Toronto Math Circles: Junior Fifth Annual Christmas Mathematics Competition

Saturday, December 15, 2018
1:00 pm - 3:00 pm
Each problem is graded on a basis of 0 to 10 points. All the necessary work to justify an answer and all the necessary steps of a proof must be shown clearly to obtain full credit. Some partial credit may be given, but only when a contestant has shown significant and substantial progress toward a solution. Calculators are not allowed.

1. Determine the sum of all multiples of 7 or 11 less than 1000 ?
2. Let $A B C$ be a right triangle with integer side lengths. Determine the minimum number of side lengths that must be even.
3. An arithmetic sequence is a sequence in which each term after the first is obtained from the previous term by adding a constant. For example, $3,5,7,9$ is an arithmetic sequence with four terms. In an arithmetic sequence, the average of the first and $999^{\text {th }}$ term is 0 . Find the $500^{\text {th }}$ term.
4. Let $A B C D$ and $E F G H$ be two rectangles that does not overlap. Using only a ruler, provide a construction of a line that divides the area of both rectangles in half. Remember to explain why your construction works.
5. Determine the number of positive integer triplets (a, b, c) such that $a+2 b+3 c=100$.

Toronto Math Circles: Senior Fifth Annual Christmas Mathematics Competition

Saturday, December 15, 2018
1:00 pm - 3:00 pm
Each problem is graded on a basis of 0 to 10 points. All the necessary work to justify an answer and all the necessary steps of a proof must be shown clearly to obtain full credit. Some partial credit may be given, but only when a contestant has shown significant and substantial progress toward a solution. Calculators are not allowed.

1. How many 7 digit positive integers are there such that the digits are in strictly increasing or strictly decreasing order? For example: 1234567 is one such number but 1234566 is not.
2. Determine the number of positive integer triplets (a, b, c) such that $a+2 b+3 c=100$.
3. Find the volume of the largest cylinder that can be placed in a cone with radius 5 and height 5 such that the cylinder is placed with one of its faces against the base of the cone.
4. Let $f:[0,1] \rightarrow \mathbb{R}$ such that

$$
f(0)=f(1)=1 \text { and }|f(a)-f(b)|<|a-b|
$$

for all $a \neq b$ in $[0,1]$. Determine the smallest possible value real value M such that $|f(a)-f(b)|<M$.
5. Let $S(n)$ be the sum of the digits of n. Evaluate $S\left(S\left(S\left(2005^{2005}\right)\right)\right)$.

