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Abstract  

The standard measures of distress risk ignore the fact that firm defaults are correlated and 

that some defaults are more likely to occur in bad times.  We use risk premium computed 

from corporate credit spreads to measure a firm’s exposure to systematic variation in 

default risk.  Unlike previously used measures, the credit risk premium explicitly 

accounts for the non-diversifiable component of distress risk.  In contrast to prior findings 

in the literature, we find that stocks with higher systematic default risk exposures, have 

higher expected equity returns which are largely explained by the Fama-French risk 

factors.  We confirm the robustness of these results by using an alternative systematic 

default risk factor for firms that do not have bonds outstanding. 
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1. Introduction 

 

A fundamental tenet of asset pricing is that investors should be compensated with 

higher returns for bearing systematic risk that cannot be diversified.  As default risk 

remains a major source of potential large losses to equity investors, a number of recent 

papers have examined whether default risk is priced in the cross section of equity returns.  

Empirical work has focused on determining the probability of firms failing to meet their 

financial obligations using accounting and market-based variables and testing to see if 

estimated default probabilities are related to future realized returns. The existing 

empirical evidence contradicts theoretical expectations and suggests that firms with high 

default risk earn significantly lower average returns.
1
  

The low returns on stocks with high default risk cannot be explained by Fama-French 

(1993) risk factors.  Stocks with high distress risk tend to have higher market betas and 

load more heavily on size and value factors.  This leads to significantly negative alphas 

for the high-minus-low default risk hedge portfolio and makes the anomaly even larger in 

magnitude. These empirical results provide a challenge to the standard risk-reward trade-

off in financial markets and to the contention that small firms and value firms earn high 

average returns because they are financially distressed (Chan and Chen 1991; Fama and 

French 1996; Kapadia 2011). 

In this paper, we argue that what matters for pricing is the non-diversifiable 

component of default risk.  Figure 1, which plots the historical default rates on Moody’s 

rated corporate issuers, suggests that default rates are highly dependent on the stage of 

                                                 
1
 See for example Dichev (1998) and Campbell, Hilscher, and Szilagyi (2008) for a discussion of this 

anomaly. 
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the business cycle.  This casual analysis of the historical data suggests that there is an 

important systematic component of default risk and that the incidence of financial distress 

is correlated with macroeconomic shocks such as major recessions.  Previous papers 

measure financial distress by determining firms’ expected probabilities of default inferred 

from historical default data.  This calculation ignores the fact that firm defaults are 

correlated and that some defaults are more likely to occur in bad times, and therefore fails 

to appropriately account for the systematic nature of default risk.  Investors, however, 

would take into account the covariance of default losses from a company with the rest of 

the assets in their portfolio when pricing distress risk.
2
    

Moreover, probability of default of a firm may not necessarily reflect its exposure to 

systematic default risk. In fact, George and Hwang (2010), in a theoretical model, show 

that firms with higher sensitivities to systematic default risk reduce their leverage in order 

to reduce their probabilities of default. This can lead to a negative relationship between 

default probabilities and systematic default risk exposures. It would not be correct to rank 

firms based on their default probabilities inferred from historical default data—as done in 

Dichev (1998), Campbell, Hilscher, and Szilagyi (2008), and others in this literature - 

when examining pricing implications of default risk, because such a ranking does not 

properly reflect firms’ exposures to systematic default risk, the only type of default risk 

that should be rewarded with a premium.   

                                                 
2
 To illustrate this point, consider two portfolios of bonds with average default probabilities equal to 5% a 

year.  Even though both portfolios have the same average default rate, one bond portfolio contains 

companies that are likely to experience defaults in good states of the world whereas the second portfolio 

contains companies that are likely to default in bad states of the world.  The timing of the defaults would be 

as important in pricing these bond portfolios as their average default rates.  
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  We use two approaches to measure a firm’s exposure to the non-diversifiable 

portion of default risk.  Our first measure is credit risk premia computed from corporate 

bond credit spreads.  The fixed-income literature provides evidence of a significant risk 

premium component in corporate credit spreads, justifying our use of this measure as a 

proxy for firm exposure to systematic default risk.
3
  It has been well-documented 

(Almeida and Philippon 2007; Berndt, Duffie, Ferguson and Schranz 2005; Hull, 

Predescu, and White 2004) that there is a substantial difference between the risk-adjusted 

probabilities (or risk-neutral, as commonly denoted in contingent claim pricing) inferred 

from bond prices and physical probabilities of default inferred from historical data.  The 

difference between the two probabilities reflects the premia demanded by investors for 

being exposed to non-diversifiable default risk.  

We compute credit spreads as the difference between the bond yield of a given firm 

and the corresponding maturity-matched treasury rate.  We then compute credit risk 

premia by removing expected losses, taxes, and liquidity effects (Elton, Gruber, Agrawal 

and Mann 2001; Chen, Lesmond, and Wei 2007; Driessen and de Jong 2007) and using 

only the fraction of the spread that is due to systematic default risk exposure.  Using 

credit risk premium sorted portfolios, we find that firms with higher exposures to 

                                                 
3
 The spread between corporate bond yields and maturity-matched treasury rates is too high to be fully 

captured by expected default and has been shown to contain a large risk premium for systematic default 

risk. See, for detailed analysis, Elton et al. (2001), Huang and Huang (2003), Longstaff et al. (2005), 

Driessen (2005), and Berndt et al. (2005). 
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systematic default risk have higher excess returns.  This premium is economically and 

statistically subsumed by the Fama-French risk factors.
4
  

Our second measure of systematic default risk exposure is computed for all firms in 

the CRSP-COMPUSTAT universe.  First, we estimate the average default probability of 

all firms at each point in time and denote this average as the default risk factor.  Then, we 

fit an AR (1) model to the default risk factor, and denote the residuals as innovations in 

the default factor. Finally, we compute systematic default risk betas for each firm by 

calculating the sensitivity of a firm’s return to innovations in the default risk factor.   

Using the systematic default risk beta, we first verify that it is significantly priced in 

the cross section of corporate bond risk premia. This finding ensures that the two 

systematic default risk measures used in this study are internally consistent and justifies 

our use of corporate bond risk premium as a measure of systematic default risk exposure.  

Second, we form portfolios by sorting all equities in the CRSP-COMPUSTAT sample 

based on their systematic default risk betas.  Consistent with the bond sample results, we 

find that the portfolio with the highest systematic default risk exposure has higher returns 

than the lowest systematic default risk exposure portfolio.  Moreover, we find that once 

we control for the Fama-French risk factors, the difference in returns between the highest 

and lowest systematic default risk portfolios becomes insignificant.  

These results are consistent with basic structural models of default in which 

aggregate risk factors drive default probabilities as well as the returns on bonds and 

                                                 
4
 Our measure of systematic default risk exposure, calculated from credit spreads, limits the sample of 

firms to those that have issued corporate bonds.  To ensure the robustness of our results, we show that when 

firms are ranked based on their physical default probabilities, as previously done in the literature, the 

distress anomaly is also observed in the Bond sample. 
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equities (Merton 1974; Campello, Chen and Zhang 2008). Since equity is a long call 

while debt is a short put option on the firm’s assets, structural models propose that, if a 

firm’s asset value is determined by a set of factors, such as the Market, SMB and HML 

factors, then the same set of factors should also determine the values of claims written on 

this asset. Similarly, since default occurs when asset value falls below the face value of 

debt, the same factors should also determine conditional default probabilities. A basic 

structural model, therefore, does not predict a separate risk factor to account for default 

risk, which is consistent with our findings.   

In cross-sectional regressions we show that systematic default beta is positively 

priced on its own, but is subsumed by CAPM beta, size and value variables consistent 

with our time-series results.  When systematic default beta and default probability are 

included together in cross-sectional regressions, they are both priced significantly, but 

both lose economic and statistical significance.  These results indicate that systematic 

default beta partially explains the distress risk anomaly.  This finding is consistent with 

the theoretical model in George and Hwang (2010) which shows that firms with low 

exposures to systematic distress risk choose high leverage and, as a result, have high 

default probabilities despite having low systematic default risk exposures.  

We test and find empirical support for this notion that firms with high exposure to 

systematic default risk make capital structure choices to reduce their physical default 

probabilities.  Adding changes in systematic default risk in the empirical models of Frank 

and Goyal (2003) and Rajan and Zingales (1995), we show that an increase (decrease) in 

systematic default risk exposure predicts reduced (higher) leverage in the next period.   
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Controlling for systematic default risk exposure reduces the distress risk anomaly, but 

the fact that the distress risk anomaly is not fully explained by systematic default 

exposures suggests that default probabilities may capture information about future returns 

distinct from systematic default exposure.  One possible explanation for the remaining 

predictability of default probabilities may simply be due to an amalgamation of existing 

empirical regularities that the prior literature has uncovered. In particular, previous 

papers have shown that three stock characteristics—high idiosyncratic volatility, high 

leverage, and low profitability—are associated with high historical default rates.  These 

are the same characteristics that are known to be associated with low expected future 

returns. Within the q-theory framework (Cochrane 1991; Liu, Whited and Zhang 2009), 

low profitability (more likely to default) firms have low expected future returns.  

Similarly, firms with high leverage (more likely to default) and high idiosyncratic 

volatility (more likely to default) have low expected future stock returns (Korteweg 2010; 

Dimitrov and Jain 2008; Penman, Richardson and Tuna 2007; Ang, Hodrick, Xing and 

Zhang 2009).  In addition to the leverage channel which we examine in this paper, 

distress anomaly may be attributable to one or more of these previously documented 

return relationships.
5
     

                                                 
5
 There is a strong relationship between distress risk and these three stock characteristics. When we form 

quintile portfolios sorted on physical probabilities of default -computed using coefficients from Column 1 

of Table 2-, idiosyncratic volatility increases monotonically from 2.5% for the lowest distress group to 

4.5% for the highest distress group.  Leverage increases from 0.22 for the lowest distress group to 0.61 for 

the highest distress group. Similarly, profitability for the lowest distress group is 1.2% and decreases 

monotonically to -1.1% for the highest distress group. The 3-factor alpha for the zero cost portfolio formed 

by going long high distress stocks and shorting low distress stocks is -1.078% per month, yet this premium 

decreases to -0.36% after controlling for leverage. When we control for idiosyncratic volatility, the return 

spread between high and low distress stocks reduces to -0.29%. Finally, controlling for profitability also 

reduces the spread to -0.29% per month, at the same time making it statistically insignificant.     
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Ours is not the first paper to study the relationship between default risk and equity 

returns.  Dichev (1998) uses Altman’s z-score and Ohlson’s o-score to measure financial 

distress.  He finds a negative relationship between default risk and equity returns for the 

1981–1995 time period.  In a related study, Griffin and Lemmon (2002), using the O-

score to measure default risk, find that growth stocks with high probabilities of default 

have low returns.  Using a comprehensive set of accounting and market-based measures, 

Campbell, Hilscher, and Szilagyi (2008, hereafter CHS) show that stocks with high risk 

of default deliver anomalously low returns.  Garlappi, Shu, and Yan (2008), who obtain 

default risk measures from Moody’s KMV, find results similar to those of Dichev (1998) 

and CHS (2008). They attribute their findings to the violation of the absolute priority 

rule.  Vassalou and Xing (2004) find some evidence that distressed stocks, mainly in the 

small value group, earn higher returns.
6
 

Avramov, Jostova, and Philipov (2007) show that the negative return for high default 

risk stocks is concentrated around rating downgrades.  Chava and Purnanandam (2010) 

argue that the poor performance of high distress stocks is limited to the post-1980 period, 

when investors were positively surprised by defaults.  When they use implied cost of 

capital estimates from analysts' forecasts to proxy for ex-ante expected returns, they find 

a positive relationship between default risk and expected returns.   Campello, Chen, and 

                                                 
6
 Da and Gao (2010) argue that Vassalou and Xing’s results are driven by one-month returns on stocks in 

the highest default likelihood group that trade at very low prices.  They show that returns are contaminated 

by microstructure noise and that the positive one-month return is compensation for increased liquidity risk. 
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Zhang (2008) compute expected equity returns from corporate bonds spreads and use 

these returns to test asset pricing factors.
7
 

Our paper contributes to the literature by constructing default risk measures that rank 

equities explicitly based on their exposures to systematic default risk rather than ranking 

firms based on their physical probabilities of default.  

A concurrent paper by Friewald, Wagner, and Zechner (2014, hereafter FWZ) 

computes credit risk premia from credit default swaps (CDS’s) and ranks equities based 

on this measure. There are significant differences in the samples used, both in terms of 

cross-section and time-series, in our paper and in that of FWZ (2014).  These sample 

differences lead to different results and interpretations of the pricing of credit risk premia. 

First, FWZ (2014) results are confined to a small subsample of the with actively 

traded CDSs.  They do not find a significant distress anomaly in their CDS sample using 

physical default probabilities.
8
  In our paper, we extract credit risk premia from a large 

cross-section of bonds over a 30 year time period.  We alleviate sample selection 

concerns by showing that the distress anomaly exists for the sub-sample of firms with 

bonds, and by extending the analyses to the full CRSP universe by using an alternative 

systematic default risk measure for firms that do not have bonds outstanding.  Second, 

FWZ (2014) paper is significantly limited in terms of the time frame it analyzes.  Chava 

                                                 
7
 Our paper uses a similar methodology to back out credit risk premia from bonds.  While Campello, Chen, 

and Zhang (2008) focus on testing the importance of standard asset pricing factors, our focus is on 

examining the relationship between credit risk premia and future realized stock returns. 

 
8
 Since the focus of the literature has been on the ‘distress risk anomaly, it is important to show that the 

anomaly exists in the smaller sample from which credit risk premia is computed.  Otherwise, there is no 

anomaly to explain. 
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and Purnanandam (2010) stress the importance of looking at longer time-series when 

examining the pricing implications of default risk.  FWZ (2014) find significant CAPM 

and 3-factor alphas to high credit risk premium portfolios for the time period between 

2001 and 2010.  In our analysis of the 1980 to 2010 time period, we find a statistically 

significant and positive difference only in the raw returns of high minus low credit risk 

premium portfolios. This difference is explained by the Fama-French risk factors, 

consistent with the simple structural models of credit risk.
9
  

The rest of the paper is organized as follows.  Section 2 describes the data.  Section 3 

describes the physical default probability measure used in this study.  Section 4 describes 

the use of credit spreads as a proxy for systematic default risk exposure.  Section 5 

contains asset pricing tests, in which equities are ranked based on their physical default 

probabilities and systematic default risk exposures constructed from bond credit spreads.  

Section 6 describes the construction and use of our alternative systematic default risk 

measure and extends the equity return analyses to the full CRSP-COMPUSTAT sample.  

Section 7 provides empirical evidence for George and Hwang’s (2010) theoretical model 

by showing that an increase in systematic distress risk exposure predicts a reduction in 

leverage in the next period. Finally, Section 8 concludes.     

 

2. Data 

Corporate bond data used to compute the credit risk-premium in this study come from 

three separate databases: Lehman Brothers Fixed Income Database (Lehman) available 

                                                 
9
 We also find significant positive CAPM and 3-factor alphas for the post 2000 time period studied by 

FWZ (2014). This finding further reveals the importance of studying a longer time series in the analyses. 
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for the period 1974 to 1997, the National Association of Insurance Commissioners 

Database (NAIC) available for the period 1994 to 2006, and the Trade Reporting and 

Compliance Engine (TRACE) system dataset available for the period 2003 to 2010.  We 

also use the Fixed Income Securities Database (FISD) for bond descriptions.  Due to the 

small number of observations prior to 1980, we include only the period 1980 to 2010 in 

the analyses that follow.  We match the bond information with firm-level accounting and 

price information obtained from COMPUSTAT and CRSP for the same time period. We 

exclude financial firms (SIC codes 6000–6999) from the sample.  To avoid the influence 

of microstructure noise, we also exclude firms priced less than one dollar.   

Our sample includes all U.S. corporate bonds listed in the above datasets that satisfy a 

set of selection criteria commonly used in the corporate bond literature.
10

  We exclude all 

bonds that are matrix-priced (rather than market-priced) from the sample.  We remove all 

bonds with equity or derivative features (i.e., callable, puttable, and convertible bonds), 

bonds with warrants, and bonds with floating interest rates. Finally, we eliminate all 

bonds that have less than one year to maturity.   

For all selected bonds, we extract beginning of month credit spreads, calculated as the 

difference between the corporate bond yield and the corresponding maturity-matched 

treasury rate.  There are a number of extreme observations for the variables constructed 

from the different bond datasets. To ensure that statistical results are not heavily 

influenced by outliers, we set all observations higher than the 99
th

 percentile value of a 

given variable to the 99
th

 percentile value.  All values lower than the first percentile of 

                                                 
10

 See for instance Duffee (1999), Collin-Dufresne, Goldstein, and Martin (2001), and Avramov et al. 

(2007). 
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each variable are winsorized in the same manner.  Using credit spreads we compute 

credit risk premia (CRP) as described in the next section.  For each firm, we then 

compute a value-weighted average of that firm’s CRP, using market values of the bonds 

as weights.  There are 121,714 firm-months and 1,071 unique firms with CRP and 

corresponding firm-level accounting and market data.  There is no potential survivorship 

bias in our sample as we do not exclude bonds of firms that have gone bankrupt or bonds 

that have matured.  

We use hazard regressions using historical defaults to compute physical default 

probabilities.  Corporate defaults between 1981 and 2010 are identified from the 

Moody’s Default Risk Services’ Corporate Default database, SDC Platinum’s Corporate 

Restructurings Database, Lynn M. LoPucki's Bankruptcy Research Database, and 

Shumway’s (2001) list of defaults. We choose 1981 as the earliest year for identifying 

defaults because the Bankruptcy Reform Act of 1978 is likely to have caused the 

associations between accounting variables and the probability of default to change.  

Furthermore, we have little corporate bond yield information prior to 1980.  In all, we 

obtain a total of 1,290 firm defaults covering the period 1981–2010.  We have complete 

accounting-based measures for 728 of these defaults.  Of these 728 defaults, 118 also 

have corresponding corporate bond information.  For the full CRSP-COMPUSTAT 

sample as well as for the subsample of firms that have bonds outstanding we use 

accounting and market-based variables used by CHS (2008) when predicting defaults.  

The variables we use are the following: NIMTAAVG is a geometrically declining average 

of past values of the ratio of net income to the market value of total assets; TLMTA is the 



13 

 

ratio of total liabilities to the market value of total assets; EXRETAVG is a geometrically 

declining average of monthly log excess stock returns relative to the S&P 500 index; 

SIGMA is the standard deviation of daily stock returns over the previous three months; 

RSIZE is the log ratio of market capitalization to the market value of the S&P 500 index; 

CASHMTA is the ratio of cash to the market value of total assets; MB is the market-to-

book ratio, PRICE is the log price per share truncated at $15 for shares priced above 

$15
11

; DD is  the Merton (1974) “distance-to-default” measure, which is the difference 

between the asset value of the firm and the face value of its debt, scaled by the standard 

deviation of the firm’s asset value.  These variables are described in detail in the 

Appendix. 

The bond sample covers a small portion of the total number of companies, but a 

substantial portion in terms of total market capitalization.  For instance, in the year 1997, 

the number of firms with active bonds in our sample constitutes about 4% of all the firms 

in the market.  However, in terms of market capitalization, the dataset captures about 

40% of aggregate equity market value in 1997.  We compute summary statistics for 

default measures and financial characteristics of the companies in our bond sample and 

for all companies in CRSP.  These results are summarized in Table 1.  As not all 

companies issue bonds, it is important to discuss the limitations of our bond dataset.  Not 

surprisingly, companies in the bond sample are larger and show a slight value tilt.  They 

also have higher profitability, more leverage, and higher equity returns; they hold less 

cash and are less likely to default. There is, however, significant dispersion in size, 

                                                 
11

 This is following CHS (2008).  Truncation in this setting means that firm observations with a price 

greater than $15 are set to $15. 
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market-to-book ratio, default probability, and credit spread values of firms in the bond 

sample.  To ensure that our results are not driven by sample selection, in Section 5, we 

show that when firms are ranked based on physical default probabilities the distress 

anomaly is observed in the Bond sample.  In Section 6, we extend the analyses to the 

CRSP/COMPUSTAT sample. 

 

3. Physical Default Probabilities  

There is a vast literature on modeling the probability of default.  In this paper, we 

utilize dynamic models of default prediction (Shumway 2001; Chava and Jarrow 2004; 

CHS 2008), that avoid biases of static models by adjusting for potential duration 

dependence issues.
12

  We compute physical default probabilities by estimating a hazard 

regression using the set of defaults described in the previous section.  We use information 

available at the end of the calendar month to predict defaults 12 months ahead.  

Specifically, we assume that the probability of default in 12 months, conditional on 

survival in the dataset for 11 months, is given by: 

 

 

 

𝑃𝐷𝑖,𝑡−1(𝑌𝑖,𝑡−1+12 = 1|𝑌𝑖,𝑡−2+12 = 0 ) =
1

1 + exp(𝛽𝑋𝑖,𝑡−1)
 (1) 

where 𝑌𝑖,𝑡−1+12 is an indicator that equals one if the firm defaults in 12 months 

conditional on survival for 11 months. 𝑋𝑖,𝑡−1 is a vector of explanatory variables 

available at the time of prediction.  We use accounting and market-based variables used 

                                                 
12

 Altman (1968) and Ohlson (1980) are examples of such static models. 
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in CHS (2008) when predicting defaults.  In addition we use Merton’s distance to default 

measure that has been utilized in a number of previous studies.
13

  All the variables 

included in the hazard regressions are described in detail in the Appendix.  We use 

quarterly accounting variables lagged by two months and market variables lagged by 

one month to ensure that this information is available at the time of default prediction.   

We run two sets of hazard regressions, one using the sample of firms in the Bond 

sample, and the other using all firms in the CRSP-COMPUSTAT sample.  As mentioned 

earlier, to ensure that our results are not driven by sample selection, we construct physical 

default probabilities for the Bond sample using coefficients obtained from hazard 

regression-ns that use only the firms in the Bond sample.  This ensures that the distress 

anomaly documented by the prior literature exists for the subset of firms that have bonds 

outstanding.   

Table 2 reports the results from the hazard regressions.  In the first column, we use 

the same covariates (NIMTAAVG, TLMTA, EXRETAVG, SIGMA, RSIZE, CASHMTA, MB 

and PRICE) used in CHS (2008) to predict corporate defaults.  The sample includes all 

CRSP-COMPUSTAT firms for the 1980 to 2010 time period.  As a comparison, we 

report the estimates from the CHS (2008) study in column 2.  The coefficient estimates 

from these two regressions are very similar, suggesting that our default dataset, although 

smaller than the CHS (2008) default dataset, captures a significant portion of the 

                                                 
13

 Merton’s (1974) structural default model treats the equity value of a company as a call option on the 

company’s assets.  The probability of default is based on the “distance-to-default” measure, which is the 

difference between the asset value of the firm and the face value of its debt, scaled by the standard 

deviation of the firm’s asset value. As “distance-to-default” increases, default probability decreases.  There 

are a number of different approaches to calculating the distance-to-default measure. We follow CHS (2008) 

and Hillegeist et al. (2004) in constructing this measure, the details of which are provided in the appendix. 
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variation in firm defaults.  In column 3, we limit the sample to firms with only bonds 

outstanding.  Relative value (MB), liquidity position (CASHMTA), and share price 

(PRICE) are no longer statistically significant predictors of failure.  In the bond sample, 

relatively larger firms are less likely to default, consistent with the full CRSP-

COMPUSTAT sample.  We also use Merton’s distance to default (DD) measure as a 

predictor of defaults in the bond sample (reported in column 6).  We obtain qualitatively 

similar results to those in the full CRSP-COMPUSTAT sample using our own set of 

defaults (reported in column 4) as well as when compared to CHS (2008) results 

(reported in column 5). 

 

4. Using Corporate Spread to Measure Systematic Default Risk Exposure 

There is now a significant body of research that shows that compensation for default 

risk constitutes a considerable portion of credit spreads.
14

  We create our first systematic 

default risk exposure measure by extracting the credit risk premium component from the 

credit spreads.  Although credit risk makes up a significant portion of corporate spreads, 

liquidity risk and taxes have also been shown to be important (Elton et al. 2001; Chen, 

Lesmond, and Wei 2007; Driessen and de Jong 2007). In computing the credit risk 

premium, we take into account expected losses, taxes, and liquidity effects, and use only 

                                                 
14

 Huang and Huang (2003), using the Longstaff-Schwartz (1995) model, find that distress risk accounts for 

39%, 34%, 41%, 73%, and 93% of the corporate bond spread, respectively, for bonds rated AA, A, BAA, 

BA, and B.  Longstaff, Mithal, and Neis (2005) use the information in credit default swaps (CDS) to obtain 

direct measures of the size of the default and non-default components in corporate spreads.  They find that 

the default component represents 51% of the spread for AAA/AA-rated bonds, 56% for A-rated bonds, 

71% for BBB-rated bonds, and 83% for BB-rated bonds. Blanco, Brennan, and Marsh (2005) and Zhu 

(2006) show significant similarity in the information content of CDS spreads and bond credit spreads with 

respect to default.  They confirm, through co-integration tests, that the theoretical parity relationship 

between these two credit spreads holds as a long run equilibrium condition. 
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the fraction of the spread that is likely to be due to systematic default risk exposure.  We 

follow Driessen and de Jong (2007), Elton et al. (2001), and Campello, Chen, and Zhang 

(2008) and compute the credit risk premium (CRP) for each bond i and month t as: 

 

 
𝐶𝑅𝑃𝑖,𝑡 =  [(𝑃𝐷𝑖,𝑡 × (1 − 𝐿𝑖,𝑡) + (1 − 𝑃𝐷𝑖,𝑡)) × (1 + 𝐶𝑌𝑖,𝑡)

𝜏
]

1
𝜏

− (1 + 𝑌𝐺𝑖,𝑡) − 𝑇𝑋𝑖,𝑡

− 𝐿𝑄𝑖,𝑡 

(2) 

 

In Equation (2), PD is the τ-year physical probability of default for firm i in month t.
15

  L 

is the loss rate in the event of default.  We follow Elton et al. (2001) and Driessen and de 

Jong (2007) and use historical loss rates reported in Altman and Kishore (1998) by rating 

category.  The loss rates vary from 32% for AAA-rated firms to 62% for CCC-rated 

firms.  CY is the τ-maturity corporate bond yield, and YG is the corresponding maturity-

matched treasury yield.  The equation assumes that all losses are incurred at maturity.   

Because bond investors have to pay state and local taxes on bond coupons whereas 

treasury bond investors do not, we also remove this tax differential from the corporate 

yields. Expected tax costs, TX, are computed as: [(1 − 𝑃𝐷𝑖,𝑡) × 𝐶𝑜𝑢𝑝𝑜𝑛𝑖,𝑡 + 𝑃𝐷𝑖,𝑡 ×

(1 − 𝐿𝑖,𝑡)] × 𝑇𝑅.  The first part of this equation captures the coupon rate, Coupon, 

                                                 
15

 We compute physical default probabilities using the sample and variables from column 3 of Table 2.  In 

computing physical default probabilities, we use quarterly accounting variables lagged by two months and 

market variables lagged by one month to ensure that this information is available at the beginning of the 

month over which physical default probabilities are measured. To compute cumulative physical default 

probabilities we form ten groups (similar to rating categories) based on estimated one year default 

probabilities.  We then compute the one year transition matrix for the ten groups as in Moody’s (2011).  We 

also compute cumulative physical default probabilities for each group up to ten years.   To compute 

cumulative physical default probabilities beyond ten years, we use the one year transition matrix assuming 

it remains constant.   We obtain similar results if we use Moody’s (2011) cumulative physical default 

probabilities and one year transition matrix.  
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conditional on no default.  The second part captures the tax refund in the event of default. 

TR is the effective tax rate and following Elton et al. (2001) is set to 4.875%.   

The recent literature emphasizes the role of liquidity risk in the pricing of corporate 

bonds (Driessen and de Jong 2007; Lin, Wang and Wu 2011; Downing, Underwood and 

Xing 2005).  We explicitly account for the liquidity effect in credit spreads by computing 

liquidity risk premium for each bond in our dataset.  The analysis follows Driessen and 

de Jong (2007) and is based on a linear multifactor asset pricing model in which expected 

corporate bond returns are explained by their exposure to market risk and liquidity risk 

factors.
16

  We consider two types of liquidity risk, one originating from the equity market 

and another one originating from the treasury market. For the stock market, we use the 

liquidity innovations of Pastor and Stambaugh (2003); for the treasury market, we use 

changes in quoted bid-ask spreads on long-term treasury bonds.
17

  We compute expected 

bond returns for 11 rating-maturity groups using equation (2), and use a cross-sectional 

regression to compute risk premium associated with liquidity innovations in the stock and 

treasury markets.
18

  We then subtract the computed liquidity premium, LQ, from the 

corporate bond spreads with the corresponding rating and maturity.  Since the cross-

sectional variation in liquidity and tax effects is low by construction, we obtain similar 

results if we compute credit risk premia without taking into account liquidity and tax 

effects in the corporate bond spreads. 

                                                 
16

 As in Driessen and de Jong (2007) we also included changes in implied market volatility orthogonalized 

by market returns as an additional factor, and we obtained similar results. 

 
17

 We thank Alex Hsu for providing the data on treasury bid-ask quotes. 

   
18

 We refer to bonds with maturity greater than seven years as having “long maturity” and with maturity 

less than seven years as having “short maturity.”  
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Our results are in line with the findings in the literature (Driessen and de Jong 2007; 

Elton et al. 2001; Campello, Chen and Zhang 2008).  Figure 2 plots the computed 

expected losses, taxes, and liquidity premium against corporate spreads.  In the rest of 

this paper, we use the portion of credit spreads that compensates for systematic default 

risk exposure, net of expected losses, taxes, and liquidity premium.  We call this variable 

CRP (Credit Risk Premium).   

It is possible that the CRP may contain risk premia that is not purely due to distress 

risk.  For instance, if the stock and bond markets are integrated, traditional capital 

structure theory implies that a company’s equity and credit premia will be linked and 

driven by the same aggregate risk factors.  To the extent that the CRP contains premia 

unrelated to distress risk, they would be captured by the standard risk factors in the factor 

regressions we carry out in the next two sections.   

 

5. Pricing of Distress Risk 

5.1. Physical PD’s and Equity Returns 

In this section, we analyze the relationship between physical default probabilities and 

future stock returns using the full cross-section of firms in the CRSP-COMPUSTAT 

sample as well as using the firms that have bonds outstanding in the Bond sample.  For 

the CRSP-COMPUSTAT sample we compute default probabilities using coefficients 

obtained from column 1 of Table 2.
19

  For the Bond sample we compute default 

                                                 
19

 We obtain similar results using CHS coefficients computed on a rolling basis (we thank Jens Hilscher for 

providing this data), Merton’s distance-to-default measure, Ohlson’s o-score and Altman’s z-score, which 

are not reported to save space.     
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probabilities using coefficients obtained from column 3 of Table 2.  In computing these 

default probabilities, we use quarterly accounting variables lagged by two months and 

market variables lagged by one month to ensure that this information is available at the 

beginning of the month over which default probabilities are measured.  We sort stocks in 

the full CRSP-COMPUSTAT sample into deciles each month from 1981 through 2010 

according to their physical default probabilities, and compute value-weighted returns for 

each portfolio.  If a delisting return is available, we use the delisting return; otherwise, we 

use the last available return in CRSP.   

We repeat the same analyses for stocks that have bonds outstanding.  We construct 

physical default probabilities in the Bond sample using coefficients obtained from hazard 

regressions using the bond sample.  This analysis ensures that the distress risk anomaly 

observed in the full CRSP-COMPUSTAT sample also exists for the bond sample when 

firms are ranked using physical default probabilities.  We compute value-weighted 

returns for these decile portfolios on a monthly basis and regress the portfolio return in 

excess of the risk-free rate on the market (MKT), size (SMB), value (HML), and 

momentum (MOM) factors, to compute CAPM, 3 and 4 factor alphas.   

In Panel A of Table 3, we report returns for the ten decile portfolios and the return 

difference between the top and bottom deciles for the CRSP-COMPUSTAT sample.  Our 

results are consistent with those obtained in previous studies. Stocks in the highest default 

risk portfolio have significantly lower returns.  The difference in returns between the 

highest and lowest default risk portfolios is -1.18% per month.  The alphas from the 

market and the 3- and 4-factor models are economically and statistically significant.  The 
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monthly 4-factor alpha for the zero cost portfolio formed by going long on stocks in the 

highest default risk decile, and short on stocks in the lowest default risk decile is -0.83% 

per month.   

Portfolio return analyses that utilize historical default probabilities calculated using 

coefficients from the bond sample are reported in Panel B of Table 3.  The results are 

weaker for the bond sample, but still economically and statistically significant.  Using 

firms that have credit spread information, the monthly 4-factor alpha for the zero cost 

portfolio formed by going long on stocks in the highest default risk decile and short on 

stocks in the lowest default risk decile is -0.49%.  Distressed stocks load positively on the 

size and value factors.   

As a robustness check, we also compute risk adjusted returns per unit of distress risk 

for the bond sample as well as for the CRSP-COMPUSTAT sample.  One reason that the 

distress anomaly is smaller in the bond sample is that the companies in the highest 

distress decile in the CRSP-COMPUSTAT sample have higher default probabilities than 

the stocks in the highest distress decile in the bond sample.  To take into account the 

differences in default probabilities, we follow CHS (2008) and regress the return of each 

long-short portfolio onto the differences in log default probabilities including no intercept 

in the regression.  The coefficients from this regression would provide us with a distress 

premium per unit of log default probability.  We use long-short distress portfolio returns 

adjusted for the Fama–French three-factor model.  The coefficient estimate on the log 

default probability is 6.492 (t-stat = 5.02) for the CRSP-COMPUSTAT sample and 5.657 

(t-stat = 3.24) for the bond sample, suggesting that per unit of log default probability, the 
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distress effect is similar in the CRSP-COMPUSTAT and Bond samples. These results are 

in contrast to FWZ (2014) who do not find physical default probabilities to be negatively 

priced in their sample of firms with actively traded CDS contracts. 

The analyses in this section show that using physical default probabilities computed 

in the Bond sample and the CRSP-COMPUSTAT sample produces results similar to 

those of CHS (2008) and others in the literature.  The distress anomaly persists in our 

Bond sample when we use physical probabilities of default to rank firms. 

 

5.2  Credit Risk Premia and Equity Returns 

In this section, we examine how CRPs (credit risk premia) are related to future 

realized equity returns.
20

  We sort stocks into deciles from 1981 to 2010, using CRPs in 

the previous month.  We compute value-weighted returns for each portfolio and update 

the portfolios each month.  As before, if a delisting return is available we use the delisting 

return; otherwise we use the last available return in CRSP.  We report returns for the ten 

decile portfolios, and the return difference between the top and bottom deciles in Table 4.   

Our results challenge those obtained in the previous studies.  Using CRPs as a 

measure of systematic default risk exposure, the difference in raw returns between the 

highest and lowest default risk portfolios is 0.521% per month and statistically 

significant.  The 4-factor monthly alpha for a portfolio formed by going long on stocks in 

the highest default risk exposure portfolio and short on stocks in the lowest default risk 
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 We also analyzed how SPREADs (credit spreads) are related to future realized equity returns.  The 

returns on portfolios sorted on SPREADs and CRPs have very similar returns.  Furthermore, the differences 

in raw returns between the highest and lowest default risk portfolios are very similar whether firms are 

sorted on SPREAD or CRP. 
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exposure portfolio is -0.005% and statistically insignificant when we use CRP as our 

measure of systematic default risk exposure.   

There is a positive relationship between CRP and excess equity returns, and the return 

of the high-minus-low excess spread portfolio is statistically significant. CAPM and 

multi-factor regressions show that alphas are subsumed in all CRP portfolios, suggesting 

that variation in systematic default risk exposure is captured by the market, size and value 

factors.  Exposures to the market, size and value factors almost monotonically increase 

with CRP and are statistically significant for the high minus low CRP hedge portfolio 

suggesting that these factors are intimately related to systematic default risk exposure.  

As mentioned earlier, these results are consistent with structural models of default in 

which aggregate risk factors drive default probabilities as well as the returns on bonds 

and equities (Merton 1974; Campello, Chen and Zhang 2008).     

Ranking stocks on their physical default probabilities inferred from historical data, as 

done in Dichev (1998), CHS (2008), and others, implicitly assumes that high default 

probability stocks also have high exposures to the systematic component of default risk. 

Using CRP, we explicitly rank firms based on their exposures to the systematic 

component of default risk and we find no evidence of systematic default risk being 

negatively priced.  
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6. Alternative Measure of Systematic Default Risk 

6.1 Measuring Systematic Default Beta 

We now extend the analysis of Section 5.2 to the full CRSP-COMPUSTAT sample 

to ensure the robustness of our results.  In particular, we identify a measure of systematic 

default risk exposure that can be calculated for all firms regardless of whether they have 

bonds outstanding. 

We assume that historical default probabilities have a single common factor and use 

the mean cross-sectional default probability to proxy for this common factor.  The 

assumption of a single factor is a good approximation as we find that the first principal 

component explains more than 70% of the variation in default probabilities.  The first 

principal component and the mean default probability have a correlation greater than 0.90 

and are significantly higher during and after recessions.
21

  

We fit an AR (1) model on a rolling window of 48 months to the average default 

probability and use the residuals as innovations.  We regress firm returns on these 

innovations over 48-month rolling windows to compute loadings on the innovations in 

average default probability.  We refer to the loading on the innovation as SYSDEFBETA, 

systematic default risk beta.
22
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 We follow Hilscher and Wilson (2017) and first shrink the size of the cross-section by assigning each 

firm-month to a rating-month group and calculate equal-weighted average 12-month cumulative default 

probabilities for each rating-group. This leaves us with a panel of 17 ratings groups with 360 months of 

data. Forming industry groups rather than ratings groups yields similar results. 

 
22

 Our measure of systematic default risk beta (SYSDEFBETA) is different from Hilscher and Wilson’s 

(2017), who measure a firm’s SYSDEFBETA as the sensitivity of its physical default probability (PD) to 

the median PD of all firms. As an anonymous referee points out a risk exposure captures how the asset 

(equity) return is exposed to a specific risk factor, hence per his suggestion we use excess equity return as 

our dependent variable  and innovation in average default probability as our independent variable. 
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6.2 Default Risk Beta and Credit Spreads 

In this sub-section, we analyze the relationship between our measure of credit risk 

premium calculated in Section 4 and systematic default risk beta.  We show that 

systematic default risk beta (𝑆𝑌𝑆𝐷𝐸𝐹𝐵𝐸𝑇𝐴) can explain the cross-sectional variation in 

credit risk premia in corporate bonds.   

Table 5 summarizes Fama-MacBeth cross-sectional regression results when monthly 

credit risk premium (in %) is regressed on lagged systematic default risk beta 

(𝑆𝑌𝑆𝐷𝐸𝐹𝐵𝐸𝑇𝐴 as calculated in equation 5) and firm characteristics that are related to 

credit risk.  In all regression specifications, we control for two bond characteristics: 

average issue amount (OAMT) and average time to maturity (TTM) of a firm’s 

outstanding bonds.  Furthermore, in all regression specifications we also control for the 

Standard & Poor’s (S&P) rating (RATING) assigned to the firm.  We control for the 

firm’s credit risk estimated by the market using three alternative specifications. Our first 

proxy for the firm’s credit risk is Merton’s distance to default (DD).  We use physical 

default probability (PD) as the second alternative specification. Finally, we use a 

specification that does not impose any structure directly control for firm characteristics 

that are associated with credit risk for the third alternative specification. In doing so, we 

control for return volatility (SIGMA), profitability (NIMTAAVG), leverage (TLMTA), 

amount of liquid assets (CASHMTA), market-to-book ratio (MB), and relative size of the 

firm (RSIZE).  The t-statistics for the slopes are based on the time series variability of the 

estimates, incorporating a Newey-West (1987) correction with four lags to account for 

possible autocorrelation in the estimates.   
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In column (1), we control for the bond offering amount, time to maturity, and firm 

rating. In column (2), we control for the bond offering amount, time to maturity, firm 

rating and Merton’s distance to default.  In column (3), we control for the bond offering 

amount, time to maturity, firm rating and the physical probability of default.  In column 

(4), we control for the bond offering amount, time to maturity, firm rating and the stock 

characteristics that have been shown to be important determinants of credit risk by CHS 

(2008).  In all specifications the loading on the systematic default risk beta, 

𝑆𝑌𝑆𝐷𝐸𝐹𝐵𝐸𝑇𝐴, is positive and statistically significant. 

The impact of 𝑆𝑌𝑆𝐷𝐸𝐹𝐵𝐸𝑇𝐴 on spreads is also economically significant.  Results in 

column 4 of Table 5 suggest that moving from the 75
th

 percentile systematic default risk 

beta firm (𝑆𝑌𝑆𝐷𝐸𝐹𝐵𝐸𝑇𝐴 = .298) to the 95
th

 percentile firm (𝑆𝑌𝑆𝐷𝐸𝐹𝐵𝐸𝑇𝐴 = .854) 

leads to an increase of 37 basis points in bond risk premium after controlling for all 

parameters known to influence credit spreads.    

The results suggest that systematic default risk exposure is an important driver of the 

credit risk premium in corporate bond spreads. CRP, our measure of exposure to 

systematic default risk computed from corporate bond spreads, and systematic default 

risk beta (𝑆𝑌𝑆𝐷𝐸𝐹𝐵𝐸𝑇𝐴) are comparable proxies for exposure to systematic default risk.    

 

6.3 Pricing of Systematic Default Risk in the CRSP-COMPUSTAT Sample 

The systematic default risk beta described in the previous section allows us to test 

whether systematic default risk is priced in the full cross-section of the CRSP-

COMPUSTAT sample. We use the same portfolio analysis approach described in Section 
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5.  In particular, we sort stocks into deciles each month from January 1981 through 

December 2010 according to their systematic default risk betas (SYSDEFBETA) obtained 

at the beginning of the previous month. We then calculate the value-weighted decile 

portfolio returns for all stocks on a monthly basis and regress the portfolio return in 

excess of the risk-free rate on the market (MKTRF), size (SMB), value (HML), and 

momentum (MOM) factors. In Table 6, we report regression results for all the decile 

portfolios along with the top decile minus bottom decile hedge portfolio.   

Results in Table 6, which are obtained from the CRSP-COMPUSTAT sample, are 

similar to those reported in Table 4, which are obtained using the bond sample.  Table 4 

shows that the highest CRP decile portfolio earns on average 52 basis points more per 

month compared to the lowest CRP decile portfolio.  Similarly, Table 6 shows that the 

highest systematic default risk beta decile portfolio in the full CRSP-COMPUSTAT 

sample earns 60 basis points more per month compared to the lowest systematic default 

risk beta decile portfolio.  This result is significant at the 10% level.  Once we control for 

the market factor, as well as the Fama-French size and value factors the statistical 

significance of the hedge portfolio return disappears, supporting the Fama and French 

(1992) conjecture that size and value premiums may be related to systematic distress risk.   

Exposures to the market, size and value factors are statistically significant for the 

high minus low SYSDEFBETA hedge portfolio. Nevertheless, we only observe a strong 

monotonic pattern in the exposure to the value factor, suggesting perhaps the value factor 

is more correlated with innovations in the systematic default risk factor compared to the 

market and size factors. Exposure to the market factor is largely constant across 
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SYSDEFBETA portfolios, except for a sharp increase for the highest systematic default 

risk exposure stocks, while exposure to the size factor is U-shaped as it is higher for high 

systematic default risk and low systematic default risk portfolios alike but smaller in 

between.  Overall, the results in this sub-section lend further support to our findings using 

the bond sample.   

 

6.4 Cross-sectional Pricing of PD and SYSDEFBETA  

In this sub-section, we conduct cross-sectional analyses to confirm our earlier 

findings based on the analysis of portfolio returns in the time-series. In particular, we run 

Fama-MacBeth regressions of excess equity returns on systematic default betas 

(SYSDEFBETA), physical default probabilities (PD) and firm characteristics. The results 

are reported in Table 7. 

In column (1) of Table 7, regressing excess returns on physical default probabilities 

(PD), we find that the loading on PD is -3.733 and statistically significant.  In column 

(2), regressing excess returns on the systematic default risk exposure measure 

(SYSDEFBETA), we find a statistically significant positive loading of 2.23, verifying our 

earlier results that the systematic component of default risk is priced in the cross-section 

of equity returns.  

In column (3) of Table 7 we include both PD and SYSDEFBETA and find that the 

loading on PD is -0.871 and statistically significant and that the loading on 

SYSDEFBETA is positive (1.892) and also statistically significant.  Controlling for 

SYSDEFBETA reduces the loading on PD economically, from -3.733 to -0.871, as well as 
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statistically, from a t-statistic of 4.74 to 1.99, indicating that SYSDEFBETA partially 

reduces the significance distress risk anomaly, but does not eliminate it.   This finding is 

consistent with the model in George and Hwang (2010) which shows that firms with low 

exposures to systematic distress risk choose high leverage and, as a result, have high 

default probabilities despite having low systematic default risk exposures.  

In column (4), we further control for firm characteristics such as size, book-to-

market, momentum and CAPM-beta that are associated with expected returns, and find 

that the default risk anomaly persists economically and statistically. Finally, in column 

(5) regressing excess returns on SYSDEFBETA as well as size, book-to-market, 

momentum and CAPM-beta, we verify earlier findings presented in Table 6 that 

characteristics associated with known risk factors largely subsume the premium for 

systematic default risk exposure.  

 

7. Systematic Default Risk Exposure and Leverage 

George and Hwang (2010) offer a specific mechanism for how the distress risk 

anomaly may arise. Their theoretical model suggests that firms with high exposures to 

systematic distress risk may lower their physical default probabilities by choosing low 

levels of leverage in an attempt to reduce distress costs. This in turn may lead one to 

classify risky (safe) firms as safe (risky) and yield a negative risk premium on PD. Cross-

sectional regressions in section 6 reveal that controlling for systematic default risk 

exposure reduces the distress risk anomaly, lending partial support to George and Hwang 
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(2010).  In this section, we empirically verify that an increase in systematic distress risk 

exposure predicts a reduction in leverage in the next period.  

In Table 8, following the empirical model in Frank and Goyal (2003) and Rajan and 

Zingales (1995), we investigate what happens to financial leverage when exposure to 

systematic default risk changes. In particular, we regress changes in leverage 

(∆Leverage) on changes in systematic default risk beta (∆SYSDEFBETA) and changes in 

credit risk premium (∆CRP), controlling for changes in profitability (∆NIMTA), market-

to-book ratio (∆MB), the log of total sales (∆LogSALE), tangibility of assets (∆TANG) 

and firm fixed effects. 

In column (1) of Table 8 we report baseline results confirming the findings in Frank 

and Goyal (2003) and Rajan and Zingales (1995).  In columns (2) and (3) we add changes 

in credit risk premium and changes in systematic default risk beta, respectively, as 

additional covariates.  Using both measures we find that there is a statistically and 

economically strong negative relationship between changes in systematic default risk 

exposure and changes in financial leverage.  In addition to providing empirical support to 

the theoretical predictions in George and Hwang’s (2010), these results also support the 

basic premise of our paper that when assessing the default risk premium in the cross 

section of equity returns one should use exposure to systematic default risk and not the 

physical probability of default.
23
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 In unreported results, we sort stocks annually and put them into ten groups based on changes in 

systematic default risk beta (SYSDEFBETA) and changes in credit risk premium (CRP).  We then compute 

average changes in leverage over the next year.  The results indicate that firms which see an increase in 

their systematic default risk exposure reduce their leverage and their physical default probabilities in the 

next period in both samples, consistent with the regression analyses.  
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8. Conclusion 

In this paper, we argue that what matters for pricing is the non-diversifiable 

component of default risk.  The prior literature measures financial distress by computing 

firms’ expected probabilities of default inferred from historical default data.  This 

calculation ignores the fact that firm defaults are correlated and that some defaults are 

more likely to occur in bad times and fails to appropriately account for the systematic 

nature of default risk.  We use credit risk premia obtained from corporate credit spreads 

as well as an alternative measure that captures the sensitivity of equity returns to 

innovations in average default probability to proxy for a firm’s exposure to systematic 

default risk.   

We find that stocks that have higher credit risk premia have higher expected equity 

returns.  Consistent with structural models of default, we also show that the premium to a 

high minus low systematic default risk hedge portfolio is largely explained by the market, 

size and value factors, suggesting that sensitivities to three well known risk factors 

capture most of the variation in systematic default risk exposure.  

The empirical results in the paper also lend support to the George and Hwang (2010) 

hypothesis that firms with higher sensitivities to systematic default risk make capital 

structure choices that reduce their overall physical probabilities of default. We find that 

changes in systematic distress risk exposure predict changes in leverage in the next 

period offering a partial explanation for the anomalous results previously documented in 

the literature. 
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APPENDIX 

 

Here we explain the details of the variables used to compute the physical probability of 

default (PD) and the Merton distance-to-default (DD) measure. We use quarterly 

accounting data from COMPUSTAT and monthly market data from CRSP.  Book equity, 

BE is defined as in Davis, Fama, and French (2000).  We adjust total value of assets, TA 

by the difference between the market equity (ME) and book equity (BE):  𝑀𝑇𝐴𝑖,𝑡 =

𝑇𝐴𝑖,𝑡 +  0.1 ∗ (𝑀𝐸𝑖,𝑡 − 𝐵𝐸𝑖,𝑡).  NIMTAAVG is a geometrically declining average of past 

quarterly values of the ratio of net income to adjusted total assets: 𝑁𝐼𝑀𝑇𝐴𝐴𝑉𝐺𝑡−1,𝑡−12 =

1−∅3

1−∅12  (𝑁𝐼𝑀𝑇𝐴𝑡−1,𝑡−3  +  … . + ∅9𝑁𝐼𝑀𝑇𝐴𝑡−10,𝑡−12).  EXRETAVG is a geometrically 

declining average of monthly log excess stock returns relative to the S&P 500 index: 

𝐸𝑋𝑅𝐸𝑇𝐴𝑉𝐺𝑡−1,𝑡−12 =
1−∅

1−∅12  (𝐸𝑋𝑅𝐸𝑇𝑡−1,  +  … . + ∅11𝐸𝑋𝑅𝐸𝑇 𝑡−12).  The weighting 

coefficient is set to ∅ = 2
−1/3

, such that the weight is halved each quarter.  TLMTA is the 

ratio of total liabilities to adjusted total assets.  SIGMA is the standard deviation of daily 

stock returns over the previous three months.  SIGMA is coded as missing if there are 

fewer than five observations.  RSIZE is the log ratio of market capitalization to the market 

value of the S&P 500 index.  CASHMTA is the ratio of the value of cash and short-term 

investments to the value of adjusted total assets.  PRICE is the log price per share 

truncated from above at $15. All variables are winsorized using a 1/99 percentile interval 

in order to eliminate outliers.  



33 

 

We follow CHS (2008) and Hillegeist, Keating, Cram, and Lunstedt (2004) to 

compute the Merton’s distance-to-default measure.  Market value of equity is modeled as 

a call option on the company’s assets: 𝑉𝐸 = 𝑉𝐴𝑒−𝑑𝑇𝑁(𝑑1) − 𝑋𝑒−𝑟𝑇𝑁(𝑑2) +

(1 − 𝑒−𝑑𝑇)𝑉𝐴 with  𝑑1 = (log (
𝑉𝐴

𝑋
) + (𝑟 − 𝑑 +

𝑠𝐴
2

2
) 𝑇) (𝑠𝐴√𝑇)⁄  and 𝑑2 = 𝑑1 − 𝑠𝐴√𝑇.  

𝑉𝐸 is the market value of firm equity.  𝑉𝐴 is the value of the firm’s assets. X is the face 

value of debt maturing at time T.  r is the risk-free rate, and d  is the dividend rate 

expressed in terms of 𝑉𝐴.  𝑠𝐴 is the volatility of the value of assets, which is related to 

equity volatility, 𝑠𝐸, through the following equation:  𝑠𝐸 = (𝑉𝐴𝑒−𝑑𝑇 𝑁(𝑑1)𝑠𝐴) 𝑉𝐸⁄ .  

We simultaneously solve the above two equations to find the values of 𝑉𝐴 and 𝑠𝐴. We 

use the market value of equity for 𝑉𝐸 and short-term plus one-half long-term book debt to 

proxy for the face value of debt X. 𝑠𝐸  is the standard deviation of daily equity returns 

over the past three months.  T equals one year, and r is the one-year treasury bill rate. The 

dividend rate, d, is the sum of the prior year’s common and preferred dividends, obtained 

from COMPUSTAT divided by the market value of assets.  We use the Newton method 

to simultaneously solve the two equations above.  For starting values for the unknown 

variables we use 𝑉𝐴 =   𝑉𝐸  +  𝑋, and  𝑠𝐴 = 𝑠𝐸 × 𝑉𝐸 (𝑉𝐸 + 𝑋)⁄ .  Once we determine asset 

values, 𝑉𝐴, we then compute asset returns as in Hillegeist et al. (2004): 

𝑚𝑡 = 𝑚𝑎𝑥[(𝑉𝐴,𝑡 + 𝑑 − 𝑉𝐴,𝑡−1) 𝑉𝐴,𝑡−1⁄ , 𝑟].  Because expected returns cannot be negative, 

if asset returns are below zero, they are set to the risk-free rate.
24

  Merton’s distance to 

default is finally computed as: 𝐷𝐷 = 𝑙𝑜𝑔 (
𝑉𝐴

𝑋
) + (𝑚 − 𝑑 −

𝑠𝐴
2

2
) 𝑇 (𝑠𝐴√𝑇)⁄ . 

                                                 
24

 We obtain similar results if we use a 6% equity premium instead of asset returns as in CHS (2008). 
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Table 1: Summary Statistics 
Table 1 reports summary statistics for firm characteristics and distress measures for companies in the CRSP sample (left panel) and the bond sample (right panel).  MB is the 

market-to-book ratio, and ME is market capitalization in millions of dollars. CASHMTA is the ratio of cash to the market value of total assets. EXRETAVG is a geometrically 

declining average of monthly log excess stock returns relative to the S&P 500 index. NIMTAAVG is a geometrically declining average of past values of the ratio of net income to 

the market value of total assets.  TLMTA is the ratio of total liabilities to the market value of total assets, and RSIZE is the log ratio of market capitalization to the market value of 

the S&P 500 index.  IDIOVOL is the standard deviation of regression errors obtained from regressing daily excess returns on the Fama and French (1993) factors. TOTVOL is the 

standard deviation of daily stock returns over the previous twelve months. PRICE is the log price per share truncated at $15. PD is the physical probability of default reported as a 

percentage.  DD is the Merton distance to default measure.  The Appendix describes how these variables are calculated. P25, P50, and P75 represent 25
th

, 50
th,

 and 75
th

 percentiles, 

respectively.  Statistical significance at the 10%, 5%, and 1% levels is denoted by 
*
, 

**
, and 

***
, respectively.  

 

  CRSP Sample Bond Sample   

Variables Mean STD P25 P50 P75 Mean STD P25 P50 P75 Difference 

MB 1.983 1.466 0.900 1.533 2.644 1.794 1.131 0.999 1.486 2.268 0.189
***

 

ME 1,273.8 5,713.0 20.7 91.8 271.6 5,327.7 17,251.1 417.5 1,297.2 3,811.6 -4,053.4
***

 

CASHMTA 0.091 0.091 0.024 0.070 0.114 0.050 0.058 0.010 0.028 0.070 0.041
***

 

EXRETAVG -0.010 0.043 -0.034 -0.006 0.018 -0.001 0.030 -0.017 0.000 0.016 -0.008
***

 

NIMTAAVG 0.003 0.015 -0.001 0.005 0.012 0.008 0.008 0.003 0.008 0.012 -0.005
***

 

TLMTA 0.413 0.282 0.159 0.374 0.643 0.536 0.229 0.360 0.535 0.708 -0.123
***

 

RSIZE -10.708 1.604 -11.907 -10.790 -9.617 -8.031 1.160 -8.724 -7.701 -7.113 -2.677
***

 

IDIOVOL 0.035 0.027 0.018 0.028 0.044 0.018 0.010 0.012 0.015 0.020 0.018
***

 

TOTVOL 0.037 0.028 0.020 0.030 0.046 0.020 0.010 0.014 0.018 0.023 0.017
***

 

PRICE 2.116 0.705 1.646 2.431 2.708 2.635 0.263 2.708 2.708 2.708 -0.519
***

 

PD 
*
 100 0.081 0.155 0.021 0.039 0.078 0.043 0.067 0.020 0.031 0.048 3.762

***
 

DD 7.094 39.000 2.906 5.024 8.177 8.384 5.856 5.063 7.518 10.643 -1.290
***
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Table 2: Default Prediction   
Table 2 reports results from hazard regressions of the default indicator on the predictor variables.  The data are constructed 

such that all of the predictor variables are observable 12 months before the default event. NIMTAAVG is a geometrically 

declining average of past values of the ratio of net income to the market value of total assets. TLMTA is the ratio of total 

liabilities to the market value of total assets. EXRETAVG is a geometrically declining average of monthly log excess stock 

returns relative to the S&P 500 index. SIGMA is the standard deviation of daily stock returns over the previous three 

months. RSIZE is the log ratio of market capitalization to the market value of the S&P 500 index. CASHMTA is the ratio of 

cash to the market value of total assets. MB is the market-to-book ratio; PRICE is the log price per share truncated at $15, 

and DD is Merton’s distance to default. These variables are described in detail in the Appendix. Results under “All Firms” 

are estimates computed using the full CRSP-COMPUSTAT sample of defaults with available accounting information.  

Results under “CHS Sample” show the estimates CHS (2008) report in their paper.  Results under “Firms with Bonds” are 

estimates computed using the sample of defaults from companies that have issued bonds with available accounting 

information.  Absolute values of z-statistics are reported in parentheses below coefficient estimates.  McFadden pseudo R
2
 

values are reported for each regression.  Statistical significance at the 10%, 5%, and 1% levels is denoted by 
*
, 

**
, and 

***
, 

respectively. 
 
 

 

 

 

 

 (1) (2) (3) (4) (5) (6) 

Sample Period: 1981–2010 1963–2003 1981–2010 1981–2010 1981–2010 1981–2010 

Lag  (Months) 12 12 12 12 12 12 

NIMTAAVG -21.989
***

 -20.260
***

 -18.308
***

    

 (10.33) (18.09) (2.74)    

TLMTA 2.188
***

 1.420
***

 1.503
***

    

 (16.84) (16.23) (2.76)    

EXRETAVG -7.871
***

 -7.13
***

 -6.241
**

    

 (10.28) (14.15) (2.13)    

SIGMA 1.461
***

 1.410
***

 1.774
***

    

 (11.19) (16.49) (5.17)    

RSIZE -0.063
***

 -0.045
**

 -0.614
***

    

 (4.21) (2.09) (7.28)    

CASHMTA -1.516
***

 -2.130
***

 -1.064    

 (7.85) (8.53) (1.21)    

MB 0.085
***

 0.075
***

 0.127    

 (2.63) (6.33) (0.91)    

PRICE -0.167
*
 -0.058 -0.017    

 (1.74) (1.40) (0.95)    

DD    -0.356
***

 -0.345
***

 -0.460
***

 

    (17.18) (33.73) (8.07) 

       

CONSTANT -9.718
***

 -9.160
***

 -13.844
***

 -3.401
***

 Not -2.634
***

 

 (18.12) 

 
(30.89) (8.90) (48.52) Reported (11.10) 

Observations 993,560 1,565,634 54,551 993,560 1,565,634 54,551 

Defaults 728 1968 118 728 1968 118 

Pseudo R
2
 0.134 0.114 0.156    0.083   0.066   0.129   

Sample Type All Firms in  

CRSP-

COMPUSTAT 

CHS Sample, 

CHS (2008) 

Firms with 

Bonds 

All Firms in  

CRSP-

COMPUSTAT 

CHS Sample, 

CHS (2008) 

Firms with 

Bonds 
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Table 3: Distress Portfolio Returns Sorted on Physical Default Probabilities 

Table 3 reports the time series averages of excess returns as well as CAPM, Fama-French 3-factor and Carhart 4-factor 

alphas for distress risk portfolios.  We sort stocks into deciles each month from January 1981 to December 2010 according to 

their physical default probabilities, obtained at the beginning of the previous month, calculated using the hazard coefficients 

computed in the full CRSP-COMPUSTAT sample (Panel A) as well as in the bond sample (Panel B).  We compute the 

value-weighted returns for these decile portfolios and calculate portfolio returns in excess of the risk-free rate on a monthly 

basis. We report the regression coefficients the on the market (MKT), size (SMB) and value (HML) factors in both panels for 

the respective decile portfolios as well as the high-minus-low distress risk hedge portfolio.  The factors are obtained from 

Ken French’s website. Absolute values of t-statistics are reported in parentheses below their respective coefficient estimates. 

Statistical significance at the 10%, 5%, and 1% levels is denoted by 
*
, 

**
, and 

***
, respectively. 

 

 

Panel A: Monthly Equity Returns For Default Risk Portfolios in the full CRSP-COMPUSTAT sample     

Physical PD’s constructed with coefficients from Column (1) of Table 2       

  Excess Ret 

CAPM 

alpha 

3-factor 

alpha 

4-factor 

alpha MKT SMB HML 

Low 0.608
**

 0.166 0.433
***

 0.096 0.879
***

 0.109
**

 -0.462
***

 

  (2.01) (0.99) (2.86) (0.72) (23.63) (2.17) (8.05) 

2 0.569
**

 0.095 0.090 0.022 0.898
***

 0.110
***

 -0.141
***

 

  (2.55) (1.51) (1.42) (0.36) (54.84) (4.66) (-2.72) 

3 0.534
**

 0.092 0.034 0.043 1.033
***

 0.116
***

 -0.071
***

 

  (2.51) (1.48) (0.55) (0.69) (60.30) (4.66) (-2.75) 

4 0.553
*
 -0.059 -0.168

**
 -0.075 1.170

***
 0.249

***
 0.069

**
 

  (1.92) (-0.70) (-2.06) (-0.96) (54.03) (7.90) (2.13) 

5 0.496 -0.175 -0.279
***

 -0.167
*
 1.252

***
 0.367

***
 -0.021 

  (1.54) (-1.64) (-2.73) (-1.69) (45.85) (9.24) (-0.84) 

6 0.385
*
 -0.112 -0.157 0.056 1.254

***
 0.389

***
 0.013 

  (1.70) (-0.79) (-1.19) (0.47) (36.52) (9.37) (0.32) 

7 0.408
*
 -0.089 -0.224

*
 -0.043 1.245

***
 0.458

***
 0.031 

  (1.68) (-0.65) (-1.77) (-0.37) (41.65) (10.52) (0.68) 

8 0.308 -0.371
***

 -0.476
***

 -0.280
***

 1.171
***

 0.358
***

 0.027 

  (0.92) (-2.73) (-3.99) (-2.61) (36.10) (7.57) (0.55) 

9 0.200 -0.596
**

 -0.653
***

 -0.375
***

 1.425
***

 0.920
***

 0.053 

  (0.44) (-2.17) (-2.67) (-2.85) (23.64) (12.44) (0.58) 

High -0.576 -1.216
***

 -1.509
***

 -0.736
***

 1.511
***

 0.923
***

 0.430
***

 

  (1.19) (3.87) (5.29) (3.24) (21.63) ( 9.82) (3.99) 

High-Low -1.184
**

 -1.382
***

 -1.942
***

 -0.832
***

 0.632
***

 0.814
***

 0.892
***

 

  (2.34) (2.96) (4.68) (2.64) (5.69) (10.96) (6.25) 
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Panel B: Monthly Equity Returns For Default Risk Portfolios in the Bond sample     

Physical PD’s constructed with coefficients from Column (3) of Table 2 

  
    

  Excess Ret 

CAPM 

alpha 

3-factor 

Alpha 

4-factor 

Alpha MKT SMB HML 

Low 0.825
***

 0.382
**

 0.385
**

 0.271
*
 0.891

***
 -0.274

***
 0.003 

  (3.05) (2.29) (2.36) (1.65) (22.27) (5.18) (0.05) 

2 0.425
*
 0.152

*
 0.165

*
 0.103 0.913

***
 -0.271

***
 0.030 

  (1.96) (1.68) (1.67) (1.42) (35.69) (-8.17) (0.88) 

3 0.551
**

 0.119 0.078 0.070 0.935
***

 -0.183
***

 0.160
***

 

  (2.43) (1.18) (0.85) (0.67) (44.08) (-5.91) (5.00) 

4 0.502
*
 0.077 -0.079 -0.139 0.986

***
 -0.121

***
 0.280

***
 

  (1.88) (0.75) (-0.86) (-1.54) (46.41) (-3.91) (8.77) 

5 0.575
**

 0.053 -0.173 -0.113 1.153
***

 -0.069
**

 0.369
***

 

  (1.99) (0.37) (-1.45) (-1.15) (50.71) (-2.10) (10.78) 

6 0.524 0.027 -0.225 -0.153 1.219
***

 -0.038 0.445
***

 

  (1.59) (0.17) (-1.45) (-1.21) (50.42) (-1.09) (12.24) 

7 0.776
**

 0.001 -0.204
**

 -0.065 1.275
***

 -0.039 0.496
***

 

  (2.41) (0.01) (-2.08) (-0.45) (46.04) (-0.96) (11.90) 

8 0.489 -0.089 -0.284
**

 -0.168 1.372
***

 -0.010 0.519
***

 

  (1.35) (-0.54) (-2.24) (-1.06) (46.84) (-0.23) (11.77) 

9 0.184 -0.105 -0.349
***

 -0.196 1.387
***

 0.106 0.476
***

 

  (0.45) (-0.83) (-3.34) (-0.91) (38.78) (1.03) (5.13) 

High 0.318 -0.323 -0.694
***

 -0.217 1.437
***

 0.009 0.685
***

 

  (0.82) (1.36) (3.19) (1.15) (26.89) (0.13) (8.39) 

High-Low -0.507
*
 -0.705

***
 -1.079

***
 -0.487

**
 0.546

***
 0.284

***
 0.682

***
 

  (1.66) (2.60) (3.83) (1.97) (7.89) (3.10) (6.45) 
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Table 4: Monthly Equity Returns for Credit Risk Premium Portfolios  
In Table 4, we report time series averages of excess returns as well as CAPM, Fama-French 3-factor and Carhart 4-factor 

alphas for distress risk portfolios. Each month from January 1981 through December 2010, we sort stocks into 10 portfolios 

based on their bond credit risk premia (CRP) at the beginning of the previous month. We compute the value-weighted returns 

for these decile portfolios and calculate portfolio returns in excess of the risk-free rate on a monthly basis. We report the 

regression coefficients the on the market (MKT), size (SMB) and value (HML) factors for all the decile portfolios as well as 

the high-minus-low distress risk hedge portfolio.  The factors are obtained from Ken French’s website. Absolute values of t-

statistics are reported in parentheses below their respective coefficient estimates. Statistical significance at the 10%, 5%, and 

1% levels is denoted by 
*
, 

**
, and 

***
, respectively. 

 
Equity Returns in Credit Risk Premia Portfolios         

  Excess Ret 

CAPM 

alpha 

3-factor 

alpha 

4-factor 

alpha 
MKT SMB HML 

Low 0.463
*
 -0.074 -0.021 0.01 0.890

***
 -0.319

***
 0.020 

  (1.65) (0.52) (0.17) (0.08) (27.51) (9.29) (0.47) 

2 0.489
**

 0.048 0.026 -0.000 0.971
***

 -0.287
***

 0.017 

  (2.19) (0.45) (0.24) (-0.20) (41.48) (-8.35) (0.48) 

3 0.552
**

 -0.033 0.006 0.001 0.909
***

 -0.131
***

 0.050 

  (2.31) (-0.25) (0.05) (0.99) (37.17) (-3.66) (1.35) 

4 0.568
**

 -0.053 -0.116 0.000 0.978
***

 -0.105
***

 0.046 

  (2.29) (-0.39) (-0.86) (0.28) (36.24) (-2.66) (1.12) 

5 0.574
**

 0.095 0.020 -0.001 1.022
***

 -0.066
*
 0.190

***
 

  (2.29) (0.68) (0.14) (-0.75) (39.59) (-1.73) (4.84) 

6 0.608
***

 0.069 0.092 0.002 1.032
***

 0.004 0.281
***

 

  (2.66) (0.47) (0.62) (1.56) (35.49) (0.09) (6.36) 

7 0.619
*
 0.063 0.004 -0.000 1.114

***
 0.157

***
 0.419

***
 

  (1.73) (0.54) (0.04) (-0.21) (35.73) (3.43) (8.86) 

8 0.621
**

 -0.012 -0.053 0.002 1.217
***

 0.192
***

 0.324
***

 

  (2.21) (-0.10) (-0.46) (1.12) (31.57) (5.15) (5.54) 

9 0.795
**

 0.054 0.015 -0.000 1.239
***

 0.231
***

 0.575
***

 

  (2.45) (0.49) (0.14) (-0.15) (29.70) (5.00) (8.39) 

High 0.984
***

 0.325 -0.193 0.005 1.28
***

 0.157
***

 0.715
***

 

  (2.58) (1.33) (0.93) (0.02) (22.83) (2.63) (9.62) 

High-Low 0.521
**

 0.399 -0.172 -0.005 0.391
***

 0.476
***

 0.695
***

 

  (1.98) (1.50) (0.75) (0.02) (6.32) (7.25) (8.49) 
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Table 5: Pricing of Systematic Default Risk Beta in the Cross Section of Credit Spreads 

In Table 5, we run monthly Fama-MacBeth (1973) regressions of credit risk premium (in %) on default risk prediction variables 

used in CHS 2008, firm rating and systematic default risk beta. Our sample period covers January 1981 to December 2010. We 

report Fama-MacBeth regression coefficients as well as their corresponding Newey-West (1987) corrected t-statistics in 

parentheses.  Credit risk premium are calculated in month t+1 as the difference between the corporate bond yield and the 

corresponding maturity-matched treasury rate minus expected losses, liquidity compensation, and tax compensation. 

SYSDEFBETA is the firm’s systematic default risk exposure and calculated as the sensitivity of its equity return in excess of the 

risk free rate to innovations in the mean default probability of all firms in the CRSP-COMPUSTAT sample.  SYSDEFBETA is 

calculated over the t-48 to t-1 time frame on a rolling basis. SIGMA, NIMTAAVG, TLMTA, CASHMTA, MB, RSIZE, RATING, 

and DD are all calculated at time t. These variables are described in detail in Table 2. OAMT is the market value of debt at the 

time of its issuance in millions of dollars, and TTM is the time to maturity of debt in years. PD is the physical probability of 

default reported as a percentage. Absolute values of t-statistics are reported in parentheses below coefficient estimates. 

Statistical significance at the 10%, 5%, and 1% levels is denoted by 
*
, 

**
, and 

***
, respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

  (1) (2) (3) (4) 

 

Credit Risk 

Premium 

Credit Risk 

Premium 

Credit Risk 

Premium 

Credit Risk 

Premium 

SYSDEFBETA
 

1.989
***

 1.493
***

 1.276
***

 0.673
***

 

  (8.26) (7.45) (8.57) (4.13) 

OAMT
 

-0.592 -1.190
**

 -1.403
***

 0.103 

  (0.13) (2.50) (4.40) (0.43) 

TTM
 

1.082
***

 1.221
***

 1.054
***

 0.098
***

 

  (4.81) (6.88) (5.96) (4.71) 

RATING 1.438
***

 1.308
***

 1.050
***

 0.092
***

 

 (15.80) (14.40) (21.73) (17.47) 

DD  -1.191
***

   

  (9.50)   

PD
*
10

6
   0.577

***
  

   (7.31)  

SIGMA    0.308
***

 

     (14.78) 

NIMTAAVG    -0.355
***

 

     (9.62) 

TLMTA    0.315
***

 

     (4.15) 

CASHMTA    -1.031
***

 

     (4.71) 

MB
 

   0.013 

     (0.08) 

RSIZE
 

   -0.459
***

 

     (13.69) 

Constant -2.508
**

    1.165
***

 0.959 -3.552
***

 

  (2.15)   (7.63) (1.00) (16.07) 
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Table 6: Equity Returns for Systematic Default Risk Beta Portfolios 

In Table 6, we report time series averages of excess returns as well as CAPM, Fama-French 3-factor and Carhart 4-factor 

alphas for distress risk portfolios. We sort all stocks in the CRSP-COMPUSTAT sample into deciles each month from January 

1981 through December 2010 according to their systematic default risk betas—SYSDEFBETAs—obtained at the beginning of 

the previous month. SYSDEFBETA is the firm’s systematic default risk exposure and calculated as the sensitivity of its equity 

return in excess of the risk free rate to innovations in the mean default probability of all firms in the CRSP-COMPUSTAT 

sample.  We compute the value-weighted returns for these decile portfolios and calculate portfolio returns in excess of the risk-

free rate on a monthly basis. We report the regression coefficients on the market (MKT), size (SMB) and value (HML) factors 

for all the decile portfolios as well as the high-minus-low distress risk hedge portfolio.  The factors are obtained from Ken 

French’s website. Absolute values of t-statistics are reported in parentheses below coefficient estimates. Statistical significance 

at the 10%, 5%, and 1% levels is denoted by 
*
, 

**
, and 

***
, respectively. 

 

 

Equity Returns in SYDEFBETA Portfolios 

  
Excess 

Return 

CAPM 

alpha 

3-factor 

Alpha 

4-factor 

Alpha 
MKT SMB HML 

Low 0.405 -0.469
**

 -0.180 -0.064 1.126
***

 0.391
***

 -0.424
***

 

  (1.03) (2.10) (0.92) (0.92) (22.03) (6.18) (5.63) 

2 0.448 -0.274
**

 -0.254
**

 -0.182
**

 1.103
***

 0.062 -0.026 

  (1.49) (2.23) (2.02) (2.02) (33.70) (1.54) (0.53) 

3 0.586
**

 -0.520 -0.151 -0.105
*
 1.069

***
 -0.174

***
 0.138

***
 

  (2.23) (0.53) (1.66) (1.66) (45.20) (5.92) (3.97) 

4 0.575
**

 -0.340 -0.181
*
 -0.010

**
 1.050

***
 -0.157

***
 0.217

***
 

  (2.26) (0.33) (1.92) (1.92) (42.94) (5.17) (6.02) 

5 0.770
***

 0.183
*
 0.002 0.002 1.009 -0.133

***
 0.248

***
 

  (3.21) (1.88) (0.24) (0.24) (46.13) (4.88) (7.69) 

6 0.829
***

 0.231
**

 0.003 0.006 1.064
***

 -0.141
***

 0.307
***

 

  (3.27) (2.07) (0.30) (0.30) (43.43) (4.65) (8.51) 

7 0.727
***

 0.127 -0.007 0.001 1.0549
***

 -0.090
**

 0.301
***

 

  (2.77) (0.98) (0.56) (0.56) (33.70) (2.33) (6.53) 

8 0.854
***

 0.219 0.005 0.038 1.072
***

 0.100
**

 0.277
***

 

  (3.07) (1.57) (0.38) (0.38) (29.98) (2.26) (5.27) 

9 0.880
***

 0.136 0.004 0.082 1.195
***

 0.171
***

 0.227
***

 

  (2.73) (0.83) (0.03) (0.03) (27.94) (3.23) (3.60) 

High 1.03
**

 0.061 0.006 0.182 1.393
***

 0.676
***

 0.154
*
 

  (2.33) (0.25) (0.03) (0.03) (23.81) (9.32) (1.79) 

High-Low 0.598
*
 0.530 0.186 0.246 0.267

***
 0.285

***
 0.579

***
 

  (1.84) (1.61) (0.57) (0.57) (3.13) (2.70) (4.61) 
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Table 7: Cross-sectional Pricing of PD and SYSDEFBETA  
In Table 7, we run monthly Fama-MacBeth (1973) regressions of returns in excess of the market (in %) on physical probability 

of default calculated as in CHS 2008 as well as on systematic default risk beta. Our sample period covers January 1981 to 

December 2010. We report Fama-MacBeth regression coefficients as well as their corresponding Newey-West (1987) corrected 

t-statistics in parentheses. Excess return is the equity return of the firm minus the risk-free rate calculated in month t+1. PD is 

the physical probability of default at time t and is reported as a percentage. SYSDEFBETA is the firm’s systematic default risk 

beta (failure beta) at time t and is calculated as the sensitivity of its equity return in excess of the risk free rate to innovations in 

the mean default probability of all firms in the CRSP-COMPUSTAT sample.  SYSDEFBETA is calculated over the t-48 to t-1 

time frame on a rolling basis. CAPM Beta is the sensitivity of a stock’s excess return to the market risk premium at time t as 

predicted by the Capital Asset Pricing Model. CAPM Beta is also calculated over the t-48 to t-1 time frame. log BM is the log of 

book-to-market ratio and is calculated as in Daniel and Titman (2006). Momentum is the cumulative return in the past twelve-

to-two-month period. log ME is the logarithm of market capitalization. Absolute values of t-statistics are reported in 

parentheses below coefficient estimates. Statistical significance at the 10%, 5%, and 1% levels is denoted by 
*
, 

**
, and 

***
, 

respectively.  

 

  (1) (2) (3) (4) (5) 

 

Excess 

Return 

Excess 

Return 

Excess 

Return 

Excess 

Return 

Excess 

Return 

PD -3.733
***

  -0.871
**

 -2.286
***

  

 

(-4.74) 

 

(1.99) (-3.60) 

 SYSDEFBETA 

 

2.230
**

 1.892
*
 

 

0.810 

  

(2.08) (1.78) 

 

(1.10) 

CAPM Beta 

   

0.007 0.047 

    

(0.05) (0.26) 

log BM 

   

0.180
***

 0.120
*
 

    

(4.22) (1.70) 

Momentum 

   

0.791
***

 0.590
***

 

    

(3.48) (3.41) 

log ME 

   

-0.075
*
 -0.232

***
 

    

(-1.79) (-3.37) 

Constant 1.285
***

 1.427
***

 1.148
***

 1.71
***

 2.697
***

 

  (4.61) (4.72) (4.19) (6.30) (5.83) 
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Table 8: Impact of Systematic Default Risk Exposure on Leverage 

Table 8 reports regression results where the dependent variable is the year over year change in leverage (∆Leverage), computed 

in year t. The independent variables are also year over year changes, computed in year t-1.  NIMTA measures profitability and is 

computed as the ratio of net income to the market value of total assets.  MB is the market-to-book ratio.  LogSALE is the log of 

total sales.  TANG measures tangibility of assets.   Credit risk premium (CRP) is the difference between the corporate bond 

yield and the corresponding maturity-matched treasury rate minus expected losses, liquidity compensation, and tax 

compensation.  SYSDEFBETA is the firm’s systematic default risk beta (failure beta) at time t and is calculated as the sensitivity 

of its equity return in excess of the risk free rate to innovations in the mean default probability of all firms in the CRSP-

COMPUSTAT sample. The regression includes firm fixed effects.  Robust standard errors adjusted for firm-level clustering are 

reported below coefficient estimates.  Statistical significance at the 10%, 5%, and 1% levels is denoted by 
*
, 

**
, and 

***
, 

respectively. 

 

 (1) (2) (3) 

 

∆Leverage ∆Leverage ∆Leverage 

∆NIMTA -0.217
***

 -0.209
***

 -0.462
***

 

 

(0.035) (0.052) (0.139) 

∆MB -0.004
***

 -0.004
***

 -0.007
***

 

 

(0.001) (0.001) (0.002) 

∆LogSALE  0.012
***

 0.013
***

  0.022
***

 

 

(0.002) (0.003) (0.008) 

∆TANG -0.019
***

 -0.017
***

 -0.086
***

 

 

(0.005) (0.007) (0.016) 

LEVERAGE -0.399
***

 -0.367
***

 -0.361
***

 

 

(0.006) (0.007) (0.018) 

∆SYSDEFBETA 

 

-0.028
**

 

 

  

(0.012) 

 ∆CRP 

  

-0.579
***

 

   

(0.140) 

Constant  0.160
***

  0.160
***

  0.180
***

 

 

(0.002) (0.002) (0.009) 

    Firm FE Yes Yes Yes 

Observations 46,747 46,747 4,552 

R-squared 0.279 0.282 0.277 
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Figure 1: Historical Corporate Default Rates 

This figure plots the historical default rates on Moody’s rated corporate issuers. The data are from Moody’s Investor 

Services.  Grey areas indicate NBER recessions. 
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Figure 2: Components of Corporate Spreads 
This figure plots the expected losses, taxes, and liquidity premium components of corporate spreads.  The estimation 

of these components is described in Section 4.  Bonds with maturity greater than seven years are referred to as 

having “long maturity” and bonds with maturity less than seven years are referred to as having “short maturity.” 
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