Stabilization and Transportation of Pediatric Head-Injured Patients

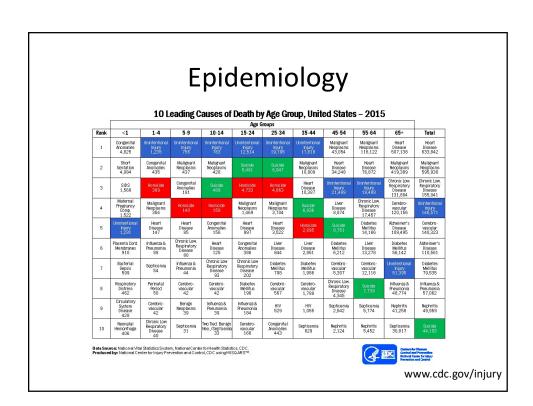
NCRTAC Trauma Conference 2018

Zach Morrison, MD Jennifer Roberts, MD, MS PGY-1, General Surgery

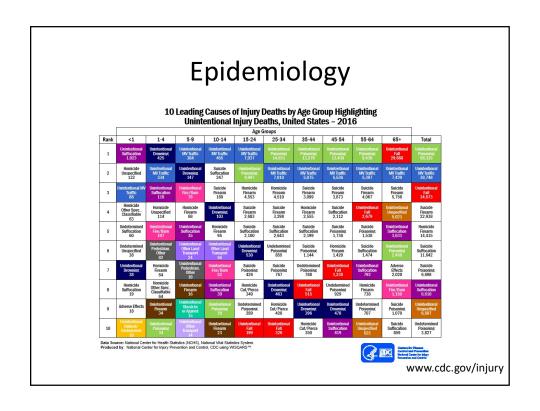
Marshfield Clinic
HEALTH SYSTEM

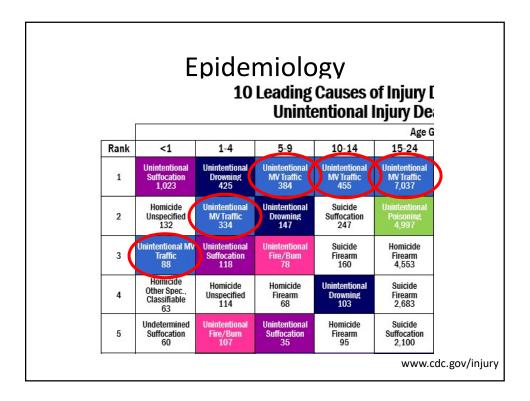
Objectives

By the end of the session, you will be able to:


- 1. Identify five distinct characteristics of the child as a trauma patient
- 2. Discuss key elements of the primary management priorities for a pediatric trauma patient
- 3. Describe the primary management of the following critical injuries in children:
 - a. Disability with altered mental status
 - b. Central nervous system

Case Presentation


A seven year-old boy was hit by a car (40 mph) while riding his bike. Unhelmeted.


- VS: HR 135; BP 75/55; RR 40; Sat 92% RA
- Eyes closed, withdraws from pain, moans
- Swelling over L temperoparietal area, R arm deformity w/ active bleeding, abrasions

Initial concerns? First steps?

	Epidemiology 10 Leading Causes of Death by				
					Age G
Rank	<1	1-4	5-9	10-14	15-24
1	Congenital Anomalies 4,825	Unintentional Injury 1,235	Unintentional Injury 755	Unintentional Injury 763	Unintentional Injury 12,514
2	Short Gestation 4,084	Congenital Anomalies 435	Malignant Neoplasms 437	Malignant Neoplasms 428	Suicide 5,491
3	SIDS 1,568	Homicide 369	Congenital Anomalies 181	Suicide 409	Homicide 4,733
4	Matemal Pregnancy Comp. 1,522	Malignant Neoplasms 354	Homicide 140	Homicide 158	Malignant Neoplasms 1,469
5	Unintentional Injury 1,291	Heart Disease 147	Heart Disease 85	Congenital Anomalies 156	Heart Disease 997

Pediatric Trauma

- Traumatic injury = #1 killer of children and adolescents in the United States
- Pediatric mortality in US = 2x other developed countries
- Injuries account for 1/3 of total burden of disease in children by disability-adjusted life years
 - \$14B lifetime medical; \$66B future wages lost

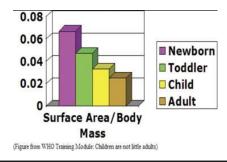
Wesson 2012.

The Pediatric Patient

- Distinct anatomy and physiology features
- Well-recognized patterns of injury
 - Most serious pediatric trauma = blunt trauma involving the brain
 - Presentation: apnea, hypoventilation, hypoxia
 - Trauma protocols focus on aggressive management of airway and breathing

The Pediatric Patient

Size and shape:


• Smaller body mass \rightarrow greater force / unit body area

Skeleton:

• Incompletely calcified, more pliable

Surface area (SA):

- Max SA:mass ratio at birth, diminishes w/ age
- Heat loss

The Pediatric Patient

<u>Psychological status</u>:

- Emotional instability → regressive behavior with perceived threats, stress, pain
- Limits history taking
- Soothe & distract → Child Life involvement!

Pediatric Assessment Triangle

Quick and easy approach to evaluating a child

- Tone
- Interactivity
- Consolability
- Look / gaze
- Speech / cry

- Airway sounds
- Positioning
- Retractions
- Flaring

CIRCULATION

- Pallor
- Mottling
- Cyanosis
- Bleeding

Pediatric Vital Signs

Age Group	Heart Rate	Systolic BP	Respiratory Rate
Infant O-12 months	< 160	> 60	< 60
Toddler 1-2 years	< 150	> 70	< 40
Preschool 3-5 years	< 140	> 75	< 35
School Age 6-12 years	< 120	> 80	< 30
Adolescent ≥ 13 years	< 100	> 90	< 30

Rules of thumb

- SBP = $70 + (2 \times age)$
- Weight kg = (2 x age) + 10

Broselow Pediatric Emergency Tape

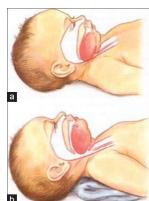
Question Time

What can we say about our patient's vital signs?

7 year-old boy

HR 135; BP 75/55; RR 40; Sat 92% RA

Age Group	Heart Rate	Systolic BP	Respiratory Rate
Infant O-12 months	< 160	> 60	< 60
Toddler 1-2 years	< 150	> 70	< 40
Preschool 3-5 years	< 140	> 75	< 35
School Age 6-12 years	< 120	> 80	< 30
Adolescent ≥ 13 years	< 100	> 90	< 30


ABCS OF TRAUMA

Primary Survey: Airway

MCC cardiac arrest in children – inability to establish and maintain an airway

<u>Anatomy</u>

- Larger relative occiput →
 posterior pharynx buckles d/t
 passive flexion of cervical spine
- · Padding beneath entire torso
- Narrow, anterior glottis
- Trachea: 5cm → 7cm @ 18mos

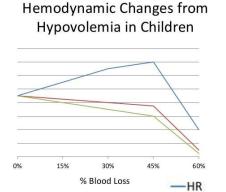
Primary Survey: Airway

Endotracheal tubes

- Narrow cricoid ring forms natural seal around uncuffed ETT → often used in infants
- Toddlers & up: cuffed tubes OK; low risk of tracheal necrosis d/t improved cuff designs
 - Improved ventilation and CO2 management
- · Sizing: estimate with tip of pt's pinky finger
 - Approximately 3.0 in newborn, 4.0-4.5 in toddler
 - ETT Size = (Age +16) / 4
- Depth (cm) @ lip: 3x tube size

Primary Survey: Breathing

- Normal tidal volumes:
 - 4-6 ml/kg for infants and children
 - 6-8 ml/kg may be required during assisted vent
- Increased potential for iatrogenic barotrauma d/t fragile nature of immature tracheobronchial tree and alveoli
 - Pediatric bag-mask for children under 30 kg



Primary Survey: Breathing

- Assess for potential life-threatening injuries:
 - Pneumothorax, hemothorax, flail chest, rib fractures
- Diaphragmatic breathers → gastric decompression
 - Orogastric tube in babies (obligate nasal breathers)

Primary Survey: Circulation

- Increased physiologic reserve → maintain SBP despite hemorrhage
- Hypotension: decompensated shock, blood loss > 45%
 - Rapid volume infusion
- Tachycardia & poor skin perfusion early signs

-SBP -CO

Primary Survey: Circulation

- Blood volume:
 - Infant: 80 ml/kgChild: 70 ml/kg
- Bolus: 20 ml/kg warmed isotonic crystalloid
 - Can repeat once, then consider blood products
- <u>Response</u>: slowing of HR, clearing of sensorium, return of peripheral pulses
 - Transient responders & non-responders: candidates for RBC transfusion & possible operative intervention
 - Consider pRBCs: 10 ml/kg
 - Trend towards earlier use of blood products

Primary Survey: Disability

Modified GCS verbal score

Eyes	Verbal	Motor
4 - Spontaneous	5 – Smiles, Oriented to	6 – Moves spontaneously
3 – To Verbal	sounds, Follows objects	and purposefully
2 – To Pain	4 – Cries but consolable,	5 - Withdraws from
1 – No response	inappropriate interactions	touch
	3 - Inconsistently	4 - Withdraws from pain
	inconsolable, moaning	3 – Flexion to pain
	2 - Inconsolable, agitated	2 - Extension to pain
	1 – No response	1 – No response

Primary Survey: Exposure

- Larger body surface area ratio → lose heat!
 - Warm fluids, bare huggers, warming lights, warm room temperature
 - Prevents heat loss and secondary coagulopathy associated with hypothermia

Question Time

A 4 year-old girl is struck by a car. She is unconscious at the scene but awake and crying on admission to the hospital. The initial SBP is 70 mm Hg, and the HR is 150 bpm. Estimated weight is 25 kg. Initial treatment of this child includes which of the following?

- a) Insertion of an intraosseous infusion device
- b) Fluid bolus of 250 ml Ringer's lactate
- c) Fluid bolus of 500 ml Ringer's lactate
- d) Immediate rapid-sequence intubation
- e) Immediate transfusion of 250 cc pRBC

Question Time

A 4 year-old girl is struck by a car. She is unconscious at the scene but awake and crying on admission to the hospital. The initial SBP is 70 mm Hg, and the HR is 150 bpm. Estimated weight is 25 kg. Initial treatment of this child includes which of the following?

- a) Insertion of an intraosseous infusion device
- b) Fluid bolus of 250 ml Ringer's lactate
- c) Fluid bolus of 500 ml Ringer's lactate
- d) Immediate rapid-sequence intubation
- e) Immediate transfusion of 250 cc pRBC

GUIDELINES FOR THE CARE OF PEDIATRIC PATIENTS WITH MODERATE TO SEVERE TBI

TBI Definitions

Mild TBI

- GCS 14-15
- LOC < 30 min
- Amnesia < 24h
- If CT performed, must be normal
- Synonym: "concussion"

Moderate to Severe TBI

- GCS <= 13
- CT: Diffuse cerebral swelling
- High risk of deterioration
- Midline shift, herniation, ICH
- Age ≤ 3 and any e/o ICH

Pathophysiology

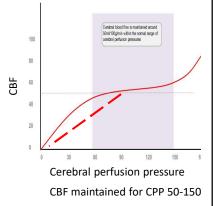
- TBI = primary injury + secondary injury
 - Primary: occurs at impact, leads to disruption of brain substance and blood vessels
 - Secondary: may result from hypoxia, hypotension, hyperventilation, pyrexia, increased ICP
- Primary injury sets off cascade of processes that can cause secondary injury.
 - Our goal: prevent secondary injury

Pathophysiology Cerebral Hypoperfusion & Hypoxia

<u>Hypotension</u> = #1 treatable determinant of severe head injury

– Goal #1: rapid & complete restoration of BP

Hypoxia: independent predictor of poor outcome


- Modern airway management strategies have decreased frequency and magnitude of hypoxia
- Assisted ventilation, intubation, avoidance of anemia

Pathophysiology Intracranial Hypertension

- ICP function of volumes of brain, CSF, blood
- Buffering capacity compensates for mild / slow expansion of one or two of these
 - Exceed buffering capacity → ↑ ICP
- <u>Herniation</u>: pressure gradient across incomplete barrier (falx cerebri, tentorium)
 - Tissue damage, direct compression of adjacent vessels
- ↑ Resistance to cerebral blood flow (~CPP)
 - Causes ischemia

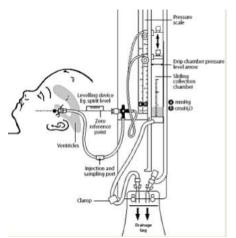
Pathophysiology Cerebral Blood Flow

- Autoregulation maintains CBF over range of CPP
- Autoregulation fails with injury
 - → Lower break point shifts
 - Normally satisfactory CPP associated with low CBF
- CPP = MAP ICP
- Goal: keep CBF normal
 - ICP reduction
 - BP support

TBI Treatment Strategies

Based on the <u>new guidelines</u> from the Marshfield Medical Center.

- Assessment & Monitoring
- Airway & Breathing
- Circulation
- Hyperosmolar therapy
- Sedation


- Decompressive strategies
- Barbiturate Coma
- Fluids, Electrolytes, and Nutrition
- VTE prophylaxis
- Adjuncts
- Suctioning

Assessment & Monitoring

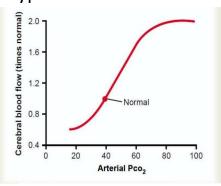
- PICU Standards: NIBP, pulse ox, EKG, Foley
- Arterial line strongly recommended
- CT rapid assessment of intracranial injury
 - Any child with suspected moderate to severe TBI
 - Repeat @ 24-48h for any PICU admission or if:
 - Signs of deterioration, inability to assess neuro status, considering initiating VTE prophylaxis

Assessment & Monitoring

External Ventricular Drain

Neurosurgical Consultation

- Consider ICP monitoring
 - GCS ≤ 8, inaccurate exam


EVD

Fluid-coupled catheters placed in the lateral ventricles

- Preferred method of ICP monitoring:
 - Early warning of herniation
 - Calculate CPP
 - Drain CSF

Airway & Breathing

- Supplemental oxygen to keep sat ≥ 92%
- GCS ≤ 8 ... rapid sequence intubation
- Goal: avoid hyper- and hypoventilation
 - CPP primarily driven by P_{CO_2}
 - Normocapnea:pCO2 35-40 mm Hg
 - pH 7.4

Circulation

- CPP = MAP ICP
 - Higher ICP requires higher MAP to maintain CPP & CBF
 - Target CPP & ICP by age

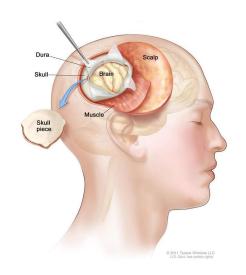
Age group	CPP Goal	ICP Goal
≤ 3 years	> 40-50 mm Hg	< 15-20 mm Hg
3-12 years	> 50-60 mm Hg	< 20 mm Ha
> 12 years	> 65 mm Hg	< 20 mm Hg

- Pressors can be used to increase MAP
 - Pref: norepi, phenyleph

Hyperosmolar Therapy

<u>Goal</u>: increase osmotic gradient to draw fluid from interstitial compartment into the plasma

- → reduces brain volume & ICP
- 3% hypertonic saline
 - Target Na of 150; if already > 150, target +5
 - Bolus, recheck w/i 30 min, then maintenance rate
 - Check osmolality and Na every 6 hours
 - Persistently elevated / rising ICP → ↑ goal Na by 5


Sedation

- Helps to prevent intracranial hypertension
- Escalation guide:
 - PRN Benzo + PRN Narcotic
 - PRN Benzo + Continuous & PRN Narcotic
 - Continuous & PRN Benzo + Continuous & PRN Narcotic
 - Add scheduled lorazepam alternating w/ chloral hydrate
 - Add Precedex or Clonidine
- · Consider daily "sedation vacation"

Decompressive Strategies

Craniectomy

- Fronto-temporoparietal bone flaps removed; dura opened
- Effectively expands intracranial volume
- Reduces ICP

Barbiturate Coma

- Last resort to control intracranial hypertension in patients who have failed previous attempts
- Monitoring with BIS or NIRS
- Drawbacks
 - Reduces neuro exam to pupils only
 - Can cause hypotension
- Phenobarbital continue until stable ICP < 20 for 24h, then consider tapering

Fluids, Electrolytes, Nutrition

Enteral nutrition: initiate w/i 24 hrs of PICU admit

- Estimation of caloric needs
 - Resting Energy Expenditure
 - Respiratory Quotient
- Relative contraindication: hi-dose α -agonists
 - Use centrally-administered TPN

Fluids, Electrolytes, Nutrition

Glycemic Control

- Check blood sugars q4h (≤ 3y) or q6h (> 3y)
 - Goal: glucose 80-150
 - If sugar < 60, add 5% dextrose to IVF
 - If persistently > 150, use PICU insulin protocol

Venous Thromboembolism Prophylaxis

- Evaluation for VTE prophylaxis by trauma & NSGY
- Repeat imaging 24-72 hours post-injury
- Start VTE prophylaxis with LMWH in pts > 15 yrs in absence of CT changes
- For 13-15 yrs, start VTE prophylaxis if injury severity score > 25 and > 4 RFs.
 - RFs: > 5d mobility, GCS < 9, CVL, SCI, complex lower ext injury, pelvic fx, inotrope use, CPR during resuscitation, exogenous estrogn therapy, chronic inflammy stat, h/o thrombosis, thrombophilia

Adjuncts

- Maintain normothermia (APAP, Zoll)
- HOB > 30 degs
- Low stimulation environment
- Seizure prophylaxis (Keppra, fosphenytoin)
- Safe suctioning
 - Adequate sedation, mild hyperventilation

Case Presentation

A seven year-old boy was hit by a car (40 mph) while riding his bike. Unhelmeted.

- VS: HR 135; BP 75/55; RR 40; Sat 92% RA
- Eyes closed, withdraws from pain, moans
- Swelling over L temperoparietal area, R arm deformity w/ active bleeding, abrasions

What would you do?

References

- Advanced Trauma Life Support Student Course Manual, 9e.
- Centers for Disease Control. www.cdc.gov
- Gensch. Neuro Critical Care. https://www.slideshare.net/jgensch/neuro-critical-care
- Greenfield's Surgery: Scientific Principles and Practice, 6e.
- Guideline for care of the pediatric patient with moderate to severe TBI. Marshfield Medical Center Trauma Program. 2018.