1. Find the absolute minimum and maximum of the following on the given interval

(i)
$$f(x) = 1 - x^2$$
 on $[-1,3]$
(ii) $f(x) = 2x^3 - 15x^2 + 24x$ on $[0,3]$

1(i) The derivative is f'(x) = -2x. We set this to zero giving the critical point x = 0. Now we check the endpoints and the CP: f(-1) = 0, f(0) = 1, f(3) = -8 giving the max of 1 at x = 0 and min of -8 at x = 3

1(ii) The derivative is $f'(x) = 6x^2 - 30x + 24 = 6(x - 1)(x - 4)$. We set this to zero giving the critical points x = 1, 4 but x = 4 is not in the interval. Now we check the endpoints and the CP: f(0) = 0, f(1) = 11, f(3) = -9 giving the max of 11 at x = 1 and min of -9 at x = 3

2. State the Mean Value Theorem. Verify the Mean Value Theorem for the following

(i)
$$f(x) = x^3 - x$$
 on [0,2]
(ii) $f(x) = \frac{x}{x+2}$ on [1,10]

MVT. If f(x) is continuous on [a, b] and differentiable on (a, b), then there is at least one c in (a, b) where

$$\frac{f(b) - f(a)}{b - a} = f'(c)$$
(1)

2(i) First. $\frac{f(b) - f(a)}{b - a} = \frac{f(2) - f(0)}{2 - 0} = \frac{6 - 0}{2 - 0} = 3$. The derivative is $f'(x) = 3x^2 - 1$. Thus, $3x^2 - 1 = 3$

giving $x = \pm \frac{2}{\sqrt{3}}$ and we choose *c* to be the positive case so $c = \frac{2}{\sqrt{3}}$. 2(ii) First. $\frac{f(b) - f(a)}{b - a} = \frac{f(10) - f(1)}{10 - 1} = \frac{\frac{10}{12} - \frac{1}{3}}{10 - 1} = \frac{1}{18}$. The derivative is $f'(x) = \frac{2}{(x+2)^2}$. Thus, $\frac{2}{(x+2)^2} = \frac{1}{18}$

giving x = 4, -8 and we choose *c* to be the one in the interval so c = 4.

3. If $y = x^4 - 6x^2 - 8x$ calculate the following

- (i) The critical numbers
- (ii) When y is increasing and decreasing.
- (iii) Determine whether any of the critical numbers are minimum or maximum.
- (iv) When y is concave up and down and determine the points of inflection.

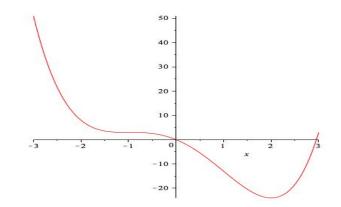
(v) Then sketch the curve.

Soln. $y' = 4x^3 - 12x - 8 = 4(x - 2)(x + 1)^2$. So the critical points are x = -1, 2. Next $y'' = 12x^2 - 12 = 12(x - 1)(x + 2)$ and so y'' = 0 when x = -1, 1 possible PI. Next we create the sign chart.

x		-1		1		2	
x-2		—	-	—		0	+
$(x+1)^2$	+	0	+	+	+	+	+
$(x-2)(x+1)^2$	_	0	_	_	—	0	+
slope							/
x - 1	_	_	—	0	+	+	+
(x+1)	_	0	+	+	+	+	+
(x-1)(x+1)	+	0	_	0	+	+	+
h/v	U	PI	\cap	PI	U	U	U

From here we can answer our questions.

increasing $(2, \infty)$ decreasing $(-\infty, -1)(-1, 2)$ min (2, -24)max - none concave up $(-\infty, -1)(1, \infty)$ concave down (-1, 1)PI (-1, 3) and (1, -13)



4. A ladder 13 feet long is resting against the wall of a house. The base of the ladder is pulled away from the wall at a rate of 2 ft/sec. At rate is the tip of the ladder moving down the wall when the base of the ladder is 5 ft away from the wall?

Soln. We draw a picture of a triangle and denote the base and height of the triangle as x and y. We know $\frac{dx}{dt} = 2$ and want to know $\frac{dy}{dt}$ when x = 5. We first relate the variables. So $x^2 + y^2 = 169$. Then relate the rates so $2x\frac{dx}{dt} + 2y\frac{dy}{dt} = 0$ so $\frac{dy}{dt} = -\frac{x\frac{dx}{dt}}{y}$. So we need y. Since $x^2 + y^2 = 169$, then $y = \sqrt{169 - 5^2} = 12$. Thus, $\frac{dy}{dt} = -\frac{5 \cdot 2}{12} = -\frac{5}{6}ft/sec$ 5. A paper cup in the shape of an inverted cone with height 10 cm and a base of radius 3 cm, is being filled at a rate of $2 \text{ cm}^3/\text{min}$. Find the rate of change in the height of the water when the height of the water is 5 cm.

Soln. We draw a picture of inverted similar triangles. The larger triangle has half base of 3 and height of 10. The smaller has half base of *r* and height *h*. From the similar triangles we know that $\frac{r}{3} = \frac{h}{10}$. We know $\frac{dV}{dt} = 2$ and want to know $\frac{dh}{dt}$ when h = 5. We first relate the variables. So $V = \frac{1}{3}\pi r^2 h$. From the similar triangles $r = \frac{3h}{10}$ so $V = \frac{3\pi h^3}{100}$. We relate the rates so $\frac{dV}{dt} = \frac{9\pi h^2}{100}\frac{dh}{dt}$. We substitute h = 5 and solve for $\frac{dh}{dt}$ giving $\frac{dh}{dt} = \frac{8}{9\pi}$ cm/min.

6. A rancher has 200 feet of fencing with which to enclose two adjacent rectangular corrals. What dimensions should be used so that the enclosed area will be a maximum?

Soln. We draw a picture of two adjacent rectangles and label width and height as *x* and *y*. The length of fence we know so

$$l = 4x + 3y = 200$$

We want to maximize area

A = 2xy

so $y = \frac{200 - 4x}{3}$ and *A* becomes

$$A = \frac{2x(200-4x)}{3}$$

Now

$$A' = \frac{400 - 16x}{3}$$

and A' = 0 when x = 25. $A'' = -\frac{16}{3} < 0$ so we have a max. So the dimensions of each pen is 25' by 100/3'.

7. An box with a square bottom is to be built that holds 64 cubic feet. Find the dimensions of the box that will minimize the surface area of the box.

Soln. We draw a picture of a rectangular box and denote the base (square) and height as *x* by *x* and *y*. The volume we know so

$$V = x^2 y = 64$$

We want to maximize area

$$A = 2x^2 + 4xy = 2x^2 + \frac{4(64)}{x}$$

Now

$$A' = 4x - \frac{4(64)}{x^2}$$

We set A' = 0 and solve for x giving x = 4. Since $A'' = 4 + \frac{3(4)(64)}{x^3} > 0$ when x = 4 so we have a minimum. So the dimensions of the box is $4' \times 4' \times 4'$.