VANDERBILT UNIVERSITY $\sqrt[5]{\sqrt{3}}$ School of Engineering

Discrete Structures
 CS 2212
 (Fall 2020)

$$
2 \text { - Logic }
$$

Reminder and Recap ...

Reminder:

- ZyBook Assig. 1A and 1B due Sep. 06 (11:59 PM)

Recap:

We are trying to develop necessary tools for logical reasoning.

- Propositions are statements with a definite truth value. (building blocks of our logical reasoning framework.)
- We can combine propositions using logical operators to get compound propositions.
- The truth value of compound propositions depend on the definition of logical operators.

1.1 Propositions and Logical Operations

Conjunction:

\mathbf{p} and \mathbf{q} are propositions
conjunction of \mathbf{p} and \mathbf{q} is a new proposition, whose truth value is
true \quad when both \mathbf{p} and \mathbf{q} are true, and
false otherwise.

Written as:	p	q	$p \wedge q$	
$\mathbf{p} \wedge \mathbf{q}$	T	T	T	p: $\quad 31$ is an even number (F)
	T	F	F	q: $\quad 31$ is a prime number (T)
Read as:	F	T	F	$\mathbf{p} \wedge \mathbf{q}=\mathrm{F}$
\mathbf{p} and \mathbf{q}	F	F	F	

1.1 Propositions and Logical Operations

Disjunction:

\mathbf{p} and \mathbf{q} are propositions
disjunction of \mathbf{p} and \mathbf{q} is a new proposition, whose truth value is
false when both \mathbf{p} and \mathbf{q} are false, and
true otherwise.

Written as:	p	q	$p \vee q$	p: $\quad 31$ is an even number (F)
$\mathbf{p} \vee \mathrm{q}$	T	T	T	
	T	F	T	q: 31 is a prime number (T)
Read as:	F	T	T	$\mathbf{p} \vee \mathbf{q}=\mathrm{T}$
\mathbf{p} Or \mathbf{q}	F	F	F	

1.1 Propositions and Logical Operations

Exclusive-or:

\mathbf{p} and \mathbf{q} are propositions
exclusive-or of \mathbf{p} and \mathbf{q} is a new proposition, whose truth value is
true
false when exactly one of the propositions \mathbf{p} and \mathbf{q} is true otherwise.

Written as:

Read as:
p xor \mathbf{q}

p	q	$p \oplus q$	
T	T	F	p: 31 is an odd number (T)
T	F	T	q: 31 is a prime number (T)
F	T	T	$\mathbf{p} \oplus \mathbf{q}=\mathrm{F}$
F	F	F	

1.1 Propositions and Logical Operations

Let p and q be propositions, then under what conditions

$$
\text { 1) } \begin{aligned}
& \mathrm{p} \oplus \mathrm{q} \\
& \text { 2) } \mathrm{p} \vee \mathrm{p} \vee \mathrm{q} \\
& \text { 3) } \mathrm{p} \oplus \mathrm{p} \wedge \mathrm{q} \\
& \text { 3 } \mathrm{p} \wedge \mathrm{q}
\end{aligned}
$$

Solution:

1. $\mathrm{p}=\mathrm{T}, \mathrm{q}=\mathrm{T}$
2. $p=T, q=T$
3. $p=F, q=F$

1.1 Propositions and Logical Operations

Negation:

negation of proposition \mathbf{p} is a new proposition, whose truth value is the opposite of the truth value of p

false	when \mathbf{p} is true, and
true	when \mathbf{p} is false.

Written as:
$\neg \mathbf{p}$
Read as:
not \mathbf{p}

\mathbf{p}	\mathbf{q}
\mathbf{T}	\mathbf{F}
\mathbf{F}	\mathbf{T}
Truth table	

p: $\quad 31$ is an even number (F)
$\neg \mathbf{p}: 31$ is not an even number (T)

Truth table

1.2 Evaluating Compound Propositions

Order of operations is important.
Example: $\quad \mathbf{p}=$ True, $\quad \mathbf{q}=$ False,

$$
\mathbf{r}=\neg \mathbf{p} \wedge \mathbf{q} ? ?
$$

- If \neg is first, then $\mathbf{r}=$ False
- If \wedge is first, then $\mathbf{r}=$ True

Order of operations (in the absence of parentheses):

Operator	Order
\neg	$\mathbf{1}$
^	$\mathbf{2}$
V	$\mathbf{3}$

1.2 Evaluating Compound Propositions

$$
\mathbf{s}=(\mathbf{p} \vee \mathbf{q}) \wedge \neg(\mathbf{p} \wedge \mathbf{q})
$$

p	q	$p \vee q$	$\neg(p \wedge q)$	s
T	T	T	F	F
T	F	T	T	T
F	T	T	T	T
F	F	F	T	F

- Note that $\mathbf{s}=\mathbf{p} \oplus \mathbf{q}$
- $\mathbf{p} \oplus \mathbf{q}$ is logically equivalent to $(\mathbf{p} \vee \mathbf{q}) \wedge \neg(\mathbf{p} \wedge \mathbf{q})$.

1.2 Evaluating Compound Propositions

- Truth table supplies all possible truth values of a compound proposition for various truth values of its constituent proposition.
- If there are n variables, how many rows are in the truth table?

Example:

$$
(\mathbf{p} \wedge \mathbf{q}) \vee \neg \mathbf{r}
$$

How many rows in the truth table?
n = 3 variables
8 rows.

- Compound statements also represent digital logic circuits.

1.2 Evaluating Compound Propositions

$$
s=(p \wedge q) \vee \neg \mathbf{r}
$$

True $=1$
False $=0$

Example

$$
\begin{aligned}
& \text { True }=1 \\
& \text { False = } 0
\end{aligned}
$$

- For what values of \mathbf{p}, \mathbf{q}, and \mathbf{r}, the bulb lights up ($\mathbf{s}=1$) ?

$$
\mathbf{s}=(\neg \mathbf{q} \vee \mathbf{p}) \wedge(\mathbf{q} \vee \mathbf{r})
$$

- A solution is:

$$
\mathbf{p}=\mathbf{1}
$$

$$
\mathbf{r}=1
$$

$$
\mathbf{q}=0
$$

Example

What can we do to ensure that bulb always lights up ($\mathbf{s}=\mathbf{1}$ irrespective of $\mathbf{p}, \mathbf{q}, \mathbf{r}$) ?

1.3 Conditional Statement

Conditional Proposition:

Hypothesis	\rightarrow Conclusion
\mathbf{p}	$\rightarrow \mathbf{q}$
If p, then q	

Examples:

- If 29 is prime, then it is an odd number (T)
- If 29 is prime, then it is an even number (F)
- If sun rises from west, then it will rain every day (T)

\mathbf{p}	\mathbf{q}	$\mathbf{p} \rightarrow \mathbf{q}$
T	T	T
T	F	F
F	T	T
F	F	T

1.3 Conditional Statement

Conditional Proposition:

p	q	$p \rightarrow q$
T	T	T
T	F	F
F	T	T
F	F	T

If the conclusion is true regardless of the hypothesis part, the conditional statement is trivially true.

```
p:
q:
    "whatever"
    3<4 (True)
    If (whatever), then (3 < 4) (True)
```


1.3 Conditional Statement

Conditional Proposition:

p	q	$p \rightarrow q$
T	T	T
T	F	F
F	T	T
F	F	T

If the conclusion is true regardless of the hypothesis part, the conditional statement is trivially true.

```
p: "whatever"
q: }\quad3<4\quad\mathrm{ (True)
p q q: If (whatever), then (3<4) (True)
```

If the hypothesis is false, then the conditional statement is vacuously true regardless of the conclusion part.

```
p:
0=1 (False)
q:
p}->\mathbf{q: If (0=1), then "whatever". (True)
```


1.3 Conditional Statement

$$
\text { Is } p \rightarrow q \text { same as (equivalent to) } q \rightarrow p ?
$$

\mathbf{p}	\mathbf{q}	$\mathbf{p} \rightarrow \mathbf{q}$	$\mathbf{q} \rightarrow \mathbf{p}$
\mathbf{T}	\mathbf{T}	\mathbf{T}	\mathbf{T}
\mathbf{T}	\mathbf{F}	\mathbf{F}	\mathbf{T}
\mathbf{F}	\mathbf{T}	\mathbf{T}	\mathbf{F}
\mathbf{F}	\mathbf{F}	\mathbf{T}	\mathbf{T}

1.3 Conditional Statement

Conditional Proposition:

Is the truth value of

$$
(\mathbf{p} \vee \mathbf{q}) \rightarrow \mathbf{r}
$$

always same as the truth value of

$$
(\mathbf{p} \rightarrow \mathbf{r}) \wedge(\mathbf{q} \rightarrow \mathbf{r}) ?
$$

Yes.

1.3 Conditional Statement

If input to the code is correct, then the output is correct

$$
\mathbf{p} \rightarrow \mathbf{q}
$$

Bquivalent statements ($\mathrm{p} \rightarrow \mathrm{q}$)

\mathbf{p} implies \mathbf{q}	Correct input implies correct output
\mathbf{p} is sufficient for \mathbf{q}	Correct input is sufficient for correct output
\mathbf{q} is necessary for \mathbf{p}	Correct output is necessary with the correct input.
\mathbf{p} only if \mathbf{q}	Input to the code is correct only if the output is correct

1.3 Conditional Statement

Conditional Proposition:

$$
\begin{aligned}
& \text { Hypothesis } \rightarrow \text { Conclusion } \\
& \mathbf{p} \rightarrow \mathbf{q} \\
& \text { If } \mathrm{p}, \text { then } \mathrm{q}
\end{aligned}
$$

When the conditional statement $(\mathbf{p} \rightarrow \mathbf{q})$ is true, we say:
p is a sufficient condition for q
q is a necessary condition for p

Necessary and Sufficient Conditions

Sufficient condition:

If sufficient condition is true then it is guaranteed that the conclusion holds.

If it rains, then schools are closed.

(sufficient condition)
If it is not raining, what can we say about schools? Are they open or closed?

- We can't say anything.

Why? (see next slide)

Necessary and Sufficient Conditions

Sufficient condition:

So, given that the conditional proposition $\mathbf{p} \rightarrow \mathbf{q}$ is true (that is, we only need to consider the three rows of the truth table), following statement holds.

If sufficient condition (hypothesis) is not true, we can't say anything about the conclusion.

See that hypothesis is false in both $3^{\text {rd }}$ and $4^{\text {th }}$ rows. Also, $\mathbf{p} \rightarrow \mathbf{q}$ is true in both $3^{\text {rd }}$ and $4^{\text {th }}$ rows. However,

- conclusion is true in the $3^{\text {rd }}$ row
- conclusion is false in the $4^{\text {th }}$ row,

So, we can't say anything about the conclusion here.
hypothesis conclusion

Necessary and Sufficient Conditions

Necessary condition:

If it rains, then schools are closed.
 (necessary)

Basically, we are saying, schools are necessarily closed if it rains.

If schools are not closed, what can we say about rain?

- We know for a fact that it is not raining.

However, if schools are closed, what can we say about rain?

- We can't say anything.

Necessary and Sufficient Conditions

Necessary condition:

So, given that the conditional proposition $\mathbf{p} \rightarrow \mathbf{q}$ is true (that is, we only need to consider the three rows of the truth table), following statement holds.

When necessary condition (conclusion) is not true, it is guaranteed that the hypothesis does not hold.

See the $4^{\text {th }}$ row,

- Conclusion q is false,
- Conditional statement $\mathbf{p} \rightarrow \mathbf{q}$ is true, Observe that $4^{\text {th }}$ row is the only row satisfying the above two conditions. Also the value of hypothesis is false there. So, we know for a fact that hypothesis is not true (false).
hypothesis conclusion

Necessary and Sufficient Conditions

Necessary condition:

Similarly, given that the $\mathbf{p} \rightarrow \mathbf{q}$ is true, the following statement also holds.

However, if necessary condition (conclusion) is true, we can't say anything about the hypothesis.

See that conclusion is true in both $1^{\text {st }}$ and $3^{\text {rd }}$ rows. Also, $\mathbf{p} \rightarrow \mathbf{q}$ is true in both $1^{\text {st }}$ and $3^{\text {rd }}$ rows. However,

- hypothesis is true in the $1^{\text {st }}$ row
- hypothesis is false in the $3^{\text {rd }}$ row, So, we can't say anything about the hypothesis.
hypothesis conclusion

1.3 Conditional Statement

Bi-conditional Proposition:

$$
\mathbf{p} \leftrightarrow \mathbf{q}
$$

p if and only if q
Example: The computer code works accurately if and only if all subroutines are correct.

p	\mathbf{q}	$\mathbf{p} \rightarrow \mathbf{q}$	$q \rightarrow p$	$\mathbf{p} \leftrightarrow \mathbf{q}$
T	T	T	T	T
T	F	F	T	F
F	T	T	F	F
F	F	T	T	T

$$
\begin{gathered}
p \leftrightarrow q= \\
(p \rightarrow q) \wedge(q \rightarrow p)
\end{gathered}
$$

It simply means, p and q are equivalent.

1.3 Conditional Statement

Biconditional Proposition:

Example: February has 29 days if and only if it's a leap year.

Example:

Three cameras are necessary and sufficient to completely monitor the below area.

1.4 Logical Equivalence

Propositions are logically equivalent means they have the same truth values.

- Is it true that $\mathbf{p} \rightarrow \mathbf{q}$ is equivalent to $\neg \mathbf{q} \rightarrow \neg \mathbf{p}$?

p	q	$p \rightarrow q$
T	T	T
T	F	F
F	T	T
F	F	T

p	q	$\neg q \rightarrow \neg p$
T	T	T
T	F	F
F	T	T
F	F	T

- Is it true that converse propositions is equivalent to inverse proposition?

1.4 Logical Equivalence

- Show that

$$
(\mathbf{p} \rightarrow \mathbf{q}) \text { is equivalent to }(\neg \mathbf{q} \rightarrow \neg \mathbf{p}) \text { ? }
$$

	p	q	$(p \rightarrow q)$	$\neg p$	$\neg q$
T	T	T	F	F	T
T	F	F	F	T	F
F	T	T	T	F	T
F	F	T	T	T	T

Observe that $1^{\text {st }}$ and $3^{\text {rd }}$ columns are exactly same, hence

$$
(\mathbf{p} \rightarrow \mathbf{q}) \leftrightarrow(\neg \mathbf{q} \rightarrow \neg \mathbf{p})
$$

1.4 Logical Equivalence

- Show that

$$
\neg(\mathbf{p} \rightarrow \mathbf{q}) \text { is equivalent to } \mathbf{p} \wedge \neg \mathbf{q} \text { ? }
$$

p	\mathbf{q}	$\neg(p \rightarrow q)$	$p \wedge \neg q$
T	T	F	F
T	F	T	T
F	T	F	F
F	F	F	F

1.4 Logical Equivalence

Tautology: If the proposition is always true, regardless of the truth value of individual propositions.

Contradiction: If the proposition is always false, regardless of the truth value of individual propositions.

Logical Equivalence

Lets construct truth table for the following:

$$
(\mathbf{p} \wedge \mathbf{q}) \rightarrow \mathbf{p}
$$

\mathbf{p}	\mathbf{q}	$\mathbf{p} \wedge \mathbf{q}$	If $(\mathbf{p} \wedge \mathbf{q})$, then p
T	$?$	$?$	T
F	$?$	F	T

Tautology

Logical Equivalence

Example: If p is a proposition, \mathbf{t} is a tautology and \mathbf{c} is a contradiction, then

$$
\begin{aligned}
& \text { 1. } p \wedge t=? \\
& \text { 2. } p \wedge c=?
\end{aligned}
$$

Solution:

1) $p \wedge t=p \wedge$ True $=p$ (truth value of p)
2) $p \wedge c=$ False
