

RESEARCH VESSEL - NEW ORLEANS

Fire suppression options for machinery spaces in USL survey vessels under the new National Standard for Commercial Vessels

by
Rick Foster M.SFPE, NFPA
tyco Fire & Safety

Australian Transport Council

Uniform Shipping Laws Code

Section 1: Introduction, Definitions and General Requirements

(AS AMENDED TO OCTOBER 1993)

Current Legislation - USL

- Prescriptive Appendix E
- All Class 1 A
- Class 1 B C D E > 25m
- Class 2 A B C D > 25m
- Class 2 E > 35m
- Class 3 A B C > 25m

APPENDIX E

Fixed manually operated

- CO₂
- Halon 1301 or 1211
- Steam
- Inert Gas
- Foam
- Water spray

Australian Transport Council

Uniform Shipping Laws Code

Section 1: Introduction, Definitions and General Requirements

(AS AMENDED TO OCTOBER 1993)

Current Legislation

- Prescriptive Appendix F
- Class 1 B C D E > 12.5 < 25m
- Class 2 A B C > 12.5 < 25m
- Class 3 A B C > 12.5 < 25m
- Class 3 D > 25m

APPENDIX F

Fixed manual or automatic

- CO₂
- Halon 1301 or 1211

APPENDIX F

 Alternative water spray system with hand pump

1980's WORMALD HALON 1301 PROMOTION

IMO Resolution
A.719(17) Prevention of
Air Pollution from Ships
6 November 1991

Halons banned

TYCO AQUAMIST TEST BY U S COAST GUARD

IMO

- 500m³ Real fire test regime
- Gaseous systems ok
 500m³
- Water mist limited to 500m³

AUTHOR DEMONSTRATING DRY CHEMICAL POWDER FIRE EXTINGUISHER AT WORMALD FIRE TRAINING SCHOOL

Extinguishing Principles

- Remove fuel
- Remove oxygen
- Remove heat
- Break chain reaction

Let's examine how the various agents achieve extinguishment

RAN HYDROGRAPHIC SURVEY SHIP FM200 SYSTEM

HaloCarbons

- Remove fuel no
- Remove oxygen minor
- Remove heat minor
- Break chain reaction major
- NAF S-III, FM200 & CEA308
 IMO tested
- Triodide & FE13 not tested

CO₂ SYSTEM CYLINDER BANK

CO₂ & Inert Gas

- Remove fuel no
- Remove oxygen yes
- Remove heat no
- Break chain reaction no
- CO₂ IMO approved by default

TYCO STAFF IN INERGEN DISCHARGE

Inergen

- Remove fuel no
- Remove oxygen yes*
- Remove heat no
- Break chain reaction no
- * 13.7% residual O₂ and 2.5% residual CO₂ allows normal respiratory functions.
- IMO tested

Water Spray

- Remove fuel no
- Remove oxygen no
- Remove heat yes
- Break chain reaction no
- Not IMO tested

TRADITIONAL WATERSPRAY SYSTEM SCHEMATIC

Water Mist

- Remove fuel no
- Remove oxygen some
- Remove heat yes
- Break chain reaction no
- IMO tested

LOW PRESSURE WATERMIST IN MACHINERY SPACE

TYCO "MICRO-K" SYSTEM

Dry Powder & Particulate Aerosols

- Remove fuel no
- Remove oxygen minor
- Remove heat some
- Break chain reaction yes
- Not IMO tested

ANL BASS TRADER FOAM SYSTEM

Low Expansion Foam

- Remove fuel no
- Remove oxygen yes
- Remove heat some
- Break chain reaction no
- Not IMO tested

tyco

Fire & Safety

High Expansion Foam

- Remove fuel no
- Remove oxygen yes
- Remove heat some
- Break chain reaction no
- Not IMO tested

HIGH EXPANSION FOAM IN MACHINERY SPACE

Steam

- Remove fuel no
- Remove oxygen yes
- Remove heat some
- Break chain reaction no
- Not IMO tested

STEAM OUT AFTER DEMISE OF FIRETUBE BOILERS

RAN HYDROGRAPHIC SURVEY SHIP GENERATOR ROOM

Key factors for safety after agent discharge in no fire - cold compartment

- Raw agent toxicity
- Oxygen deficiency
- Visibility
- Agent scalding or frostbite from direct contact

COLLINS CLASS SUBMARINE MAIN GENERATOR ROOM

Key factors for safety after agent discharge in no fire - hot compartment

- Raw agent toxicity
- Decomposed agent toxicity
- Oxygen dilution
- Visibility / hot surfaces
- Agent scalding or frostbite from direct contact

AMOCO WHITING MAIN ENGINE ROOM 1980 LIVE FIRE TESTS WITH HALON 1301

Key factors for safety after agent discharge in Fire Compartment

- Fire product toxicity
- Heat & flame impingement
- Agent decomposition toxicity
- Oxygen deficiency
- Visibility / hot surfaces
- Agent scalding or frostbite from direct contact
- Wayfinding & obstructions

Key factors for safety after agent discharge in post fire compartment

- Fire product toxicity
- Agent decomposition toxicity
- Oxygen deficiency
- Visibility / hot surfaces
- Wayfinding & obstructions

Australian Transport Council

National Standard for Commercial Vessels

Where to now?

- Implementation of the NSCV
- Fire Safety, Part C4, in 2002 ?
- Will undoubtedly rely on Australian Standards.
- Will undoubtedly require
 National Register Compliance.
- Performance, OH&S and Safety Obligations paramount.

Australian Standard®

Gaseous fire extinguishing systems

Part 1: General requirements

Australian Standards

- AS 4214 Gaseous
- DR 99552 Gaseous
- AS4587 Water Mist
- Compliant Systems and Equipment

ANSUL FIRE RESEARCH LABORATORY

Candidate Systems and Agents

- CO_2
- FM200 🗐
- Inergen
- Foam <u></u>
- Dry Powder
- Aerosol Particulates
- Water Spray
- Steam <u>@</u>
- Water Mist

Costs & Availability

- Installation cost
- Recharge cost
- Agent availability
- Environment

Conclusion

- System must meet satisfactory performance for intended application
- System must pass IMO or other acceptable tests or be designed to Australian Standards
- Safety paramount under OH&S legislation
- Tested and supportable systems

THANK YOU FOR YOUR GENEROUS ATTENTION

Rick Foster
National Marine Coordinator
tyco Fire & Safety

www.tycotech.com.au/marine