EUREKA MATH ${ }^{2}$.

Lesson 10:

Add whole numbers and mixed numbers and add mixed numbers with related units.
CCSS Standard - 5.NF.A. 1 / 5.NF.A. 2

FLUENCY (15-min)

Choral Response: Decompose Mixed Numbers

What is the unknown part? Raise your hand when you know.

$$
1 \frac{1}{3}=1+
$$

FLUENCY (15-min)

Choral Response: Decompose Mixed Numbers

What is the unknown part? Raise your hand when you know.

FLUENCY (15-min)

Choral Response: Decompose Mixed Numbers

What is the unknown part? Raise your hand when you know.

$$
2 \frac{2}{5}=2+
$$

FLUENCY (15-min)

Choral Response: Decompose Mixed Numbers

What is the unknown part? Raise your hand when you know.

FLUENCY (15-min)

Choral Response: Decompose Mixed Numbers

What is the unknown part? Raise your hand when you know.

$$
5 \frac{6}{8}=5+
$$

FLUENCY (15-min)

Choral Response: Decompose Mixed Numbers
What is the unknown part? Raise your hand when you know.

FLUENCY (15-min)

Choral Response: Closer to 1 or 2?

Think about where 1 1/3 is located on the number line.
Is 1 1/3 closer to 1 or 2?
Raise your hand when you know?

$$
1 \frac{1}{3}
$$

1

$$
1 \frac{1}{3} \quad 1 \frac{1}{2}
$$

2

FLUENCY (15-min)

Choral Response: Closer to 1 or 2?

Think about where $13 / 4$ is located on the number line.
Is 1 3/4 closer to 1 or 2?
Raise your hand when you know?

$$
1 \frac{3}{4}
$$

FLUENCY (15-min)

Think about where 1 4/6 is located on the number line.
Is $14 / 6$ closer to 1 or 2?
Raise your hand when you know?

$$
1 \frac{4}{6}
$$

FLUENCY (15-min)

Choral Response: Closer to 1 or 2?

Think about where $13 / 8$ is located on the number line.
Is 1 3/8 closer to 1 or 2?
Raise your hand when you know?

$$
1 \frac{3}{8}
$$

FLUENCY (15-min)

Choral Response: Closer to 1 or 2?

Think about where 1 4/5 is located on the number line.
Is $14 / 5$ closer to 1 or 2?
Raise your hand when you know?

$$
1 \frac{4}{5}
$$

FLUENCY (15-min)

Choral Response: Closer to 1 or 2?

Think about where 1 3/7 is located on the number line.
Is 1 3/7 closer to 1 or 2?
Raise your hand when you know?
$1 \frac{3}{7}$


```
FLUENCY (15-min)
```


Sprint: Equivalent

SPRINT: Complete by generating an equivalent fraction.

1.	$\frac{1}{3}=\frac{}{6}$	2
2.	$\frac{3}{4}=\frac{9}{2}$	12
3.	$\frac{3}{6}=\frac{}{2}$	1
4.	$\frac{6}{10}=\frac{3}{\square}$	5

I don't expect you to finish. Do as many problems as you can. Go for YOUR personal best. Take your mark. Get set. Think!

FLUENCY (15-min)

Sprint: Equivalent Fractions

Sprint A - Page 86

Sprint A $\underbrace{1}_{\text {min }}$

STOP!!

Underline the last problem that you did.
I am going to read the answers. If you got it right, call out "Yes!" If you made a mistake, circle the answer.

Count the number you got correct and write the number at the top of the page.

THIS WILL BE YOUR PERSONAL GOAL FOR SPRINT B

Write the unknown numerator or denominator.

1.	$\frac{1}{2}=\frac{}{4}$	2
2.	$\frac{1}{3}=\frac{-}{9}$	3
3.	$\frac{1}{4}=\frac{3}{}$	12
4.	$\frac{1}{5}=\frac{2}{2}$	10
5.	$\frac{1}{6}=\frac{\square}{12}$	2
6.	$\frac{2}{3}=\frac{-}{6}$	4
7.	$\frac{2}{4}=\frac{-}{8}$	4
8.	$\frac{3}{4}=\frac{9}{\square}$	12
9.	$\frac{3}{5}=\frac{6}{6}$	10
10.	$\frac{3}{6}=\frac{\square}{12}$	6
11.	$\frac{2}{4}=\frac{-}{2}$	1
12.	$\frac{2}{6}=\frac{}{3}$	1
13.	$\frac{3}{12}=\frac{1}{}$	4
14.	$\frac{2}{10}=\frac{1}{}$	5
15.	$\frac{2}{12}=\frac{}{6}$	1
16.	$\frac{4}{6}=\frac{-}{3}$	2
17.	$\frac{6}{9}=\frac{-}{3}$	2
18.	$\frac{9}{12}=\frac{3}{\square}$	4
19.	$\frac{4}{10}=\frac{2}{\square}$	5
20.	$\frac{8}{12}=\frac{}{6}$	4

21.	$\frac{2}{3}=\frac{}{9}$	6
22.	$\frac{3}{4}=\frac{6}{-}$	8
23.	$\frac{4}{5}=\frac{}{10}$	8
24.	$\frac{4}{6}=\frac{8}{-}$	12
25.	$\frac{2}{10}=\frac{}{100}$	20
26.	$\frac{3}{6}=\frac{}{2}$	1
27.	$\frac{4}{6}=\frac{2}{\square}$	3
28.	$\frac{8}{12}=\frac{}{3}$	2
29.	$\frac{10}{12}=\frac{5}{}$	6
30.	$\frac{30}{100}=\frac{}{10}$	3
31.	$\frac{1}{2}=\frac{3}{}$	6
32.	$\frac{1}{3}=\frac{3}{}$	9
33.	$\frac{1}{2}=\frac{}{8}$	4
34.	$\frac{9}{12}=\frac{}{4}$	3
35.	$\frac{2}{4}=\frac{6}{}$	12
36.	$\frac{5}{10}=\frac{1}{}$	2
37.	$\frac{6}{10}=\frac{}{100}$	60
38.	$\frac{40}{100}=\frac{}{10}$	4
39.	$\frac{7}{10}=\frac{70}{}$	100
40.	$\frac{90}{100}=\frac{9}{-}$	10

FLUENCY (15-min)

Sprint: Equivalent Fractions

Sprint A - Page 88
Take your mark. Get set. Improve!

coccce

STOP!!

Underline the last problem that you did.
I am going to read the answers. If you got it right, call out "Yes!" If you made a mistake, circle the answer.

Count the number you got correct and write the number at the top of the page.

Determine your improved score!

Write the unknown numerator or denominator.

1.	$\frac{1}{2}=\frac{2}{2}$	4
2.	$\frac{1}{3}=\frac{3}{}$	9
3.	$\frac{1}{4}=\frac{}{12}$	3
4.	$\frac{1}{5}=\frac{}{10}$	2
5.	$\frac{1}{6}=\frac{2}{2}$	12
6.	$\frac{2}{3}=\frac{4}{}$	6
7.	$\frac{2}{4}=\frac{4}{4}$	8
8.	$\frac{3}{4}=\frac{}{12}$	9
9.	$\frac{3}{5}=\frac{}{10}$	6
10.	$\frac{3}{6}=\frac{6}{}$	12
11.	$\frac{2}{4}=\frac{1}{}$	2
12	$\frac{2}{6}=\frac{1}{1}$	3
13.	$\frac{3}{12}=\frac{}{4}$	1
14.	$\frac{2}{10}=\frac{}{5}$	1
15.	$\frac{2}{12}=\frac{1}{2}$	6
16.	$\frac{4}{6}=\frac{2}{\square}$	3
17.	$\frac{6}{9}=\frac{2}{}$	3
18.	$\frac{9}{12}=\frac{}{4}$	3
19.	$\frac{4}{10}=\frac{}{5}$	2
20.	$\frac{8}{12}=\frac{4}{4}$	6

21.	$\frac{2}{3}=\frac{6}{\square}$	9
22.	$\frac{3}{4}=\frac{-}{8}$	6
23.	$\frac{4}{5}=\frac{8}{\square}$	10
24.	$\frac{4}{6}=\frac{}{12}$	8
25.	$\frac{2}{10}=\frac{20}{}$	100
26.	$\frac{3}{6}=\frac{1}{1}$	2
27.	$\frac{4}{6}=\frac{-}{3}$	2
28.	$\frac{8}{12}=\frac{2}{\square}$	3
29.	$\frac{10}{12}=\frac{}{6}$	5
30.	$\frac{30}{100}=\frac{3}{\square}$	10
31.	$\frac{1}{2}=\frac{2}{\square}$	4
32	$\frac{1}{3}=\frac{2}{\square}$	6
33.	$\frac{1}{2}=\frac{4}{}$	8
34.	$\frac{9}{12}=\frac{3}{\square}$	4
35.	$\frac{2}{4}=\frac{}{12}$	6
36.	$\frac{5}{10}=\frac{\square}{2}$	1
37.	$\frac{6}{10}=\frac{60}{}$	100
38.	$\frac{40}{100}=\frac{4}{}$	10
39.	$\frac{7}{10}=\frac{}{100}$	70
40.	$\frac{90}{100}=\frac{}{10}$	9

```
LAUNCH (5-min)
```


Students analyze different ways of finding a SUM of whole numbers

THINK-PAIR-SHARE: What are the similarities and differences shown in the sample work?

In A, C, and D, they add to make the next 10.
A and D use the arrow way.

In C a number line is shown starting with 97 and then adding 223 instead of starting with 223 and adding 97.

In B, like units are grouped, then added.

$\begin{array}{ll} \text { A } \quad 97+223=\underline{320} \\ & 223+7 \xrightarrow{+} 230+90 \\ & 20 \end{array}$	```B 97+223 = 320 9 tens + 7 ones + 22 tens + }3\mathrm{ ones 9 tens + 22 tens=31 tens 7 ones + }3\mathrm{ ones =10 ones 310 + 10 = 320```
C $97+223=320$	$\begin{array}{ll} \text { D } & 97+223=\underline{320} \\ & 223+7 \\ & 330+70 \\ & \\ & 00+20 \\ & \end{array}$

What do these methods help us understand about addition?

Today we will use what we understand about adding whole numbers to help us add MIXED numbers.

LAUNCH (5-min)

Students analyze different ways of finding a SUM of whole numbers

MIXED NUMBERS: Understanding what a mixed number is.
The term mixed number is first introduced in grade 4 to refer to a number that is made of a whole number and a fraction less than 1 . Consider previewing the term and discussing that $2 \frac{4}{5}$ is an example of a mixed number. Label or highlight to distinguish the whole number 2 and the fraction $\frac{4}{5}$ in the mixed number $2 \frac{4}{5}$.

Discuss that a whole number is a counting number $(1,2,3, \ldots)$ or 0 . Consider using the table to give examples of a whole number, fraction, and mixed number.

LEARN (30-min)

Add with Mixed Numbers

Let's estimate the sum.
Between which two WHOLE numbers is the sum?
Why? The sum is between 5 and 6 . I know $2+3=5$, and $4 / 5$ is less than 1 . So, the sum is greater than 5 and less than 6.

$$
2 \frac{4}{5}+3
$$

Look at the number lines. What is the sum?

The sum
is $5^{4 / 5}$

LEARN (30-min)

Add with Mixed Numbers

What understanding of addition with whole numbers is visible in these methods?
How do you know?

$2+3=5$
$5+\frac{4}{5}=5 \frac{4}{5}$

$$
\begin{aligned}
& 2 \frac{4}{5}+3 \\
& 3 \xrightarrow{+2} 5 \xrightarrow{+\frac{4}{5}} 5 \frac{4}{5}
\end{aligned}
$$

We see here that we can add in different ways.
We can use number lines, number bonds, or the arrow way. We can rely on what we know about how to add whole numbers and how to add fractions to help us add mixed numbers.

LEARN (30-min)

LEARN BOOK: PAGE 89
$12 \frac{12}{30}+3 \frac{1}{5}=$

Before we find the sum, let's ask ourselves:

Between which two WHOLE numbers is the sum?

Why? The sum is between 15 and 16 . I know $12+3=15$, and both fractions are less than $1 / 2$. So, the sum is greater than 15 and less than 16.

Are we ready to add the fractions the way they are right now? Why?
No, because the fractions have different units.
Are the units related or unrelated?
The units are RELATED because 30 is a multiple of 5 and 5 is a factor of 30 .

$$
\begin{gathered}
12 \frac{12}{30}+3 \frac{1}{5}= \\
\frac{1}{5}=\frac{?}{30} \\
12 \frac{12}{30}+3 \frac{6}{30}=15 \frac{18}{30} \\
12 \frac{12}{30}+3 \frac{1}{5}= \\
\frac{12}{30}=\frac{?}{5} \\
12 \frac{2}{5}+3 \frac{1}{5}=15 \frac{3}{5}
\end{gathered}
$$

LEARN (30-min)

LEARN BOOK: PAGE 89

$$
2 \frac{3}{4}+8 \frac{7}{8}=11 \frac{5}{8}
$$

Before we find the sum, let's ask ourselves:

Between which two WHOLE numbers is the sum?

Why? The sum is between 11 and 12.1 know $87 / 8$ is about 9 and $23 / 4$ is about 3 , and $9+3=12$. The actual sum is a little less than 12 because $87 / 8$ is less than 9 , and $2 \frac{3 / 4}{}$ is less than 3.
Are we ready to add the fractions the way they are right now? Why?

No, because the fractions have different units.

Are the units related or unrelated?

The units are RELATED because 8 is a multiple of 4 and 4 is a factor of 8 .

$2 \frac{6}{8} \xrightarrow{+\frac{2}{8}} 3 \xrightarrow{+8} 11 \xrightarrow{+\frac{5}{8}} 11 \frac{5}{8}$

$$
\begin{gathered}
2 \frac{6}{8}+8 \frac{7}{8}=11 \frac{5}{8} \\
8 \frac{5}{8} \frac{2}{8} \\
2 \frac{6}{8}+\frac{2}{8}=3 \\
3+8 \frac{5}{8}=11 \frac{5}{8}
\end{gathered}
$$

What do you notice about this work?

Why do you think we can call these methods "making the next whole number"?

$$
2 \frac{6}{8}+8 \frac{7}{8}=10 \frac{13}{8}
$$

```
LAND (10-min) Exit Ticket

\section*{[ 10}
1. Add. Use the arrow way or a number bond to help you make the next whole number.
\(4 \frac{1}{2}+6 \frac{5}{8}=4-+6 \frac{5}{8}=\) \(\qquad\)

Exit Ticket - PAGE 95

Small Group Time:
Problem Set Pages 91-94
2. Add. Show your work.
\(3 \frac{2}{5}+2 \frac{2}{15}=\)

Homework:
Page 69 APPLY BOOK```

