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Abstract

We study the strong structural controllability (SSC) of networks, where the external control inputs are injected to only some
nodes, namely the leaders. For such systems, one measure of controllability is the dimension of strong structurally controllable
subspace (SSCS), which is equal to the smallest possible rank of controllability matrix under admissible coupling weights
among the nodes. In this paper, we compare two tight lower bounds on the dimension of SSCS: one based on the distances
of followers to leaders, and the other based on the graph coloring process known as zero forcing. We first show that each of
these two bounds can be arbitrarily better than the other in some special cases. We then show that the distance-based lower
bound is usually better than the zero-forcing-based bound when the value of the latter is less than the dimensionality of the
overall network state, n. On the other hand, we also show that any set of leaders that makes the distance-based bound equal
to n necessarily makes the zero-forcing-based bound equal to n (the converse is not true). These results indicate that while
the zero-forcing-based approach may be preferable when the focus is only on verifying complete SSC (dimension of SSCS is
equal to n), the distance-based approach usually yields a closer bound on the dimension of SSCS when the bounds are both
smaller than n. Furthermore, we also present a novel bound based on combining these two approaches, which is always at
least as good as, and in some cases strictly greater than, the maximum of the two original bounds. Finally, we support our
analysis with numerical results on various graphs.
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1 Introduction

Networks where each node’s state is linearly influenced
by its neighbors’ states appear in numerous systems such
as sensor networks, distributed robotics, power grids, so-
cial networks, and biological systems. Such systems are
often modeled using their interaction graphs where the
nodes represent the agents, and the weighted edges de-
note the couplings among agents. One major research
question regarding such systems is whether a desired
global behavior can be induced by injecting external in-

? Some preliminary results of this paper were presented in
the 59th IEEE Conference on Decision and Control (see [1]).
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puts to only some agents, so-called leaders. This ques-
tion has motivated numerous studies on relating network
controllability to the structure of the interaction graph.

Notions of network controllability can be broadly
grouped into three categories based on how they treat
the coupling weights among agents: 1) controllability
under specific weights, 2) structural controllability un-
der a set of admissible weights, 3) strong structural
controllability under a set of admissible weights. The
latter two approaches are motivated by the uncertainty
in the coupling weights of networks in real life, i.e.,
the weights belong to some feasible set but their ex-
act values are unknown. Such a network is structurally
controllable if there exist admissible weights that make
the system controllable. Furthermore, the network is
strong structurally controllable if it is controllable un-
der any admissible allocation of weights. In such cases,
the admissible weights may be arbitrary non-zero val-
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ues (e.g., [2–8]) or may need to satisfy additional con-
straints (e.g., [9–12]). Studies on structural or strong
structural controllability also have some extensions to
networks with time-varying dynamics (e.g., [13–15]).
Various graph-theoretic tools have been utilized to
provide topology-based characterizations of network
controllability. Examples include equitable partitions
(e.g., [16]), maximum matchings (e.g., [2,3]), centrality
based measures (e.g., [17,18]), dominating sets (e.g.,
[19]), distances (e.g., [20,10,11]), and zero forcing (e.g.,
[4–8,21]). Studies on network controllability have sev-
eral important applications such as selecting a minimal
set of leaders (e.g., [22–25]) or designing/modifying the
network topology to achieve/maintain a desired level of
controllability (e.g., [26–28]).

In this paper, we focus on the strong structural control-
lability (SSC) of networks. More specifically, we consider
the dimension of strong structurally controllable subspace
(SSCS), i.e., the minimum possible rank of controllabil-
ity matrix under admissible coupling weights among the
nodes, as the measure of controllability. The exact com-
putation of the dimension of SSCS is a challenging prob-
lem that involves finding the minimum rank of matrices
with a given zero-nonzero or sign pattern, i.e., matrices
whose specific entries are zero and the remaining non-
zero entries can take any feasible value (e.g., [9,29,30]).
Motivated by the intractability of exact computation,
two graph-theoretic concepts have been utilized in the
literature to yield a tight lower bound on this control-
lability measure: distances and zero forcing. While the
zero-forcing-based bound is applicable to networks with
arbitrary linear dynamics, the distance-based bound is
applicable to an important subfamily which contains
widely studied cases such as diffusively coupled networks
(e.g., weighted Laplacian/adjacency dynamics) among
others. In this paper, we focus on such systems where
both lower bounds are applicable. In the distance-based
approach, the lengths of the shortest paths from the
leaders to the followers are used to obtain a lower bound
on the dimension of SSCS. On the other hand, the zero-
forcing-based approach is based on a graph coloring pro-
cess (zero forcing process), where each node is initially
colored black if it is a leader and colored white if it is
a follower. Starting with this initial coloring, any white
node becomes black if it is the only white out-neighbor
of a black node. This color changing rule is applied until
no further color changes are possible and the resulting
number of black nodes yields a lower bound on the di-
mension of SSCS. In this paper, we first compare these
two approaches. Our comparative results indicate that
while the zero-forcing-based approach is better for veri-
fying complete SSC (i.e., whether the controllability ma-
trix has full rank under any admissible weighting of the
edges), the distance-based approach is usually more in-
formative when the leaders do not constitute a zero forc-
ing set, i.e., the zero forcing process starting with only
the leaders colored black do not make all the nodes black.
We also propose a novel bound based on the combina-

tion of these two methods, which is always at least as
good as, and in some cases greater than, the maximum of
the two original bounds. Finally, we support our analy-
sis with some numerical results. The main contributions
of this paper are as follows:

(1) We first show that there exist networks where the
distance-based bound and the zero-forcing-based
bound can significantly outperform each other
(Theorem 3), motivating the comparative analysis
in this paper.

(2) We characterize some generic cases where the
distance-based bound is guaranteed to outperform
the zero-forcing-based bound. In particular, the
distance-based approach yields a better bound for
networks where each leader has multiple follow-
ers as out-neighbors (Theorem 5) and for most
networks with a single leader (Theorem 6).

(3) We show that the zero-forcing-based approach is
a better option when focusing only on complete
SSC. In particular, we show that the distance-based
bound can indicate complete SSC only if the zero-
forcing-based bound also indicates complete SSC,
i.e., the leader set is a zero forcing set (Theorem 7).
We also show that the inverse is not true (e.g., see
Fig. 5a).

(4) We derive a novel lower bound on the dimension of
SSCS by combining the distance-based and zero-
forcing-based methods. We show that this new
bound is always at least as good as (Theorem 8),
and in some cases strictly greater than (e.g., see
Fig. 6), the original bounds. We show that the com-
bined bound outperforms the zero-forcing-based
bound on any strongly connected graph unless
the leader set is a zero forcing set (Theorem 11),
equals the distance-based bound on most single-
leader networks (Theorem 12), and outperforms
the distance-based bound if the zero forcing process
can infect multiple nodes with identical distances
to the leaders (Theorem 13).

(5) We compare the three bounds numerically for var-
ious randomly generated networks and leader sets.

The organization of this paper is as follows: Section 2
provides some preliminaries. Section 3 presents our re-
sults regarding the comparison of the distance-based and
zero-forcing-based bounds. Section 4 provides a novel
bound based on the combination of these two previous
methods. Some numerical results are given in Section 5.
Finally, Section 6 concludes the paper.

2 Preliminaries

2.1 Graph Basics

We consider a network represented by a simple
directed graph G = (V,E) where the node set
V = {v1, v2, . . . , vn} represent agents, and the edge
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set E represents interconnections between agents.
An edge from a node vi ∈ V to a node vj ∈ V is
denoted by eij . The out-neighborhood of node vi is

N out
i , {vj ∈ V : eij ∈ E}. The in-neighborhood of node

vi isN in
i , {vj ∈ V : eji ∈ E}. The distance d(vi, vj), is

the number of edges on the shortest path from vi to vj .
Accordingly, d(vi, vi) = 0 and d(vi, vj) = ∞ if there is
no path from vi to vj . The graph is strongly connected
if there is a path from any node to any other node.

2.2 System Model

For the sake of simplicity, let each agent vi ∈ V have a
scalar state xi ∈ R. 1 The overall state of the system

is x =
[
x1 x2 · · · xn

]T
∈ Rn. The states evolve under

the following dynamics:

ẋ = Ax+Bu. (1)

Here, the matrix B ∈ Rn×m is the input matrix,
where m is the number of leaders, i.e., the nodes
to which an external control signal is applied. Let
V` = {`1, `2, · · · , `m} ⊆ V be the set of leaders, then

Bij =

{
1 if vi = `j ,

0 otherwise.
(2)

Furthermore, the state matrix A is restricted by the
structure of the graph G = (V,E). Typically, each node
is directly influenced only by its in-neighbors. As such,
any off-diagonal term Aij is non-zero if and only if there
is an edge from vj to vi, i.e., A belongs to

A(G) = {A ∈ Rn×n | for i 6= j, Aij 6= 0⇔ eji ∈ E},(3)

which is called the qualitative class of the graph G =
(V,E) [5,6]. Accordingly, each Aij denotes the weight
of eji and the edges in G define the structure—location
of zero and non-zero off-diagonal entries—for any A ∈
A(G), for instance, see Fig. 1.

2.3 Strong Structural Controllability (SSC)

Controllability of the networked system in (1), where the
input matrix B is determined by the leaders V` ⊆ V as
in (2), can be checked via the controllability matrix, i.e.,

Γ(A, V`) =
[
B AB A2B · · · An−1B

]
. (4)

1 The model and our results can easily be extended to agents
with higher-dimensional states, where the vector of states in

each dimension k, say xk =
[
xk1 xk2 · · · xkn

]T
∈ Rn, evolves

under ẋk = Axk +Buk with uk = [uk
1 , . . . , u

k
m].

v1

v2 v3

v4 v5 v6



• × 0 0 0 0
0 • 0 × 0 0
× × • 0 0 0
0 0 0 • × 0
0 0 × × • ×
0 0 0 0 × •


Fig. 1. A graph G = (V,E) and the corresponding structure
satisfied by any A ∈ A(G). The entries marked as × are
non-zero and the entries on the diagonal can take any value.

The network is completely controllable if and only if the
rank of Γ(A, V`) is n. In that case, (A,B) is called a con-
trollable pair and the system in (1) can be driven from
any initial state to any desired state in finite time via a
properly designed u. A networkG = (V,E) with V` lead-
ers is strong structurally controllable if (A,B) is a con-
trollable pair for any feasible A. In that case, the dimen-
sion of strong structurally controllable subspace (SSCS),
i.e., the smallest possible rank of Γ(A, V`) under feasible
values of A, is equal to n. In this paper, we will focus on
cases where A belongs to the set of distance-information
preserving matrices, which is a subset of A(G) in (3):

Ad(G) = {A ∈ A | [Ad(vj ,vi)]ij 6= 0,∀vi, vj ∈ V : d(vj , vi) <∞},
(5)

where [Ad(vj ,vi)]ij is the (i, j)th entry in the d(vj , vi)
th

power of A. Although Ad(G) is more restrictive than
A(G) as per (5), it is an important and rich subset of
A(G). For example, the widely studied weighted Lapla-
cian/adjacency matrices are contained in Ad(G) (e.g.,
see [10,11]). In fact, any A ∈ A(G) is also contained in
Ad(G) if all of its off-diagonal non-zero entries have the
same sign. Such a uniform sign of off-diagonal non-zero
entries is sufficient but not necessary to be a contained
in Ad(G). In fact, there are even networks where every
matrix in A(G) is also contained in Ad(G). For exam-
ple, Ad(G) = A(G) when G is a geodetic graph, i.e., an
undirected graph where there is a unique shortest path
between any two nodes (e.g., any tree, any cycle with an
odd number of nodes, or any complete graph).

Since we focus on systems with A ∈ Ad(G), we define
the dimension of SSCS accordingly as

γ(G,V`) = min
A∈Ad(G)

rank Γ(A, V`). (6)

Roughly, γ(G,V`) quantifies how much of the network
can be controlled via the leaders V` under any A ∈ Ad.
Computing γ(G,V`) requires finding the minimum rank
of Γ(A, V`) that can result from any A ∈ Ad(G), i.e.,
any A that has a pattern of non-zeros determined by
G as per (3) and also satisfies the additional property
in (5). Such minimum rank problems are typically very
challenging (e.g., [29,30,9]) and there is no algorithm for
computing the exact value of γ(G,V`) for arbitrary G
and V`. This has motivated the investigation of bounds
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that can be used to approximate (or determine exactly
in some special cases) γ(G,V`). We will next present two
such tight lower bounds on γ(G,V`), which will be the
main focus of our analysis in the following sections.

2.4 Distance-based Lower Bound: δ(G,V`)

We first present the distance-based bound, which was
originally proposed in [10] for the SSC of networks un-
der consensus (weighted Laplacian) dynamics. While
the weighted Laplacian matrices constitute a subset of
Ad, this distance-based bound actually holds for every
A ∈ Ad as we will show. We will first provide some def-
initions and then provide the bound, which is obtained
from the distances of nodes to the leaders onG = (V,E).

Given anyG = (V,E) withm leaders, V` = {`1, · · · , `m},
the distance-to-leaders (DL) vector of each vi ∈ V is

Di =
[
d(`1, vi) d(`2, vi) · · · d(`m, vi)

]T
∈ Zm,

where the jth component of Di, denoted by [Di]j , is
equal to the length of the shortest path from `j to vi.
Next, we provide the definition of pseudo-monotonically
increasing sequences of DL vectors.

Definition 1 (Pseudo-monotonically Increasing (PMI)
Sequence) A sequence of distance-to-leaders vectors D
is PMI if for any vector Di in the sequence, there exists
some π(i) ∈ {1, 2, · · · ,m} such that

[Di]π(i) < [Dj ]π(i), ∀j > i. (7)

We say that Di satisfies the PMI property at coordinate
π(i) whenever [Di]π(i) < [Dj ]π(i), ∀j > i.

An example of DL vectors is illustrated in Fig. 2, where
a PMI sequence of length six can be constructed as

D =

{[
3

0©

]
,

[
0©
4

]
,

[
1©
4

]
,

[
2

1©

]
,

[
3©
2

]
,

[
4

3

]}
,

where the coordinates, π(i), satisfying the PMI property
in (7) are circled.

.

We next provide an extension of [10, Thm. 3.2], where
the distance-based bound on the dimension of SSCS was
derived for networks with weighted Laplacian dynamics.

Proposition 1 Consider any network G = (V,E) with
the leaders V` ⊆ V . Let δ(G,V`) be the length of longest

v1

v2 v3

v4 v5 v6

[
0
4

]
[
4
3

]
[
3
2

]
[
1
4

]

[
2
1

]
[
3
0

]

Fig. 2. A network with two leaders, V` = {v1, v6}, and the
corresponding distance-to-leaders (DL) vectors.

PMI sequence of distance-to-leaders vectors with at least
one finite entry. Then,

δ(G,V`) ≤ γ(G,V`).

PROOF. It can be shown that for any A ∈ A(G) and
any vi, vp ∈ V , [Ar]ip = 0 for every positive integer
r < d(vp, vi) (e.g., see [11, Lem. 1]). Using this together
with (5), for anyA ∈ Ad(G) ⊆ A(G) and any vi, vp ∈ V ,

[Ar]ip

{
= 0 if 0 < r < d(vp, vi),

6= 0 if r = d(vp, vi).
(8)

Given G = (V,E) and the leaders V`, let D =
{D1,D2, · · · ,Dk} be a PMI sequence of maximum
length that can be constructed with the DL vectors
with at least one finite entry. Accordingly, δ(G,V`) = k.
Without any loss of generality, let us re-label the nodes
based on the sequenceD such thatDi is the DL vector of
vi ∈ V for all i ∈ {1, 2, . . . , k}. Now, for any A ∈ Ad(G),
consider the following n× k matrix:[

A[D1]π(1)bπ(1) A
[D2]π(2)bπ(2) . . . A

[Dk]π(k)bπ(k)

]
, (9)

where π(1), . . . , π(k − 1) are the coordinates of
D1, . . . ,Dk−1 that satisfy the rule in (7), π(k) is the
coordinate of any finite entry of Dk, and each bπ(i) de-

notes the π(i)th column of the input matrix B in (2).
Accordingly, [D1]π(1), . . . , [Dk]π(k) are all finite values in
{0, 1, . . . , n−1} due to the definition of distance. Hence,
every column of the matrix in (9) is also a column of the
controllability matrix Γ(A, V`). In the remainder of the
proof, we will show that (9) has full column rank, which
implies Γ(A, V`) ≥ δ(G,V`). For any i ∈ {1, 2, . . . , k},
let vp = `π(i) be the π(i)th leader. Accordingly, the ith

column of (9) is

A[Di]π(i)bπ(i) =
[

[A[Di]π(i) ]1p [A[Di]π(i) ]2p . . . [A[Di]π(i) ]np

]T
.
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Since [Di]π(i) = d(vp, vi), (8) implies that the ith en-

try of A[Di]π(i)bπ(i) is non-zero. Furthermore, for every

j ∈ {i+ 1, . . . , k}, the jth entry of A[Di]π(i)bπ(i) is zero,

i.e., [A[Di]π(i) ]jp = 0, since [Di]π(i) < [Dj ]π(i) = d(vp, vj)
due to the PMI rule in (7). Accordingly, each column of
(9) contains the left-most non-zero entry in at least one
row. Hence, (9) has full rank and Γ(A, V`) ≥ δ(G,V`) for
any A ∈ Ad(G). Consequently, γ(G,V`) ≥ δ(G,V`). �

2.5 Zero-forcing-based Lower Bound: ζ(G,V`)

We next present the zero-forcing-based lower bound on
γ(G,V`), which follows from the earlier studies in [5,7].
We first give the definitions of the zero forcing process
and the derived set.

Definition 2 (Zero Forcing Process) Given a graph
G = (V,E) where each node is initially colored either
white or black, zero forcing process is defined by the fol-
lowing coloring rule: if vi ∈ V is colored black and has
exactly one white out-neighbor vj , then the color of vj
is changed to black and vj is said to be infected by vi.

Definition 3 (Derived Set) Given an initial set of black
nodes V ′ ⊆ V (called the input set) in a graph G =
(V,E), there exists a unique derived set, dset(G,V ′) ⊆
V , which is the resulting set of black nodes when no
further color changes are possible under the zero forcing
process. An input set V ′ is called a zero forcing set (ZFS)
if dset(G,V ′) = V .

These notions are illustrated in Figure 3. Here, V ′ =
{v1, v4} is the set of input nodes. As a result of zero
forcing process, we get dset(G,V ′) = V (as shown in
Figure 3(d)), which means that V ′ is a ZFS.

v1

v2 v3

v4 v5 v6

(a)

v1

v2 v3

v4 v5 v6

(b)
v1

v2 v3

v4 v5 v6

(c)

v1

v2 v3

v4 v5 v6

(d)

Fig. 3. Zero forcing process. (a) {v1, v4} is the input set.
(b) v1 infects v3 (as v3 is the only out-neighbor of v1). (c) v3
infects v5. (d) Finally, v5 and v4 infect v6 and v2, respectively.

Proposition 2 For any network G = (V,E) with the
leaders V` ⊆ V ,

ζ(G,V`) ≤ γ(G,V`),

where ζ(G,V`) = |dset(G,V`)| is the size of the derived
set corresponding to the input set V`.

PROOF. Proof mainly follows from [7, Lem. 6.2],
which shows that for any A ∈ A(G) and V` ⊆ V , the
reachable/controllable subspace, i.e., the range space of
the controllability matrix, remains the same when the
leader set is expanded to include all the nodes in the
derived set dset(V`). More specifically,

range(Γ(A, V`)) = range(Γ(A,dset(G,V`))),

which implies

rank(Γ(A, V`)) = rank(Γ(A,dset(G,V`))). (10)

Furthermore, using (2) and (4), it can be shown that
the rank of the controllability matrix is always lower
bounded by the number of leaders. Hence,

|V`| ≤ rank(Γ(A, V`)), (11)

|dset(G,V`)| ≤ rank(Γ(A,dset(G,V`))). (12)

Using (10), (11), and (12), we obtain

ζ(G,V`) ≤ rank(Γ(A, V`)), ∀A ∈ A(G). (13)

Since Ad(G) ⊆ A(G), (13) implies

ζ(G,V`) ≤ min
A∈A(G)

rank Γ(A, V`) ≤ γ(G,V`). (14)

�

2.6 Computational Aspects

The investigation of graph theoretic bounds on γ(G,V`)
is mainly motivated by the intractability of the exact
computation of γ(G,V`). Hence, while the main focus
of this paper is on the comparison of the values of two
tight lower bounds, ζ(G,V`) and δ(G,V`), we also briefly
discuss their computational aspects prior to our analysis.

In general, ζ(G,V`) can be computed in O(n2) time by
recursively applying the coloring rule of the zero forcing
process to the out-neighbors of infected nodes until no
further color change is possible. Accordingly, the com-
putation of ζ(G,V`) remains tractable as the network
size or the number of leaders increases.
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In comparison to ζ(G,V`), the exact computation of
δ(G,V`) is significantly more demanding. For any given
network with n nodes and m leaders, all pair-wise
distances can be computed in O(n3) time (e.g., [31]).
Then, given the distances, δ(G,V`) can be computed in
O(m(n log n+ nm)) time [32]. While this computational
load scales well with increasing network size when the
number of leaders is constant, it becomes intractable
when the number of leaders also increases. To overcome
this computational challenge, an approximation that
can be obtained in O(mn log n) time was presented in
[32]. In a nutshell, this is a greedy algorithm that itera-
tively builds a PMI sequence of DL vectors by starting
with an empty sequence and, in each iteration, adding
a DL vector that minimally reduces the number of
DL vectors that can be added to the sequence in the
following iterations under the rule in (7). Since this
approximation algorithm is based on constructing a fea-

sible PMI sequence, the resulting value, δ̂(G,V`), never

exceeds δ(G,V`). Accordingly, δ̂(G,V`) can be used as a
lower bound on γ(G,V`), i.e.,

δ̂(G,V`) ≤ δ(G,V`) ≤ γ(G,V`),

Numerical results with randomly generated networks

and leader sets suggest that δ̂(G,V`) is usually very
close to δ(G,V`) [32]. Furthermore, if the distance-based
bound indicates complete strong structural controllablil-
ity, i.e., δ(G,V`) = n, then the approximation algorithm

is also guaranteed to return δ̂(G,V`) = n. We refer in-
terested readers to [32] for further details on the compu-
tational aspects of δ(G,V`).

3 Comparison of Bounds

In this section, we compare the distance-based bound,
δ(G,V`), and the zero-forcing-based bound, ζ(G,V`). It
is worth mentioning that both δ(G,V`) and ζ(G,V`) are
tight bounds. For instance, in the case of undirected
graphs, any path graph in which one of the end nodes is
a leader, or any cycle graph in which two adjacent nodes
are leaders satisfy ζ(G,V`) = δ(G,V`) = γ(G,V`) = n.
Furthermore, neither of these two tight bounds is guar-
anteed to be at least as good as the other in all possible
cases. We provide one example for ζ(G,V`) > δ(G,V`)
and one example for δ(G,V`) > ζ(G,V`) in Fig. 4. In
fact, as we will show in Theorem 3 below, for each bound
there exist examples of networks where it is arbitrar-
ily better than the other bound. Accordingly, our main
goal in this section is to identify the networks when one
bound may be preferable to the other.

Theorem 3 For any α ≥ 1, there exist graphs G =
(V,E), G′ = (V ′, E′) and leader sets V` ⊆ V , V ′` ⊆ V ′

(a)

v1

(b)

v2 v3 v4
v1 v2 v5

v8 v7 v6

v3 v4

Fig. 4. Two networks and their leaders show in gray. For the
network in (a), δ(G,V`) = 3, ζ(G,V`) = 1. For the network
in (b), δ(G,V`) = 5, ζ(G,V`) = 6.

such that

ζ(G,V`)

δ(G,V`)
≥ α, δ(G

′, V ′` )

ζ(G′, V ′` )
≥ α. (15)

PROOF. While one can find many different networks
and leader sets that satisfy the claim, we prove it by
providing two specific network structures as shown in
Fig. 5. These two networks achieve an arbitrarily large
ζ(G,V`)/δ(G,V`) (Fig. 5a) or δ(G′, V ′` )/ζ(G′, V ′` ) (Fig.
5b) as their sizes increase. Accordingly, for any α ≥ 1
these networks can be built with a sufficiently large size
n to obtain the pairs (G,V`) and (G′, V ′` ) that satisfy
(15). In the remainder of the proof, we derive the ratios
of bounds and determine the sufficient size for each of
these two networks to satisfy (15) for any given α ≥ 1.

v2

v3
v4

v5

v6

v7

v8

vn−1

vn

v1

v1v2 v3 v4 vn

(a) (b)

Fig. 5. Examples where the bounds ζ and δ become arbitrar-
ily larger than each other as the network size n increases.

Network in Fig. 5a: This network has two leaders, V` =
{v1, v2}. The graph G = (V,E) has its edge set as

E = {(v1, v2)} ∪ {(vi, v1) | i ≥ 3} ∪ {(vi, vi−1) | i ≥ 3)}.

It can be shown that the zero forcing process starting
with the input set {v1, v2} infects all the nodes in this
graph. In particular, first v3 gets infected (only white
out-neighbor of v2), then v4 gets infected (only white
out-neighbor of v3) and so on. Accordingly, ζ(G,V`) = n.
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Furthermore, in this structure the DL vectors are

D1 =

[
0

1

]
, D2 =

[
∞
0

]
, D3 =

[
1

1

]
, Di =

[
1

2

]
,∀i ≥ 4.

It can be shown that the longest PMI sequence of such
DL vectors contains four vectors, i.e., δ(G,V`) = 4.
Accordingly, this network satisfies ζ(G,V`)/δ(G,V`) =
n/4, which can be made arbitrarily large to satisfy (15)
for any given α ≥ 1.

Network in Fig. 5b: This network has a single leader,
V ′` = {v1}. The graph G′ = (V ′, E′) has its edge set as

E′ = {(v2, v1), (v3, v1)} ∪ {(vi, vi−1) | i ≥ 4)}.

The zero forcing process starting with the input set {v1}
does not infect any other node since v1 has two followers
as out-neighbors. Accordingly, ζ(G′, V ′` ) = 1. Further-
more, the DL vectors in this network are

D1 =
[

0
]
, D2 = D3 =

[
1
]
, Di =

[
i− 2

]
,∀i ≥ 4.

It can be shown that the longest PMI sequence of
such DL vectors is {[0], [1], . . . , [n − 2]}. Accord-
ingly, δ(G′, V ′` ) = n − 1 and this network satisfies
δ(G′, V ′` )/ζ(G′, V ′` ) = n − 1, which can get arbitrarily
large by increasing n to satisfy (15) for any given α ≥ 1.
�

One important implication of Theorem 3 is that al-
though ζ(G,V`) and δ(G,V`) are both tight lower bounds
on the dimension of SSCS, i.e., there exist networks
such that δ(G,V`) = γ(G,V`) or ζ(G,V`) = γ(G,V`),
these lower bounds can also be arbitrarily smaller than
γ(G,V`) in some cases. How well these two lower bounds
typically approximate γ(G,V`) for arbitrary networks
and leader sets is currently an open problem.

Corollary 4 For any α ≥ 0, there exist graphs G =
(V,E), G′ = (V ′, E′) and leader sets V` ⊆ V , V ′` ⊆ V ′

such that

γ(G,V`)

δ(G,V`)
≥ α, γ(G′, V ′` )

ζ(G′, V ′` )
≥ α.

PROOF. As per Theorem 3, there exist graphs G =
(V,E), G′ = (V ′, E′) and leader sets V` ⊆ V , V ′` ⊆ V ′

such that ζ(G,V`)/δ(G,V`) and δ(G′, V ′` )/ζ(G′, V ′` ) are
arbitrarily large. Since ζ and δ are both lower bounds on
γ, i.e., ζ(G,V`) ≤ γ(G,V`) and δ(G′, V ′` ) ≤ γ(G′, V ′` ),

such networks also yield arbitrarily large values for
γ(G,V`)/δ(G,V`) and γ(G′, V ′` )/ζ(G′, V ′` ). �

Our focus in the remainder of this paper will be on
comparing δ(G,V`) and ζ(G,V`) and developing a novel
lower bound on γ(G,V`) that combines the strengths of
these two state-of-the-art bounds.

3.1 Advantages of Using the Distance-based Bound

We will present two results, Theorems 5 and 6, identify-
ing some rich families of cases where δ(G,V`) > ζ(G,V`).
Later in Section 5, we will also provide numerical results
showing that δ(G,V`) is actually significantly greater
than ζ(G,V`) in many cases that are not limited to
those captured by Theorems 5 and 6. Our first result in
this section shows that δ(G,V`) is greater than ζ(G,V`)
whenever each leader has at least two followers as out-
neighbors. Note that this condition is very likely to oc-
cur when a small number of leaders are scattered over
a large graph where most nodes have an in-degree of
two or more (e.g., most regular graphs, random graphs,
scale-free networks).

Theorem 5 Consider any graph G = (V,E) with n
nodes and m leaders V` ⊆ V . If each leader has at least
two followers as out-neighbors, then δ(G,V`) > ζ(G,V`).

PROOF. If every leader has outgoing links to at least
two followers, then none of the followers will be forced
when only the leaders are the black nodes. Accordingly,
the dset(G,V`) = V` and ζ(G,V`) = m. On the other
hand, we can always find a PMI sequence of DL vectors
whose length is greater than m in such a case. As an ex-
ample, consider the following sequence that has a length
of m+ 1: 1) start with the DL vectors of leaders in any
order, 2) add the DL vector of a follower who has a dis-
tance of one to one of the leaders. Since each leader is
the only node who has a distance of zero to itself, those
self-distance entries can be selected as the entries that
satisfy the PMI rule. Hence, the longest possible PMI
sequence would have a length of at least m + 1, which
implies δ(G,V`) > ζ(G,V`). �

Our next result shows that for any single-leader network
where each follower has a finite distance to the leader,
δ(G,V`) < n ensures that δ(G,V`) > ζ(G,V`).

Theorem 6 For any G = (V,E) with n nodes and a
single leader V` = {v`} such that d(v`, vi) < ∞ for all
vi ∈ V ,

δ(G,V`) < n⇒ δ(G,V`) > ζ(G,V`). (16)
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PROOF. Since the left side of (16) can never be true for
n = 1, we focus on networks with n ≥ 2 and we will prove
the claim via contradiction. Suppose that δ(G,V`) < n
and ζ(G,V`) ≥ δ(G,V`). Note that if v` has more than
one follower as out-neighbor, then the zero forcing pro-
cess starting with the input set {v`} would not prop-
agate and we would have ζ(G,V`) = 1. Furthermore,
for any network with a single leader v` ∈ V such that
d(v`, vi) <∞ for all vi ∈ V ,

δ(G, {v`}) = max
vi∈V

d(v`, vi) + 1, (17)

which is always greater than one. Hence, if ζ(G,V`) ≥
δ(G,V`), then v` must have only one out-neighbor, say vi,
who will be infected by v` under the zero forcing process.
Now, if n = 2 (there are no other followers), then we
end up with δ(G,V`) = ζ(G,V`) = 2, which contradicts
with δ(G,V`) < n. On the other hand, if n > 2 then
we can repeat the same reasoning by removing v` from
the network, since v` has no impact on the infection of
nodes at distance of two or more from itself, and treating
the remaining network as a system with a single leader
vi with d(vi, vj) < ∞ for every vj 6= v` (vi being the
only out-neighbor of v` implies that the paths from v`
to all other nodes go through vi, hence d(vi, vj) < ∞).
Accordingly, we can show that if ζ(G,V`) ≥ δ(G,V`),
then each follower must have a distinct distance to v`,
which implies δ(G,V`) = ζ(G,V`) = n and results in a
contradiction with δ(G,V`) < n. �

Remark 1 In light of (17), the only connected
undirected network with a single-leader that yields
δ(G,V`) = n is a path graph with a terminal node
being the leader. Hence, Theorem 6 implies that
δ(G,V`) > ζ(G,V`) for all other connected undirected
networks with a single-leader.

3.2 Advantages of Using the Zero-forcing-based Bound

One advantage of using a zero-forcing-based approach is
that ζ(G,V`) is actually a lower bound on rank(Γ(A, V`))
for every A ∈ A(G) as per (14). In this regard, it differs
from δ(G,V`), which is a lower bound on rank(Γ(A, V`))
only for A ∈ Ad(G) ⊆ A(G). Furthermore, as we will
formally show below, ζ(G,V`) is better at verifying com-
plete SSC. More specifically, we show that if δ(G,V`) =
n, then V` must be a zero forcing set. Note that the con-
verse is not true in general, i.e., it is possible to have a
zero forcing set V` such that δ(G,V`) < n, as already
shown by the example in Fig. 4b. Clearly, such examples
do not exist for single-leader networks due to Theorem 6.

Theorem 7 For any graphG = (V,E) with n nodes and
any set of m leaders V` ⊆ V ,

δ(G,V`) = n⇒ ζ(G,V`) = n.

PROOF. The claim is trivial for the cases when V` = V
since δ(G,V ) = ζ(G,V ) = n. Hence we focus on V` ⊂ V
(n > m) in the proof. Let D = [D1 D2 · · · Dn] be a PMI
sequence consisting of all the distance-to-leaders (DL)
vectors such the first |V`| vectors belong to the leaders.
Note that there is no loss of generality here since for
any PMI sequence of DL vectors, the vectors belonging
to the leaders can be moved to the beginning of the
sequence and the distance of each leader to itself (zero)
satisfies the PMI rule. Without any loss of generality, let
the nodes be re-labeled based on the order of their DL
vectors in the sequence, i.e.,Di is the DL vector of vi ∈ V
for all i = 1, 2, . . . , n. Furthermore, let π(i) denote the
dimension of Di that satisfies the PMI rule, i.e.,

[Di]π(i) < [Dj ]π(i), ∀j > i. (18)

Due [10, Lem. 4.1], if D is the longest possible PMI se-
quence of DL vectors, then it must satisfy

[Di]π(i) = min
j≥i

[Dj ]π(i),∀i ∈ {1, . . . , n− 1}.

For each i ∈ {m+ 1, . . . , n}, let Wi = {vi, . . . , vn} ⊆ V
be the owners of the DL vectors in the subsequence of D
starting with the ith entry. We will show that

∀i > m,∃k < i : Nk ∩Wi = {vi}, (19)

where Nk is the set of out-neighbors of vk. Note that
(19) would imply that if all the nodes {v1, . . . , vi−1} are
infected, then vi becomes infected under the zero forcing
process. Accordingly, we can conclude that ζ(G,V`) = n
since starting with all the leaders being infected, all the
followers would eventually become infected.

Note that (19) clearly holds for i = n since Wn =
{vn} and vn must have at least one in-neighbor in
{v1, . . . , vn−1} as otherwise its DL vector would be all
∞ and not included in any PMI sequence, leading to
the contradiction δ(G,V`) < n. Now, for the sake of
contradiction, suppose that (19) is not true for some
i ∈ {m + 1, . . . , n − 1}. Let vk be any in-neighbor of vi
such that

[Dk]π(i) = [Di]π(i) − 1.

Clearly such a neighbor always exists: vk is either the
leader `π(i) or another follower on the shortest path from
`π(i) to vi . Furthermore, k < i due to (18). Now suppose
that vk has another out-neighbor vj such that j > i.
Then,

[Dj ]π(i) ≤ [Dk]π(i) + 1 = [Di]π(i),

which contradicts with (18). Hence, (19) must be true,
and it implies that ζ(G,V`) = n. �
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In light of Theorem (7), the zero-forcing-based approach
is a better choice for verifying complete strong structural
controllability, especially since there exist cases such as
the example in Fig. 5a, where complete SSC can be in-
ferred via the zero-forcing-based bound but not via the
distance-based bound, i.e., δ(G,V`) < ζ(G,V`) = n.

It should be noted that having a zero forcing set as the
leaders, i.e., ζ(G,V`) = n, is not necessary for the zero-
forcing-based to outperform the distance-based bound.
For instance, the example in Fig. 4b shows a network
where δ(G,V`) < ζ(G,V`) < n. However, whether there
exists a rich family of such examples remains as an open
question. Our numerical results in Section 5 suggest that
δ(G,V`) < ζ(G,V`) < n may occur in rare cases since
none of the randomly generated graphs and leader sets
therein resulted in such an inequality.

4 Combined Bound: δ(G,dset(G,V`))

Our analysis so far has shown that both the distance-
based bound, δ(G,V`), and the zero-forcing-based
bound, ζ(G,V`), have their own merits. Given these
results, it is only natural to ask if it is possible to find
a novel bound that combines the strengths of distance-
based and zero-forcing-based methods. In this regard,
one trivial approach is taking the maximum of the two
bounds. While guaranteed to be at least as good as ei-
ther of the bounds alone, this approach does not reveal
any additional information compared to the two origi-
nal bounds. In this section, we present a novel bound
that fuses the strengths of distance-based and zero-
forcing-based approaches and sometimes outperforms
both original bounds. More specifically, we show that
the length of the longest PMI sequence of distances to
the derived set of leaders provides a tight lower bound
on the dimension of SSCS, i.e.,

δ(G,dset(G,V`)) ≤ γ(G,V`).

We show that this novel bound is always at least as good
as, and sometimes better than, the individual bounds.

Theorem 8 Consider any network G = (V,E) with the
leaders V` ⊆ V . Then,

δ(G,V`), ζ(G,V`) ≤ δ(G, dset(G,V`)) ≤ γ(G,V`).

PROOF. First, we show that δ(G,dset(G,V`)) ≤
γ(G,V`). In light of (6) and (10),

γ(G,dset(G,V`)) = γ(G,V`). (20)

Due to Theorem 1,

δ(G,dset(G,V`)) ≤ γ(G,dset(G,V`)). (21)

Using (20) and (21), we get δ(G,dset(G,V`)) ≤ γ(G,V`).

Next, we show that δ(G,dset(G,V`)) ≥ ζ(G,V`). Since
the DL vectors of leaders can always be included in the
beginning of a PMI sequence (self-distances are uniquely
zero), δ(G,V ′) ≥ |V ′| for any V ′ ⊆ V . Hence,

δ(G,dset(G,V`)) ≥ |dset(G,V`)| = ζ(G,V`).

Finally, we show that δ(G,dset(G,V`)) ≥ δ(G,V`). Since
the initial set of infected nodes (input nodes) are always
contained in the derived set, we have V` ⊆ dset(G,V`).
Accordingly, for any PMI sequence D of DL vectors un-
der the leader set V`, there is an equally long PMI se-
quence of DL vectorsD′ under the leader set dset(G,V`),
which has the DL vectors of the same nodes in the same
order as D. Hence, the longest possible PMI sequence
of DL vectors with the additional leaders can not be
shorter, i.e.,

δ(G,dset(G,V`)) ≥ δ(G,V`).

�

Remark 2 While Theorem 8 shows that the combined
bound is at least as good as the distance-based and
zero-forcing-based bounds, it should also be empha-
sized that there exist cases where the combined bound
is strictly better than the two original bounds, i.e.,
δ(G,dset(G,V`)) > δ(G,V`), ζ(G,V`). We provide two
such examples in Fig. 6.

v1

v2 v3

v4 v5

v6

(a)

v1

v5

v4v3

(b)

v7
v6

v2

v8
v9 v10

Fig. 6. Two networks and their leaders (gray). In (a):
δ(G,dset(G,V`)) = 5, δ(G,V`) = 4, ζ(G,V`) = 3. In (b):
δ(G,dset(G,V`)) = 9, δ(G,V`) = 6, ζ(G,V`) = 5.

4.1 Comparison with the Original Bounds

We conclude this section by presenting some results that
compare δ(G,dset(G,V`)) to δ(G,V`) and ζ(G,V`). Our
first result is a corollary showing that if each leader has
two followers as out-neighbors, then the combined bound
is equal to the distance-based bound and strictly larger
than the zero-forcing-based bound.

Corollary 9 Consider any graph G = (V,E) with the
leaders V` ⊆ V . If each leader has at least two followers
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as out-neighbors, then δ(G, dset(G,V`)) = δ(G,V`) >
ζ(G,V`).

PROOF. If each leader has at least two followers as
out-neighbors, then none of the followers are infected
by the leaders, i.e., dset(G,V`)) = V`. Accordingly,
δ(G,dset(G,V`)) = δ(G,V`) and the strict inequality
δ(G,dset(G,V`)) > ζ(G,V`) follows from Theorem 5. �

Next, we show that the combined bound can verify com-
plete SSC, i.e., δ(G,dset(G,V`)) = n, if and only if the
leader set is a zero forcing set, i.e., ζ(G,V`) = n. Accord-
ingly, the combined bound is better than the distance-
based bound and equivalent to the zero-forcing-based
bound for verifying complete SSC.

Corollary 10 For any graph G = (V,E) with n nodes
and any set of leaders V` ⊆ V ,

δ(G, dset(G,V`)) = n ⇐⇒ ζ(G,V`) = n.

PROOF. (⇒:) In light of Theorem 7, we have

δ(G,dset(G,V`)) = n⇒ ζ(G,dset(G,V`)) = n.(22)

Since dset(G,V`) is the equilibrium of zero forcing pro-
cess,

ζ(G,dset(G,V`)) = |dset(G,V`)| = ζ(G,V`). (23)

Accordingly, (22) and (23) together imply

δ(G,dset(G,V`)) = n⇒ ζ(G,V`) = n.

(⇐:) If ζ(G,V`) = n, then dset(G,V`) = V . Note that
δ(G,dset(G,V`)) = δ(G,V ) = n since any sequence of
the corresponding DL vectors would be a PMI sequence
as the unique zero in each vector (distance of the node
to itself) would satisfy the rule in (7). �

In the following result, we provide a sufficient condition
for the combined bound to outperform the zero-forcing-
based bound. More specifically, δ(G,dset(G,V`)) >
ζ(G,V`) for any strongly connected network and any
leader set such that ζ(G,V`) < n. Since these are mild
conditions on the network and the leader set, the com-
bined bound is likely to outperform the zero-forcing-
based bound in most cases, which is also supported by
the numerical results in Section 5.

Theorem 11 For any strongly connected G = (V,E)
with n nodes and any set of leaders V` ⊆ V ,

ζ(G,V`) < n⇒ δ(G, dset(G,V`)) > ζ(G,V`).

PROOF. If ζ(G,V`) < n, then dset(G,V`) ⊂ V .
Note that on a strongly connected graph, for any such
dset(G,V`) ⊂ V there exists some vi ∈ dset(G,V`) who
has an out-neighbor vj /∈ dset(G,V`), i.e., d(vi, vj) = 1.
Accordingly, given the vectors of distances to the nodes
in dset(G,V`), one can always construct a PMI sequence
of length at least |dset(G,V`)| + 1 by starting with the
distance vectors of all the nodes in dset(G,V`) in any
order (self-distances of zero satisfy the PMI rule) and
continuing with the distance vector of vj . Hence,

ζ(G,V`) < n⇒ δ(G,dset(G,V`)) > |dset(G,V`)| = ζ(G,V`).

�

We will conclude this section with a couple of results
comparing the combined bound with the distance-based
bound. First, we show that these two bounds are typi-
cally equal in single-leader networks.

Theorem 12 For any G = (V,E) with a single leader
v` ∈ V such that d(v`, vi) < ∞ for all vi ∈ V , we have
δ(G, dset(G,V`)) = δ(G,V`).

PROOF. Since V` ⊆ dset(G,V`), it can be easily shown
that δ(G,dset(G,V`)) ≥ δ(G,V`), i.e., adding more lead-
ers can not reduce the length of the longest PMI se-
quence of DL vectors. Accordingly, in the remainder
of the proof we will show that it must also be true
that δ(G,V`) ≥ δ(G,dset(G,V`)), which together with
δ(G,dset(G,V`)) ≥ δ(G,V`) implies δ(G,dset(G,V`)) =
δ(G,V`). There are three possible cases depending on
dset(G,V`), and we analyze them separately:

C ase 1: If dset(G,V`) = V`, then clearly δ(G,dset(G,V`)) =
δ(G,V`).

C ase 2: If dset(G,V`) = V , then clearly δ(G,dset(G,V`)) =
|V |. Furthermore, in that case (16) implies δ(G,V`) =
|dset(G,V`)| = |V | as otherwise δ(G,V`) would have
to be larger than |V |, which is not possible. Hence,
δ(G,dset(G,V`)) = δ(G,V`).

C ase 3: If V` ⊂ δ(G,dset(G,V`)) ⊂ V , then v` must
have only one out-neighbor, say vj , as otherwise
δ(G,dset(G,V`)) = V`. Since vj is the only out-neighbor
of v`, it is also the only node with a distance of one to
v` and any path from v` to any other node vk has to go
through vj . Accordingly,

d(v`, vk) = d(vj , vk) + 1,∀vk /∈ {v`, vj}.

Once vj is infected, another node becomes infected only
if vj has a unique uninfected out-neighbor, say vi 6= v`.
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Note that vi would also be the only node with a distance
of two to v` and

d(v`, vk) = d(vi, vk) + 2,∀vk /∈ {v`, vj , vi}.

By following this induction, we can show that each node
in dset(G,V`) has a distinct distance to v`. Furthermore,
for every vq ∈ dset(G,V`) we have

d(v`, vk) = d(vq, vk) + d(v`, vq),∀vk /∈ dset(G,V`).(24)

In light of (24), d(v`, vk) > d(v`, vq) for every vq ∈
dset(G,V`) and vk /∈ dset(G,V`). Furthermore, for
any vk, v

′
k /∈ dset(G,V`), if d(v`, vk) = d(v`, v

′
k), then

d(vq, vk) = d(vq, v
′
k) for any vq ∈ dset(G,V`). Hence,

such vk, v
′
k would have identical DL vectors under the

leader set dset(G,V`), which cannot be included to-
gether in a PMI sequence as per the rule in (18). Ac-
cordingly, every DL vector in the longest PMI sequence
under the leader set dset(G,V`) must have a distinct
entry as the distance to v`. Hence, an equally long PMI
sequence can be constructed by only using the distances
to v`, which implies δ(G,V`) ≥ δ(G,dset(G,V`)). �

Finally, we provide a sufficient condition for the com-
bined bound to outperform the distance-based bound.

Theorem 13 For any G = (V,E) with a leader set V` ⊆
V , if dset(G,V`) contains any two nodes with identical
DL vectors, then δ(G, dset(G,V`)) > δ(G,V`).

PROOF. Any PMI seq under the leader set V` is also
a valid PMI seq under the leader set δ(G,dset(G,V`)).
Let Di = Dj for some vi, vj ∈ V . Consider the longest
PMI seq under V`, D, which can not contain both Di

and Dj due the PMI rule. Without loss of generality
let Di be the vector not contained in D. By appending
Di to the beginning of D we obtain a sequence D′ =
{Di,D1,D2, . . .D|D|}. Note that D′ is a valid PMI seq
under dset(G,V`) since the self-distance of vi satisfies the
rule. As such, we obtain δ(G,dset(G,V`)) > δ(G,V`).�

Note that the condition in Theorem 13 is sufficient
but not necessary for for the combined bound to out-
perform the distance-based bound. For example, while
δ(G,dset(G,V`)) > δ(G,V`) for both examples in Fig. 6,
only the one in Fig. 6b satisfies this sufficient condition.

5 Numerical Results

In this section, we present two sets of numerical results.
In the first part, we compare the bounds numerically for
randomly generated networks and leader sets. In the sec-
ond part, we demonstrate an application of the bounds

where the goal is to select a minimal set of leaders that
guarantee a desired level of SSC.

5.1 Comparison of the Bounds

We compare the lower bounds on the dimension of strong
structurally controllable subspace on Erdös-Rényi (ER)
and Barabási-Albert (BA) graphs. ER graphs are the
ones in which any two nodes are adjacent with a proba-
bility p. BA graphs are obtained by adding nodes to an
existing graph one at a time. Each new node is adjacent
to ε existing nodes that are chosen with probabilities
proportional to their degrees.

In all the simulations, we consider undirected graphs
with n = 100 nodes. In Figs. 7 and 8, we plot the
distance-based, zero-frocing-based, and combined lower
bounds on the dimension of SSCS as a function of num-
ber of leaders |V`| = m. We select the leader nodes
randomly. Each point on the plots corresponds to the
average of 100 randomly generated instances. For each
graph G and leader set V`, we compute the exact value
of ζ(G,V`), and we use the greedy approximation algo-
rithm (underestimation) in [32] for the distance-based

computations, i.e., δ̂(G,V`) and δ̂(G,dset(G,V`)), due
to the large number of leaders. While this approxima-
tion was numerically shown to be very close to the ac-
tual value in most cases [32], the gap between δ(G,V`)
and ζ(G,V`) may be larger than shown in Figs. 7 and 8.

In all the plots in Figs. 7 and 8, we observe that the
distance-based bound δ(G,V`) starts above the zero-
forcing-based bound ζ(G,V`), which is expected due
to Theorem 6 (or Remark 3.1). Furthermore, δ(G,V`)
is usually significantly larger than ζ(G,V`), especially
when the number of leaders is small. This can be ex-
plained by Theorem 5 since most of the nodes in these
networks have degrees of two or more. In the ER graphs
the expected degree of each node is approximately pn,
and each node in the BA graphs has a degree of ε
or more. Indeed, all the plots show a linear trend in
ζ(G,V`) when the number of leaders is small, indicating
ζ(G,V`) ≈ |V`|. Note that when ζ(G,V`) = |V`|, triv-
ially δ(V,dset(G,V`)) = δ(G,V`), which explains why
the distance-based and combined bounds mostly over-
lap until the number of leaders is sufficiently large and
the zero-forcing-based bound departs from the initial
linear regime where ζ(G,V`) ≈ |V`|. While the differ-
ence between the combined bound δ(V,dset(G,V`)) and
δ(G,V`) was observed to be small in these simulations,
it is worth emphasizing that δ(V,dset(G,V`)) is the only
bound guaranteed to be at least as good as the other two
in all possible cases (Theorem 8) and the improvement
with respect to δ(G,V`) may be significant for other
families of networks (e.g., networks where ζ(G,V`) is
arbitrarily larger than δ(G,V`) as given in Theorem 3).
Finally, we see in all the plots that the three bounds ap-
proach each other as they all increase toward n, which
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is expected due to Theorem 7 and Corollary 10.
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Fig. 7. Comparison of the zero-forcing-based bound ζ(G,V`)
and the approximate values of the distance-based δ(G,V`)
and combined δ(G,dset(G,V`)) bounds in ER graphs.
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Fig. 8. Comparison of the zero-forcing-based bound ζ(G,V`)
and the approximate values of the distance-based δ(G,V`)
and combined δ(G,dset(G,V`)) bounds in BA graphs.

5.2 Using the Bounds for Leader Selection

One standard problem in networked dynamical systems
is to find an optimal set of leaders (actuation nodes) to
achieve properties such as controllability or robustness
(e.g., [22–25]). In this part, we demonstrate the perfor-
mance of the lower bounds in such an application. Given
a network G = (V,E) of n agents, we consider the prob-
lem of finding a minimal set of leaders, V` ⊆ V , such
that γ(G,V`) is at least k, i.e.,

minimize
V`⊆V

|V`|

subject to γ(G,V`) ≥ k,
(25)

where k ∈ {1, 2, . . . , n} encodes the required minimum
level of SSC. Here, the special case k = n corresponds
to imposing complete SSC, whereas smaller values of k
can be used in applications where complete SSC is un-
necessary (e.g., [11,12]). There are two major challenges
to solving (25): 1) it is an intractable combinatorial op-
timization problem in general, 2) there is no algorithm
for determining the exact value of γ(G,V`) for arbitrary
G and V`. Here, we discuss one possible way of using
the tight lower bounds on γ(G,V`) to address these chal-
lenges and approximately solve (25). The approach is
to choose one of the bounds and use it with a standard
greedy algorithm to select a minimal set of leaders. More

specifically, an initially empty leader set is grown by
adding the node that maximally improves the selected
bound in each iteration until the value of the bound is
at least k, which implies that the resulting leader set V`
satisfies γ(G,V`) ≥ k. We test this approach on various
networks and report the results in Fig. 9.

Each data point in Fig. 9 corresponds to an average of
35 randomly generated instances of the corresponding
type of graph with n = 50 nodes. For Erdös-Rényi (ER)
random graphs, p = 0.1, and for Barabási-Albert (BA)
graphs ε = 3. The value of required minimum γ(G,V`),
k in (25), varies from 5 to 50. Similar to the previ-

ous set of simulations, the approximations δ̂(G,V`) and

δ̂(G,dset(G,V`)) are used for the distance-based com-
putations. Among the two original bounds, in alignment
with the comparison results in Figs. 7 and 8, we observe
that the greedy leader selection algorithm performs bet-

ter (selects fewer leaders) with δ̂(G,V`) for a wide range
of k, whereas it performs better with ζ(G,V`) when k
gets close to n. On the other hand, when the combined

bound δ̂(G,dset(G,V`)) is used, the resulting number of

leaders is similar to δ̂(G,V`) for small values of k and
similar to ζ(G,V`) for large values of k. Accordingly, us-

ing δ̂(G,dset(G,V`)) is observed to result in the smallest
number of leaders in most cases as shown in Fig. 9.
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Fig. 9. Number of leaders selected by the greedy heuristic is
shown for each bound as a function of the required minimum
value of γ(G,V`) in (25) for ER and BA graphs with 50 nodes.

6 Conclusion

In this paper, we focused on the dimension of the strong
structurally controllable subspace (SSCS) of networks.
We compared two tight lower bounds on the dimension
of SSCS: one based on the distances of nodes to the lead-
ers and the other based on the zero forcing process. We
showed that for each bound there exist networks where it
is arbitrarily better than the other bound. We then char-
acterized various cases where the distance-based lower
bound is guaranteed to be greater than the zero-forcing-
based bound. On the other hand, we also showed that,
for any network of n nodes, any set of leaders that makes
the distance-based bound equal to n is necessarily a zero
forcing set. These results indicate that while the zero-
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forcing-based approach may be a better choice for ver-
ifying complete strong structural controllability (SSC),
the distance-based approach is usually better when the
leaders do not constitute a zero forcing set. We also de-
rived a novel bound by combining these two approaches.
This new bound is always at least as good as, and in some
cases strictly better than, the maximum of the two pre-
vious bounds. We showed that the combined bound out-
performs the zero-forcing-based bound on any strongly
connected graph unless the leader set is a zero forcing set,
equals the distance-based bound on most single-leader
networks, and outperforms the distance-based bound if
the derived set, dset(G,V`), contains multiple nodes with
identical distances to the leaders. Finally, we numeri-
cally compared the bounds on various networks.

As a future direction, we plan to improve the proposed
combined bound, for example, by utilizing the invariance
of controllable subspace to the addition/removal of links
between the leaders [26]. Obtaining a formal character-
ization of cases where the zero-forcing-based bound is
guaranteed to be greater than the distance-based bound
is another direction we plan to explore. Furthermore, the
distance-based bound was recently utilized for analyz-
ing the robustness-controllability trade-off in networks
[33]. We intend to use the combined bound for further
exploration of such trade-offs.
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[26] A. Y. Yazıcıoğlu, M. Egerstedt, Leader selection and network
assembly for controllability of leader-follower networks, in:
American Control Conference (ACC), 2013, pp. 3802–3807.

[27] M. H. de Badyn, M. Mesbahi, Growing controllable networks
via whiskering and submodular optimization, in: 2016 IEEE
55th Conference on Decision and Control (CDC), IEEE, 2016,
pp. 867–872.

[28] W. Abbas, M. Shabbir, Y. Yazıcıoğlu, X. Koutsoukos, Edge
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