
1

CAP 4630

Artificial Intelligence

Instructor: Sam Ganzfried

sganzfri@cis.fiu.edu



2

• http://www.ultimateaiclass.com/

• https://moodle.cis.fiu.edu/

• HW1 was due on Tuesday 10/3 

– Remember that you have up to 4 late days to use throughout 

the semester.

• HW2 out last week, due 10/17

• Midterm on 10/24

– Covering search (uninformed, informed, local, adversarial, 

constraint satisfaction), logic, and optimization



3

Upcoming lectures

• 10/5: Continue CSP

• 10/10: Wrap up CSP, start logic (propositional logic, first-order 

logic) 

• 10/12: Wrap-up logic (logical inference), start optimization 

(integer, linear optimization)

• 10/17: Continue optimization (integer, linear optimization)

• 10/19: Wrap up optimization (nonlinear optimization), go over 

homework 1 (and parts of hw2 if all students have turned it in by 

start of class), midterm review 

• 10/24: Midterm

• 10/26: Planning



4

HW2

• Due 10/17 at 2:05 in class (or 2pm on Moodle)

• It is ok to work with one partner for homework 2. Must 

include document stating whom you worked with and 

describe extent of collaboration. This policy may be 

modified for future assignments.

• Remember late day policy.



5

Minesweeper

• Minesweeper is NP-complete

• http://simon.bailey.at/random/kaye.minesweeper.pdf

http://simon.bailey.at/random/kaye.minesweeper.pdf


6

NP-completeness
• Consider Sudoku, an example of a problem that is easy to verify, 

but whose answer may be difficult to compute. Given a partially 

filled-in Sudoku grid, of any size, is there at least one legal 

solution? A proposed solution is easily verified, and the time to 

check a solution grows slowly (polynomially) as the grid gets 

bigger. However, all known algorithms for finding solutions 

take, for difficult examples, time that grows exponentially as the 

grid gets bigger. So Sudoku is in NP (quickly checkable) but 

does not seem to be in P (quickly solvable). Thousands of other 

problems seem similar, fast to check but slow to solve. 

Researchers have shown that a fast solution to any one of these 

problems could be used to build a quick solution to all the 

others, a property called NP-completeness. Decades of 

searching have not yielded a fast solution to any of these 

problems, so most scientists suspect that none of these problems 

can be solved quickly. However, this has never been proved.



7

Computational complexity

• P: polynomial-time algorithm exists

– E.g., O(n), O(n^2), O(n^3), etc.

– This is “efficient”

– Most search algorithms we saw were NOT polynomial time

– Many important AI problems can NOT be solved exactly in 

polynomial time

– Theory does not always equal practice (e.g., poker, linear 

programming)

– Polynomial-time algorithm can have constant in exponent, 

but no parameters in exponent.



8

NP

• NP: given a candidate solution, it can be verified in polynomial 

time whether it is actually a solution.

– E.g., given a coloring of Australia map, can verify easily whether every 

pair of adjacent regions is a different color

• P is a subset of NP

• NP can also include many problems for which no polynomial-

time algorithms are known

– E.g., Sudoku, Minesweeper, integer programming

• Often the best-known algorithm runtime exponential in one or 

more parameters

– E.g., for DFS it is O(b^m).

• P vs. NP problem: does there exist a polynomial-time algorithm 

for every problem in NP?



9

Minesweeper AI?

• https://luckytoilet.wordpress.com/2012/12/23/2125/

https://luckytoilet.wordpress.com/2012/12/23/2125/


10

Straightforward algorithm

• “When the number 1 has exactly one empty square 

around it, then we know there’s a mine there.”

• “If a 1 has a mine around it, then we know that all the 

other squares around the 1 cannot be mines.”

• These two inference rules are good enough to solve 

beginner grid

• “The trivially straightforward algorithm is actually 

good enough to solve the beginner and intermediate 

versions of the game a good percent of the time. 

Occasionally, if we’re lucky, it even manages to solve 

an advanced grid!”



11

Tank Solver Algorithm

• “From the lower 2, we know that one of the two circled 

squares has a mine, while the other doesn’t. We just 

don’t know which one has the mine … Although this 

doesn’t tell us anything right now, we can combine this 

information with the next 2: we can deduce that the 

two yellowed squares are empty:”

• The idea for the Tank algorithm is to enumerate all 

possible configurations of mines for a position, and see 

what’s in common between these configurations.



12

Minesweeper AI

• Will Tank Solver Algorithm always work?



13

Minesweeper

• No, sometimes we will need to “guess.” 

– This is the same idea behind inference vs. search for CSP and 

logic.



14

Minesweeper AI

• Two endgame tactics:

– “what if the mine counter reads 1? The 2-mine configuration 

is eliminated, leaving just one possibility left. We can safely 

open the three tiles on the perimeter.”

– “The mine counter reads 2. Each of the two circled regions 

gives us a 50-50 chance – and the Tank algorithm stops here. 

Of course, the middle square is safe! To modify the 

algorithm to solve these cases, when there aren’t that many 

tiles left, do the recursion on all the remaining tiles, not just 

the border tiles.”



15

How do the algorithms do?

• Experiments on advanced grid:

• The naïve algorithm could not solve it, unless we get very lucky.

• Tank Solver with probabilistic guessing solves it about 20% of 

the time.

• Adding the two endgame tricks bumps it up to a 50% success 

rate.



16

Wumpus world



17

Wumpus world

• Performance measure: +1000 for climbing out of the 

cave with the gold, -1000 for falling into a pit or being 

eaten by the wumpus, -1 for each action taken and -10 

for using up the arrow. The game ends either when the 

agent dies or when the agent climbs out of the cave.

• Environment: A 4x4 grid of rooms. The agent always 

starts in the square labeled [1,1], facing to the right. The 

locations of the gold and the wumpus are chosen 

randomly, with a uniform distribution, from the squares 

other than the start square. In addition, each square 

other than the start can be a pit, with probability 0.2.



18

Wumpus world

• Actuators: The agent can move Forward, TurnLeft by 90 

degrees, or TurnRight by 90 degrees. The agent dies a miserable 

death if it enters a square containing a pit or a live wumpus. (It 

is safe, albeit smelly, to enter a square with a dead wumpus.) If 

an agent tries to move forward and bumps into a wall, then the 

agent does not move. The action Grab can be used to pick up 

the gold if it is in the same square as the agent. The action Shoot

can be used to fire an arrow in a straight line in the direction the 

agent is facing. The arrow continues until it either hits (and 

hence kills) the wumpus or hits a wall. The agent has only one 

arrow, so only the first Shoot action has any effect. Finally, the 

action Climb can be used to climb out of the cave, but only from 

square [1,1].



19

Wumpus world

• Sensors: The agent has five sensors, each of which gives a 

single bit of information:

– In the square containing the wumpus and in the directly (not diagonally) 

adjacent squares, the agent will perceive a Stench. 

– In the squares directly adjacent to a pit, the agent will perceive a Breeze.

– In the square where the goal is, the agent will perceive a Glitter.

– When an agent walks into a wall, it will perceive a Bump.

– When the wumpus is killed, it emits a woeful Scream that can be 

perceived anywhere in the cave.

• The percepts will be given to the agent program in the form of a 

list of five symbols; for example, if there is a stench and a 

breeze, but no glitter, bump, or scream, the agent program will 

get [Stench, Breeze, None, None, None].



20

Wumpus world

• Consider a knowledge-based wumpus agent exploring the 

environment in the Figure 7.2. We use an informal knowledge 

representation language consisting of writing down symbols in a 

grid. The agent’s initial knowledge base contains the rules of the 

environment, as described previously; in particular, it knows that 

it is in [1,1] and that [1,1] is a safe square; we denote that with 

an “A” and “OK,” respectively in square [1,1].

• The first percept is [None,None,None,None,None], from which 

the agent can conclude that its neighboring squares, [1,2] and 

[2,1], are free of dangers—they are OK. Figure 7.3a shows the 

agent’s state of knowledge at this point.



21

Wumpus world



22

Wumpus world



23

Wumpus world

• A cautious agent will move only into a square that it knows to 

be OK. Let us suppose the agent decides to move forward to 

[2,1]. The agent perceives a breeze (denoted by “B”) in [2,1], so 

there must be a pit in a neighboring square. The pit cannot be in 

[1,1], by the rules of the game, so there must be a pit in [2,2] or 

[3,1] or both. The notation “P?” indicates a possible pit in those 

squares. At this point, there is only one known square that is OK 

and that as not yet been visited. So the prudent agent will turn 

around, go back to [1,1], and then proceed to [1,2].



24

Wumpus world

• The agent perceives a stench in [1,2], resulting in the state of 

knowledge shown in 7.4a. The stench in [1,2], means that there 

must be a wumpus nearby. But the wumpus cannot be in [1,1[, 

by the rules of the game, and it cannot be in [2,2] (or the agent 

would have detected a stench when it was in [2,1]). Therefore, 

the agent can infer that the wumpus is in [1,3]. The notation W! 

indicates this inference. Moreover, the lack of a breeze in [1,2] 

implies that there is no pit in [2,2]. Yet the agent has already 

inferred that there must be a pit in either [2,2] or [3,1], so this 

means it must be in [3,1]. This is a fairly difficult inference, 

because it combines knowledge gained at different times in 

different places and relies on the lack of a percept to make one 

crucial step.



25

Wumpus world

• The agent has now proved to itself that there is neither 

a pit nor a wumpus in [2,2], so it is OK to move there. 

We do not show the agent’s state of knowledge at 

[2,2]; we just assume that the agent turns and moves to 

[2,3], giving us 74b. In [2,3], the agent detects a glitter, 

so it should grab the gold and then return home.

• Note that in each case for which the agent draws a 

conclusion from the available information, that 

conclusion is guaranteed to be correct if the available 

information is correct. This is a fundamental property 

of logical reasoning. 



26

Logic

• Consider the situation in 7.3b: the agent has detected nothing in 

[1,1] and a breeze in [2,1]. These percepts, combined with the 

agent’s knowledge of the rules of the wumpus world, constitute 

the knowledge base (KB). The agent is interested (among other 

things) in whether the adjacent squares [1,2], [2,2], and [3,1] 

contain pits. Each of the three squares might or might not 

contain a pit, so (for the purposes of this example) there are 

2^3=8 possible models. These eight models are shown in 7.5. 



27



28

Logical agents

• The KB can be thought of a set of sentences or as a single 

sentence that asserts all the individual sentences. The KB is false 

in models that contradict what the agent knows—for example, 

the KB is false in any model in which [1,2] contains a pit, 

because there is no breeze in [1,1]. There are in fact just three 

models in which the KB is true, and these are shown surrounded 

by a solid line in 7.5. Now let us consider two possible 

conclusions:

– A1 = “There is no pit in [1,2]”

– A2 = “There is no pit in [2,2]”

• A1 and A2 are surrounded with dotted lines in 7.5a and 7.5b. By 

inspection, we see the following:

– In every model in which KB is true, A1 is also true.



29

Logical agents

• Hence, KB |= A1; there is no pit in [1,2]. We can also 

see that

– In some models in which KB is true, A2 is false.

• Hence, KB !|= A2; the agent cannot conclude that there 

is no pit in [2,2]. (Nor can it conclude that there is a pit 

in [2,2].)



30

Logical agents

• The preceding example not only illustrates entailment

(i.e., one sentence following logically from another) 

but also shows how the definition of entailment can be 

applied to derive conclusions—that is, to carry out 

logical inference. The inference algorithm in Figure 

7.5 is called model checking, because it enumerates all 

possible models (i.e., possible “worlds”) to check that 

alpha is true in all models in which KB is true, that is, 

that M(KB) is a subset of M(alpha).



31

Propositional logic



32

Propositional logic



33

Wumpus world

• Now that we have defined the semantics for 

propositional logic, we can construct a knowledge base 

for the wumpus world. We use the following symbols 

for each [x,y] location:

– Pxy is true if there is a pit in [x,y]

– Wxy is true if there is a wumpus in [x,y], dead or alive

– Bxy is true if the agent perceives a breeze in [x,y]

– Sxy is true if the agent perceives a stench in [x,y]



34

Wumpus world

• The sentences we write will suffice to derive !P12 (there is no 

pit in P12), as was done informally before. We label each 

sentence Ri so that we can refer to them:

– There is no pit in [1,1]: R1 : !P11

– A square is breezy if and only if there is a pit in a 

neighboring square. This has to be stated for each square; for 

now, we include just the relevant squares:

• R2: B11 <-> (P12 V P21)

• R3: B21 <-> (P11 V P22 V P31)

– The preceding sentences are true in all wumpus worlds. Now 

we include the breeze percepts for the first two squares 

visited in the specific world the agent is in, leading up to the 

situation in Figure 7.3b:

• R4: !B11, R5: B21



35

Wumpus world

• Our goal now is to decide whether KB |= A for some sentence 

A. For example, is !P12 entailed by our KB? Our first algorithm 

for inference is a model-checking approach that is a direct 

implementation of the definition of entailment: enumerate the 

models, and check that A is true in every model in which HV is 

true. Models are assignments of true or false to every 

proposition symbol. Returning to our wumpus-world example, 

the relevant proposition symbols are B11,B21,P11,P12,P21,P22, 

and P31. With seven symbols, there are 2^7=128 possible 

models; in three of these, KB is true (Figure 7.9). In those three 

models, !P12 is true, hence there is no pit in [1,2]. On the other 

hand, P22 is true in two of the three models and false in one, so 

we cannot yet tell whether there is a pit in [2,2].



36

Wumpus world

• Figure 7.9 reproduces in a more precise form the 

reasoning illustrated in Figure 7.5. A general algorithm 

for deciding entailment in propositional logic is in 

Figure 7.10. Like the BACKTRACKNIG-SEARCH 

algorithm for CSP, TT-ENTAILS? Performs a 

recursive enumeration of a finite space of assignments 

to symbols. The algorithm is sound because it 

implements directly the definition of entailment, and 

complete because it works for any KB and A and 

always terminates—there are only finitely many 

models to examine. 



37

Remember 4 criteria for search algorithms

• Completeness 

– If a solution exists, the algorithm will find it

• Optimality

• Running time

• Space requirement

• Soundness is converse of completeness: a logical 

inference algorithm is sound if it derives only entailed

sentences.

– In general, a search algorithm is sound if the following holds: 

If no solution exists, the algorithm will output that there is no 

solution (it will not output a false “solution”).



38

Soundness vs. completeness

• Recall that a sentence A is entailed by sentence B if it follows 

logically from it using one of the rules we have seen.

• Soundness is highly desirable for logical inference: an unsound 

inference procedure “essentially makes things up as it goes 

along—it announces the discovery of nonexistent needles” and 

can derive some statements that are not logically implied by the 

knowledge base.

• Completeness property is also highly desirable: an inference 

algorithm is complete if it can derive any sentence that is 

entailed. For real haystacks, which are finite in extent, it seems 

obvious that a systematic examination can always decide 

whether the needle is in the haystack. 

• These are both important for general search as well.



39

Wumpus world



40

Logical inference algorithm



41

Constraint satisfaction problems

• A constraint satisfaction problem consists of three 

components, X, D, and C:

– X is a set of variables, {X1,…,Xn}.

– D is a set of domains, {D1,…,Dn}, one for each variable.

– C is a set of constraints that specify allowable combinations 

of values.



42

Example problem: Map coloring

• Suppose that, having tired of Romania, we are looking at a map 

of Australia showing each of its states and territories. We are 

given the task of coloring each region either red, green, or blue 

in such a way that no neighboring regions have the same color. 

• To formulate this as a CSP, we define the variables to be the 

regions: X = {WA, NT, Q, NSW, V, SA, T}

• The domain of each variable is the set Di = {red, green, blue}.

• The constraints require neighboring regions to have distinct 

colors. Since there are nine places where regions border, there 

are nine constraints: C = {SA!=WA, SA!=NT,SA!=Q, etc.}

• SA!=WA is shortcut for ((SA,WA),SA!=WA), where SA!=WA 

can be fully enumerated in turn as {(red,green),(red,blue),…}



43

Integer programming

• Special case of a CSP where domain set for each 

variable is a set of integers

– Often it is finite {0,1,2,…,n} but could be infinite, 

{0,1,2,3,…..}

– Often it is just binary {0,1}

• Constraints are all LINEAR functions of the variables

– E.g., 4X1 + 3X2 <= 9

– -2.5X1 + 2X2 – 19X3 <= 22

– Cannot raise variables to powers or multiply variables 

together



44

Objective functions

• In most CSP examples we saw, the goal was just to 

find a single assignment of values to variables that 

satisfied all the constraints, and it did not matter which 

solution was found. We also considered the more 

general setting where we have “preference constraints” 

which are encoded as costs on individual variable 

assignments, leading to an overall objective function 

that want would like minimize, subject to all of the 

constraints being adhered to.



45

CSP variations

• The constraints we have described so far have all been absolute 

constraints, violation of which rules out a potential solution. 

Many real-world CSPs include preference constraints

indicating which solutions are preferred. For example, in a 

university class-scheduling problem there are absolute constraints 

that no professor can teach two classes at the same time. But we 

also may allow preference constraints: Prof. R might prefer 

teaching in the morning, whereas Prof. N prefers teaching in the 

afternoon. A schedule that has Prof. R teaching at 2 p.m. would 

still be an allowable solution (unless Prof. R happens to be the 

department chair) but would not be an optimal one. 



46

CSP variations

• Preference constraints can often be encoded as costs on 

individual variable assignments—for example, 

assigning an afternoon slot for Prof. R costs 2 points 

against the overall objective function, whereas a 

morning slot costs 1. With this formulation, CSPs with 

preferences can be solved with optimization search 

methods, either path-based or local. We call such a 

problem a constraint optimization problem, or COP. 

Linear/integer/nonlinear programming problems do 

this kind of optimization.



47

Integer programming

• Special case of a CSP where domain set for each (or 

some) variable is a set of integers

– Often it is finite {0,1,2,…,n} but could be infinite, 

{0,1,2,3,…..}

– Often it is just binary {0,1}

– Some variables do not have integer restrictions and can be 

any real number

• Constraints are all LINEAR functions of the variables

– E.g., 4X1 + 3X2 <= 9

– -2.5X1 + 2X2 – 19X3 <= 22

– Cannot raise variables to powers or multiply variables

• Objective function of the variables to optimize



48

Integer linear programming

• Often the constraints and the objective are both 

LINEAR functions of the variables, and we referring to 

integer programming (IP) as integer linear 

programming in this case (ILP). One could also 

consider other forms for the constraints and objective 

(e.g., quadratic program, quadratically-constrained 

program, conic program). Specialized algorithms exist 

for these as well, though more attention has been given 

to the linear case and typically those algorithms are 

much more effective in practice. 



49

Manufacturing site selection

• A manufacturer is planning to construct new buildings at four 

local sites designated 1, 2, 3, and 4. At each site, there are three 

possible building designs labeled A, B, and C. There is also the 

option of not using a site. The problem is to select the optimal 

combination of building sites and building designs. Preliminary 

studies have determined the required investment and net annual 

income for each of the 12 options. This information is shown in 

Table 7.1 with A1, for example, denoting design A at site 1. The 

company has an investment budget of $100 million ($100M). 

The goal is to maximize total annual income without exceeding 

the investment budget. As the optimization analyst, you are 

given the job of finding the optimal plan.



50

Manufacturing site selection

• It is an obvious requirement here that only whole 

buildings may be built and only whole designs may be 

selected. To begin creating a model, variables must be 

defined to represent each decision. Let I = {A,B,C} be 

the set of design options, and let J = {1,2,3,4} be the 

set of site options.

• Let yij = 1 if design i is used at site j, and 0 otherwise

• Also, denote by pij the annual net income and by aij

the investment required for the design/site combination 

i,j. As a first try, you propose the following model for 

finding the maximum of annual income:



51

Manufacturing site selection

• Maximize z = sumi sumj pij yij

• Subject to:

– sumi sumj aij yij <= 100

– yij in {0,1} for all i in I and j in J



52

Manufacturing site selection

• Solving the model with an appropriate algorithm for 

the parameter values given in the table, the optimal 

solution is:

– yA1=yA3=yB3=yB4=yC1=1, with all other values of yij

equal to zero and z = 40. Of the available budget, $99M is 

used.



53

Manufacturing site selection

• Your supervisor reviews the solution and questions your basic 

reasoning. You seem to have omitted some of the logic of the 

problem, because two designs are built on the same site—that is, 

A1 and C1, and also A3 and B3, are all in the solution. In 

addition, your supervisor now realizes that you were not alerted 

to several other logical restrictions imposed by the owners and 

architects—i.e., site 2 must have a building, design A can be 

used at sites 1, 2, and 3 only if it is also selected for site 4, and at 

most two of the designs may be included in the plans.

• Your solution violates all of these restrictions and must be 

discarded. The following additional constraints are needed to 

guarantee a feasible solution:



54

Manufacturing site selection

• Site 2 must have a building: sumi yi2 = 1

• There can be at most one building at each of the other 

sites: sumi yij <= 1 for j = 1,3,4

• Design A can be used at sites 1, 2, and 3 only if it is 

also selected for site 4: yA1 + yA2 + yA3 <= 3yA4.

• To formulate the constraints associated with design 

selection, three new binary variables are introduced. 

– Let wi = 1 if design i is used, 0 otherwise, for i = A,B,C

– At most two designs may be used: wA + wB + wC <= 2

– Finally, the yij and wi variables must be tied together: sumj

yij <= 4wi for i = A, B, C 



55

Manufacturing site selection

• The new model has 15 variables and 10 constraints not 

including the integrality requirement. Solving, you find 

that the optimal solution is 

yA1=yA4=yB2=yB3=wA=wB=1 with all other 

variables equal to zero and z = 37. All the budget is 

spent, but the profit has decreased.



56

Traveling salesman problem

• The travelling salesman problem (TSP) asks the following 

question: "Given a list of cities and the distances between each 

pair of cities, what is the shortest possible route that visits each 

city exactly once and returns to the origin city?“

• The problem was first formulated in 1930 and is one of the most 

intensively studied problems in optimization. It is used as a 

benchmark for many optimization methods. Even though the 

problem is computationally difficult, a large number of 

heuristics and exact algorithms are known, so that some 

instances with tens of thousands of cities can be solved 

completely and even problems with millions of cities can be 

approximated within a small fraction of 1%.



57

Traveling salesman problem



58

Traveling salesman problem

• The TSP has several applications even in its purest formulation, 

such as planning, logistics, and the manufacture of microchips. 

Slightly modified, it appears as a sub-problem in many areas, 

such as DNA sequencing. In these applications, the concept city

represents, for example, customers, soldering points, or DNA 

fragments, and the concept distance represents travelling times 

or cost, or a similarity measure between DNA fragments. The 

TSP also appears in astronomy, as astronomers observing many 

sources will want to minimize the time spent moving the 

telescope between the sources. In many applications, additional 

constraints such as limited resources or time windows may be 

imposed.



59

Traveling salesman problem



60

Linear programming

• Similar to ILP (both constraints and objective are linear 

functions of the variables). However, for LP the 

variables are not restricted to be integers; they can be 

any real number. So not only are the domains infinite 

for each variable, they are uncountably infinite. Integer 

(and e.g., binary) variables are not allowed for LP.

– Often there are nonnegativity constraints on some of the 

variables, e.g., Xi >= 0.

– Cannot impose integrality constraints, e.g., for manufacturing 

problem could not use binary variables to ensure whole 

buildings are built, and may end up with solution such as 

yij=0.8, which is nonsensical (can’t build 0.8 of a building).



61

LP vs ILP

• Which is easier to solve, LP or ILP?



62

LP vs. ILP

• Every LP is also an ILP (can just not include any 

integer variables), so clearly ILP is at least as hard as 

LP. It turns out that LP can be solved in polynomial-

time, while ILP is NP-hard. In fact, several algorithms 

for ILP involve solving a series of LP “relaxations,” 

where several of the integer variables are assigned to 

specific values and the resulting optimization 

formulation is solved as a linear program without any 

integrally-constrained variables.



63

ILP algorithms

• Exhaustive enumeration: can be performed if all 

variables have finite domain (can’t be done if there are 

non-integral variables or integral variables over infinite 

domain). Can iterate over all possible combinations of 

variable values. For each combination, test for 

feasibility (whether it satisfies all constraints). If it is 

feasible, compute the objective value, and ultimately 

output the assignment that has highest objective value 

out of feasible solutions.

• Is this algorithm efficient?



64

ILP algorithm

• Unfortunately, the number of possible solutions 

is 2n, where n is the number of variables. For n 

= 20, there are more than 1,000,000 candidates; 

for n=30, the number is greater than 

1,000,000,000, which is too large to be solved 

by computers. 



65

0-1 integer program example



66

ILP search tree



67

ILP search tree

• We draw the tree with the root at the top and the leaves

at the bottom. The circles are called nodes, and the 

lines are called branches. At the very top of the tree, 

we have node 0 or the root. As we descend the tree, 

decisions are made as indicated by the numbers on the 

branches. A negative number, -j, implies that the 

variable xj has been set equal to 0, whereas a positive 

number, +j, implies that xj has been set equal to 1.



68

ILP algorithm

• The nodes are numbered sequentially as the variables are fixed 

to either 0 or 1. The sequence will vary depending on the 

enumeration scheme. Each node k inherits all the restrictions 

defined by the branches on the path joining it to the root. This 

path is given the designation Pk. For example, at node 1 the 

decision +1 is indicated y the branch joining node 0 to node 1. 

This means we have set variable x1 equal to 1. At node 5, the 

decision -2 is indicated by the branch joining nodes 1 and 5, so 

we have the additional restriction x2 = 0. The leaves at the 

bottom of the tree signal that all variables have been fixed. Each 

of these eight nodes represents a complete solution that can be 

identified by tracing the path from the leaf node to the root and 

noting the decisions associated with the branches traversed 

along the way. Thus, node 6 represents the solution x = (1,0,1), 

whereas node 10 represents x = (0,1,1).



69

ILP algorithm

• Can perform a recursive DFS backtracking search 

algorithm (similar to both CSP backtracking search and 

minimax search) on this search tree.

• Could always branch to the left, arbitrary branching, or 

use more intelligent heuristics.

• Can integrate various pruning techniques like we did 

for minimax search (e.g., alpha-beta pruning) and for 

CSP search.



70

Branch and bound 

• LP relaxation: the ILP but without the integrality constraints

• Four alternatives:

– LP has no feasible solution (in which IP also has no feasible solution)

– LP has an optimal solution with lower objective value (in which the 

current IP optimal solution is better than the LP optimal one and cannot 

provide an improvement over the incumbent).

– Optimal solution to the LP is integer valued and feasible, and yields 

improved solution.

– None of the above: i.e., the optimal LP solution improves the objective 

but is not integer-valued.

• For first 3 cases nothing more to be done. Only for case 4 is 

further branching needed.



71

Nonlinear programming

• Quadratic objective?

• Quadratic constraints?

• Cubic objective?

• Conic objective?

• Arbitrary objective and constraints (like CSP)?



72

Midterm on Tuesday 10/24

• Material will be from lectures (which obviously 

overlap a lot with the textbooks) and from homeworks. 

• No programming or questions that require Python. 

• No questions on material from the textbooks that was 

not covered in lecture.


