed using the weighted average of 

the individual sampled vectors using Equation 9: 

(9) 

€ 

x w
t( ) = wixi:λ

t( )
i=1

µ

∑  

with the constraints that wi > 0 for all values of i and 

€ 

wi =1
i=1

µ

∑ , and with the index 

i:λ denoting the i-th best individual. By combining the best connection weight vectors 

in this weighted manner, the mean of the sampling distribution approaches the target 

solution over time. 

Returning to Equation 8, C(t) represents the correlation between different 

connection weights within a neural network, and σ2(t) modulates the variability 

associated with the sampling distribution. Both terms are therefore vital to the success 

of the algorithm. Over trials, C(t) changes as a function of both the evolutionary path, 

which as its name suggests, controls the global orientation or trajectory of the 

evolutionary process, thereby allowing it to converge towards a solution. C(t) is 

updated using Equation 10, were ccov is a parameter that controls the rate of change, 
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µcov is a parameter for weighting between the rank-one and rank-µ update, and the 

terms 

€ 

Pc
t+1( )

 and 

€ 

S t+1( ) are specified by Equations 11 and 12, respectively. 

(10) 

€ 

C t+1( ) = 1− ccov( )C t( ) + ccov
1

µcov
Pc

t+1( ) + ccov 1−
1

µcov

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ S t+1( )  

(11) 

€ 

Pc
t+1( ) = pc

t+1( ) pc
t+1( )[ ]T  

(12) 

€ 

S t+1( ) =
wi

σ2 t( )i=1

µ

∑ xi:λ
t+1( ) − x w

t( )[ ] xi:λt+1( ) − x w
t( )[ ]

T
 

In Equation 11, the term

€ 

pc
t+1( ) is specified by Equation 13, which accumulates the 

differences between the mean connection-weight sampling distribution vectors across 

successive trials: 

(13) 

€ 

pc
t+1( ) = 1− cc( )pct( ) +Hσ

t+1( ) cc 2 − cc( )
µeff

σ t( ) D t+1( )  

where cc is learning rate for accumulation for the rank-one update of the covariance 

matrix, and 

€ 

Hσ
t+1( ) =1 if 

€ 

pσ
t+1( )

1− 1− cσ( )2τ
< 1.4 +

2
n +1

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ E N 0,I( )( ) ; otherwise,

€ 

Hσ
t+1( ) = 0. (In the preceding conditional statement, the index τ denotes the number of 

completed trails.) The term µeff is the variance effective selection mass, which is 

related to recombination weights and is constrained so that 

€ 

µeff =1 wi
2

i=1

µ

∑ . Finally, 

the last term in Equation 13 is the actual difference between mean sampling 

distribution vectors across successive trials and is specified by Equation 14: 

(14) 

€ 

D t+1( ) = x w
t+1( ) − x w

t( )( )  

Finally, the sampling variance in Equation 8, σ2(t), controls the overall rate of change 

in the evolutionary process. The value of σ2(t)during any given trial is given by 

Equation 15, in which the term is specified by Equation 16. 

(15) 

€ 

σ t+1( ) =σ t( ) exp cσ
dσ

pσ
t+1( )

E N 0,I( )( )
−1

⎛ 

⎝ 

⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 

⎡ 

⎣ 

⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
 

(16) 

€ 

pσ
t+1( ) = 1− cσ( )pσt( ) + cσ 2 − cσ( )B t( )E −1 t( )BT t( )

µeff

σ t( ) D t+1( )  
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In Equation 16, the orthogonal matrix, B(t), and the diagonal matrix, E(t), are 

obtained via principal component analysis of C(t) using the matrix theorem: 

€ 

C t( ) = B t( )E 2 t( )BT t( ) . In Equation 15, 

€ 

E N 0,I( )( ) is the expected length of pσ under 

random selection and is given by Equation 17: 

(17) 

€ 

E N 0,I( )( ) =
2Γ n +1

2
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

Γ
n
2
⎛ 

⎝ 
⎜ 
⎞ 

⎠ 
⎟ 

≈ n 1− 1
4n

+
1
21n2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟  

where n denotes the number of search-space dimensions, which in this application 

simply corresponds to the number of connection weights. 

As indicated above, our algorithm modifies the standard CMA-ES algorithm (as 

described so far) to automatically inflate the population size, λ, and the number of trial 

iterations for the stopping condition, τstop, whenever the algorithm stagnates, or stops 

converging towards a better solution. This is done using Equations 18 and 19, 

respectively, where o denotes the number of generations over which the algorithm has 

stagnated, and ρ is a parameter that denotes the default number of generations. 

(18) 

€ 

λ = 4 + 3ln n + o( )[ ]  

(19) 

€ 

τstop = ρ 1+ o( )  

Furthermore, to improve microscopic evolution, especially when the population is 

trapped in local maxima, the sampling variance in initial trial, σ(0), is defined 

according to its stagnation level using Equation 20. By increasing the sample, the 

population may thereby escape the local maxima point. 

(20) 

€ 

σ 0( ) =min σmax,σd + oσ ln o +1( )[ ]  

where σmax represents the upper limit of initial sampling variance, σd represents the 

default sampling variance, and oσ represents a coefficient for scaling the effect of 

stagnation. 

Finally, a fitness criterion can also be used to stop the evolutionary process. That 

is, if the fitness of the network, f, exceeds some fitness threshold, fstop, or the trial 

iteration exceeds some criterion, τstop, then the microscopic evolution of the 
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connection weights is halted. 

Reinforcement Learning. Reinforcement learning refers to a general class of 

machine-learning algorithms in which performance is “shaped” using a single training 

signal corresponding to the reward/punishment that is associated with specific actions 

and/or the states that result from those actions (Sutton & Barto, 1998). Of central 

importance to this notion is the idea of reward prediction error, usually denoted by δ, 

which represents the reward that an artificial agent anticipates in response to a 

particular action and the state that then results from that action. This is represented in 

Equation 21, in which R represents the immediate reward that is received from 

executing the action, x represents a particular state that the agent can be in at time t, 

and the value function V represents the value associated with the state. The parameter 

γ is a discount parameter that determine how much the reward that is anticipated to 

result from the next state, xt+1, is weighed against the immediate reward; small values 

of γ thus make the agent “greedy” in that it tends to prefer actions that result in large 

immediate rewards, whereas large values of γ cause the agents to prefer actions that 

result in rewards over the long run. (For a complete list of the parameter values 

associated with reinforcement learning, see Table 11.) 

(21) 

€ 

δ = R + γV xt+1( ) −V xt( )  

One way to implement this algorithm within a neural network is to use the 

standard error-driven back-propagation algorithm (Rumelhart, et al., 1986), training 

the network using each state at time t, xt, as the input, and allowing the resulting state 

at time t+1, xt+1, as the output. The teaching signal for the desire output is then R 

+γV(xt+1), and the weight for any given connection in the network is adjusted during 

learning using Equation 22: 

(22) 

€ 

Δwdirect = α R + γV xt+1( ) −V xt( )[ ] ∂V xt( )
∂w

 

where α is a learning rate parameter that controls the rate of convergence and the 

subscript “direct” denotes the name of this algorithm. Although this direct algorithm 

has been used successfully in many applications (Tesauro, 1990, 1992), it is not 
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guaranteed to converge for general function-approximation systems (Baird, 1995). 

To develop such an algorithm, the problem can be restated as being one of 

predicting the outcome of a deterministic Markov chain, with the goal being to 

specify a value function that, for any given state, xt, will give the value of the 

immediate reward and the successor state, xt+1, thereby satisfying the Bellman 

equation (Bellman, 1957): 

(23) 

€ 

V xt( ) = R +γV xt( )  

where <> is the expected value of all possible successor states, xt+1. For a system 

having a finite number of states, the optimal value function, V*, will provide a unique 

solution to the above equation, and any value function that is suboptimal will result in 

an inequality called the Bellman residual. For a system with n states, the mean 

squared Bellman residual is given by Equation 24, and provides a direct measure, E, 

of the degree to which a given policy is suboptimal. And because the value of E is 

bounded, it suggests an alternative to the direct algorithm for adjusting the connection 

weights in a neural network function approximation system: by performing stochastic 

gradient descent on E. 

(24) 

€ 

E =
1
n

R +γV xt+1( ) −V xt( )
x

∑
2
 

Under the assumption that V is parameterized by the set of connection weights, 

the adjustment to any given weight w following a transition from xt to xt+1 with reward 

R is specified by Equation 25: 

(25) 

€ 

Δwresidual−gradient = −α R + γV xt+1( ) −V xt( )[ ] γ ∂
∂w

V xt+1( ) − ∂
∂w

V xt( )
⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥ 
 

where the “residual-gradient” subscript denotes the name of the algorithm, 

residual-gradient. For a system with a finite number of states, E will equal 0 only if V 

= V*. And critically, this residual-gradient algorithm is guaranteed to converge, thus 

making it ideally suited for training neural networks to be function-approximation 

systems. The one limitation of this algorithm, however, is that it is slow (Baird, 1995; 

Williams & Baird, 1993). This limitation makes the algorithm impractical for 

large-scale problems of the type that might be of interest to psychologists (e.g., 
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Reichle & Laurent, 2006). This limitation results in the following quandary: Whereas 

the direct algorithm is rapid, it is not guaranteed to converge, especially for large 

problems; in contrast, the residual-gradient algorithm is guaranteed to converge, but is 

slow, especially for large problems. Because both algorithms are based on gradient 

descent, however, the solution to this problem is fairly straightforward: One simply 

combines the two algorithms so that the adjustment to any given connection weight w 

is simply some weighted average of the adjustments given by the direct and 

residual-gradient algorithms. This is done using Equation 26: 

(26) 

€ 

Δwresidual = 1−φ( )Δwdirect + φΔwresidual−gradient  

where the subscript “residual” denotes that this is the residual algorithm. In the 

equation, the parameter  φ modulates the degree to which the direct and residual 

gradient algorithms contribute to the adjustment of a given weight, w. Our algorithm 

thus benefits from the strengths of the direct and residual-gradient algorithms by 

combining the speed of the former with the convergence of the latter. 
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Table 1: Parameters controlling mutation. 

 

Parameter Description Value 

ccold-gauss 
probability of canceling weight 
mutation in existing connection 

0.1, if	
  δseverity =	
  true; 
0.3, otherwise 

cgauss 
= 1 – probability of sampling new 
connection from distribution having 
the same mean connection strength 

0.3, if	
  δseverity = true; 
0.5, otherwise 

cturn-on-off 
probability of turning on/off the 
selected connection gene 0.2 

δseverity 
probability of “severe” connection 
weight mutation 

0.5 

πadd-link Probability of adding connection 0.6 
πadd-node Probability of adding node 0.2 

πattempt-mutation 
Number of attempts to locate “lost” 
nodes 50 

πmutate-link Probability of connection mutation 0.9 

σw Standard deviation of mutated 
connection distribution 0.5 
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Table 2: Parameters controlling the reproduction of offspring. 

 

Parameter Description Value 
cbest fitness amplification coefficient for best genome 3 

cinter-species probability of inter-species mating 0.2 
csurvival percent of genome per species that survives 0.2 

p population size 120 
pmate-only probability of reproducing only via mating 0.2 
Pmultipoint probability of multipoint crossover 0.6 

pmultipoint-average probability of multipoint-average crossover 0.4 
pmutate-only probability of mutating only 0.3 
psingle-point probability of single-point crossover 0.3 
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Table 3: Parameters controlling the compatibility distance metric. 

 

Parameter Description Value 
c1 scaling factor for disjoint genes 1 
c2 scaling factor for excess genes 1 
c3 scaling factor for gene differences 2 
δc minimal distance for 2 genomes to be in same species 3 
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Table 4: Parameters controlling the “delta coding” procedure. 

 

Parameter Description  Value 
dage-significance age amplification factor 1 

ddrop-off-age generations after which poor species are penalized 2000 
doffspring-stolen number of offspring eliminated from unfit species 10 
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Table 5: Parameters controlling simulated annealing. 

 

Parameter Description Value 
cannealing criterion for simulated annealing 10 

Δ increment for adjusting pmutate-only 0.01 
k1 coefficient for adjusting probability of adding node 20 
k2 coefficient for adjusting probability of adding link 10 
ψ1 lower probability limit of adding node 0.02 
ψ2 upper probability limit of adding node 0.04 
ψ3 lower probability limit of adding link 0.1 
ψ4 upper probability limit of adding link 0.2 
ψ5 lower limit of pmutate-only 0.3 
ψ6 upper limit of pmutate-only 0.5	
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Table 6: Parameters controlling the initial settings. 

 

Parameter Description Value 
C(0) covariance matrix I (i.e., identity matrix) 

€ 

pc
0( )  evolutionary path for covariance matrix 0 

€ 

pσ
0( )  evolutionary path for variance 0 

σmax upper limit for sample variance 1.0 
σd default value for sample variance 0.5 

oσ coefficient for scaling stagnation effect 0.01 
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Table 7: Parameters controlling the Covariance Matrix Adaptation. 

 

Parameter Description Value 

cc 

learning rate for 
accumulation for 
rank-1 update of the 
covariance matrix 

4 / (n+4) 

ccov 
initial learning rate 
for covariance matrix 
update 

€ 

1
µcov

2

n + 2( )
2 + 1− 1

µcov

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ min 1,

2µeff −1
n + 2( )2 + µeff

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟  

µcov 
Weighting between 
rank-1 and rank-m 
update 

µeff 
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Table 8: Parameters controlling the step size. 

 

Parameter Description Value 

cσ learning rate for accumulation of 
step-size control 

€ 

µeff + 2
n + µeff + 3

 

dσ damping for step-size update 

€ 

1+ 2max 0,
µeff −1
n +1

−1
⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ + cσ  
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Table 9: Parameters controlling selection and recombination. 

 

Parameter Description Value 
λ candidate sample size 4+[3 ln(n+o)] 
µ parent size λ/2 

µeff variance effective selection mass 

€ 

1
wi
2

i=1

µ

∑
 

€ 

wi=1...µ  Recombination weights 

€ 

ln µ +1( ) − ln i( )
ln µ +1( ) − ln j( )[ ]j=1

µ

∑
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Table 10: Parameters controlling the stopping conditions. 

 

Parameter Description Value 
fstop fitness stopping criterion best fitness in history 
ρ default stopping coefficient 1000 
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Table 11: Initial parameters for the reinforcement learning of network connection 

weights. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Parameter Description Value 
α learning rate 0.05 
γ discount rate 0.9 
φ balance rate 0.5 
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Figure Captions 

Figure 1. A schematic diagram of the evolutionary process, in its entirety. The top 

box shows the population, which consists of N species of genotypes and their 

resulting phenotype networks. Each generation is trained on a problem using the 

residual-gradient reinforcement-learning algorithm. The micro-evolution (e.g., 

CMA-ES algorithm) is then used to sample network connection weights, so as to 

“nudge” the improvement of overall fitness. The reproduction procedure is allowed to 

produce the next generation via mutation, crossover, or cloning, as determined 

probabilistically. 

Figure 2. An example showing the coding and mapping of a single genotype (in the 

top panel) onto its corresponding phenotype, an artificial neural network (in the 

bottom panel). As indicated, the genotype codes node identity and type, as well as 

information about connections between nodes, including their pattern of connectivity, 

weight, innovation number, and whether or not they are enabled. 

Figure 3. An example illustrating two types of mutations: On the left, the mutation 

results in the addition of a node, while on the right, the mutation results in the addition 

of a connection weight between two nodes. 

Figure 4. The top panel shows the genomes of two parents, along with the 

corresponding networks. The middle panel shows the two genomes aligned, as would 

occur during crossover. The bottom panel shows the three different crossover methods 

(single-point, multipoint, and multipoint-average) and the resulting offspring 

phenotypes. 
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Figure 1. 
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Figure 2. 
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Figure 3. 
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Figure 4. 

 

 

 

 

 


