1. Find the absolute minimum and maximum of the following on the given interval

$$
\begin{gather*}
\text { (i) } f(x)=1-x^{2} \text { on }[-1,3] \tag{i}\\
\text { (ii) } f(x)=2 x^{3}-15 x^{2}+24 x \text { on }[0,3]
\end{gather*}
$$

1(i) The derivative is $f^{\prime}(x)=-2 x$. We set this to zero giving the critical point $x=0$. Now we check the endpoints and the CP: $f(-1)=0, f(0)=1, f(3)=-8$ giving the max of 1 at $x=0$ and \min of -8 at $x=3$

1(ii) The derivative is $f^{\prime}(x)=6 x^{2}-30 x+24=6(x-1)(x-4)$. We set this to zero giving the critical points $x=1,4$ but $x=4$ is not in the interval. Now we check the endpoints and the CP: $f(0)=0, f(1)=11, f(3)=-9$ giving the max of 11 at $x=1$ and min of -9 at $x=3$
2. State the Mean Value Theorem. Verify the Mean Value Theorem for the following
(i) $f(x)=x^{3}-x$ on $[0,2]$
(ii) $f(x)=\frac{x}{x+2}$ on $[1,10]$

MVT. If $f(x)$ is continuous on $[a, b]$ and differentiable on (a, b), then there is at least one c in (a, b) where

$$
\begin{equation*}
\frac{f(b)-f(a)}{b-a}=f^{\prime}(c) \tag{1}
\end{equation*}
$$

2(i) First. $\frac{f(b)-f(a)}{b-a}=\frac{f(2)-f(0)}{2-0}=\frac{6-0}{2-0}=3$. The derivative is $f^{\prime}(x)=3 x^{2}-1$. Thus,

$$
3 x^{2}-1=3
$$

giving $x= \pm \frac{2}{\sqrt{3}}$ and we choose c to be the positive case so $c=\frac{2}{\sqrt{3}}$.
2(ii) First. $\frac{f(b)-f(a)}{b-a}=\frac{f(10)-f(1)}{10-1}=\frac{\frac{10}{12}-\frac{1}{3}}{10-1}=\frac{1}{18}$. The derivative is $f^{\prime}(x)=$ $\frac{2}{(x+2)^{2}}$. Thus,

$$
\frac{2}{(x+2)^{2}}=\frac{1}{18}
$$

giving $x=4,-8$ and we choose c to be the one in the interval so $c=4$.
3. If $y=x^{4}-6 x^{2}-8 x$ calculate the following
(i) The critical numbers
(ii) When y is increasing and decreasing.
(iii) Determine whether any of the critical numbers are minimum or maximum.
(iv) When y is concave up and down and determine the points of inflection.
(v) Then sketch the curve.

Soln. $y^{\prime}=4 x^{3}-12 x-8=4(x-2)(x+1)^{2}$. So the critical points are $x=-1,2$. Next $y^{\prime \prime}=12 x^{2}-12=12(x-1)(x+2)$ and so $y^{\prime \prime}=0$ when $x=-1,1$ possible PI. Next we create the sign chart.

x		-1		1		2	
$x-2$	-	-	-	-	-	0	+
$(x+1)^{2}$	+	0	+	+	+	+	+
$(x-2)(x+1)^{2}$	-	0	-	-	-	0	+
slope	\backslash	-	\backslash	\backslash	\backslash	-	$/$
$x-1$	-	-	-	0	+	+	+
$(x+1)$	-	0	+	+	+	+	+
$(x-1)(x+1)$	+	0	-	0	+	+	+
h/v	\cup	$P I$	\cap	$P I$	\cup	\cup	\cup

From here we can answer our questions.
increasing $(2, \infty)$
decreasing $(-\infty,-1)(-1,2)$
$\min (2,-24)$
max - none
concave up $(-\infty,-1)(1, \infty)$
concave down $(-1,1)$
PI $(-1,3)$ and $(1,-13)$

4. A ladder 13 feet long is resting against the wall of a house. The base of the ladder is pulled away from the wall at a rate of $2 \mathrm{ft} / \mathrm{sec}$. At rate is the tip of the ladder moving down the wall when the base of the ladder is 5 ft away from the wall?

Soln. We draw a picture of a triangle and denote the base and height of the triangle as x and y. We know $\frac{d x}{d t}=2$ and want to know $\frac{d y}{d t}$ when $x=5$. We first relate the variables. So $x^{2}+y^{2}=169$. Then relate the rates so $2 x \frac{d x}{d t}+2 y \frac{d y}{d t}=0$ so $\frac{d y}{d t}=-\frac{x \frac{d x}{d t}}{y}$. So we need y. Since $x^{2}+y^{2}=169$, then $y=\sqrt{169-5^{2}}=12$. Thus, $\frac{d y}{d t}=-\frac{5 \cdot 2}{12}=-\frac{5}{6} f t / \mathrm{sec}$
5. A paper cup in the shape of an inverted cone with height 10 cm and a base of radius 3 cm , is being filled at a rate of $2 \mathrm{~cm}^{3} / \mathrm{min}$. Find the rate of change in the height of the water when the height of the water is 5 cm .

Soln. We draw a picture of inverted similar triangles. The larger triangle has half base of 3 and height of 10. The smaller has half base of r and height h. From the similar triangles we know that $\frac{r}{3}=\frac{h}{10}$. We know $\frac{d V}{d t}=2$ and want to know $\frac{d h}{d t}$ when $h=5$. We first relate the variables. So $V=\frac{1}{3} \pi r^{2} h$. From the similar triangles $r=\frac{3 h}{10}$ so $V=\frac{3 \pi h^{3}}{100}$. We relate the rates so $\frac{d V}{d t}=\frac{9 \pi h^{2}}{100} \frac{d h}{d t}$. We substitute $h=5$ and solve for $\frac{d h}{d t}$ giving $\frac{d h}{d t}=\frac{8}{9 \pi}$ $\mathrm{cm} / \mathrm{min}$.
6. A rancher has 200 feet of fencing with which to enclose two adjacent rectangular corrals. What dimensions should be used so that the enclosed area will be a maximum?

Soln. We draw a picture of two adjacent rectangles and label width and height as x and y. The length of fence we know so

$$
l=4 x+3 y=200
$$

We want to maximize area

$$
A=2 x y
$$

so $y=\frac{200-4 x}{3}$ and A becomes

$$
A=\frac{2 x(200-4 x)}{3}
$$

Now

$$
A^{\prime}=\frac{400-16 x}{3}
$$

and $A^{\prime}=0$ when $x=25$. $A^{\prime \prime}=-\frac{16}{3}<0$ so we have a max. So the dimensions of each pen is 25^{\prime} by $100 / 3^{\prime}$.
7. An box with a square bottom is to be built that holds 64 cubic feet. Find the dimensions of the box that will minimize the surface area of the box.

Soln. We draw a picture of a rectangular box and denote the base (square) and height as x by x and y. The volume we know so

$$
V=x^{2} y=64
$$

We want to maximize area

$$
A=2 x^{2}+4 x y=2 x^{2}+\frac{4(64)}{x}
$$

Now

$$
A^{\prime}=4 x-\frac{4(64)}{x^{2}}
$$

We set $A^{\prime}=0$ and solve for x giving $x=4$. Since $A^{\prime \prime}=4+\frac{3(4)(64)}{x^{3}}>0$ when $x=4$ so we have a minimum. So the dimensions of the box is $4^{\prime} \times 4^{\prime} \times 4^{\prime}$.

