Math Language

and Fluency

Sarah R. Powell, Ph.D.

Associate Professor
The University of Texas at Austin

srpowell@utexas.edu

@sarahpowellphd

Say hello.

Describe your role as an educator and the mathematics you support.

Schedule for This Year

September 19	Mathematics Language and Fluency
October 17	High-Quality Tier 1
December 5	Leveraging Word Problems - Part 1
January 26	Leveraging Word Problems - Part 2
February 16	High-Quality Mathematics Assessment March 16

Instructional Platform

INSTRUCTIONAL DELIVERY

INSTRUCTIONAL STRATEGIES
Fluency building
Problem solving
instruction

Mathematical
Language

Copyright 2022 Sarah R. Powell, Ph.D.

Instructional Platform

INSTRUCTIONAL DELIVERY

INSTRUCTIONAL STRATEGIES

1. Some math terms are shared with English but have different meanings

right
degree
2. Some math terms are shared with English but have different meanings
3. Some math words are shared with English with similar meanings (but a more precise math meaning)

4. Some math terms are shared with English but have different meanings
5. Some math words are shared with English with similar meanings (but a more precise math meaning)
6. Some math terms are only used in math

7. Some math terms are shared with English but have different meanings
8. Some math words are shared with English with similar meanings (but a more precise math meaning)
9. Some math terms are only used in math
10. Some math terms have more than one meaning
\square

Rubenstein \& Thompson (2002)

1. Some math terms are shared with English but have different meanings
2. Some math words are shared with English with similar meanings (but a more precise math meaning)
3. Some math terms are only used in math
4. Some math terms have more than one meaning
5. Some math terms are similar to other content-area terms with different meanings
variable vs.
variably cloudy
6. Some math terms are shared with English but have different meanings
7. Some math words are shared with English with similar meanings (but a more precise math meaning)
8. Some math terms are only used in math
9. Some math terms have more than one meaning
10. Some math terms are similar to other content-area terms with different meanings
11. Some math terms are homographs

eight vs. ate

sum vs. some

1. Some math terms are shared with English but have different meanings
2. Some math words are shared with English with similar meanings (but a more precise math meaning)
3. Some math terms are only used in math
4. Some math terms have more than one meaning
5. Some math terms are similar to other content-area terms with different meanings
6. Some math terms are homographs
7. Some math terms are related but have distinct meanings
factor vs. multiple
hundreds vs. hundredths
```
numerators vS. denominator
```

1. Some math terms are shared with English but have different meanings
2. Some math words are shared with English with similar meanings (but a more precise math meaning)
3. Some math terms are only used in math
4. Some math terms have more than one meaning
5. Some math terms are similar to other content-area terms with different meanings
6. Some math terms are homographs
7. Some math terms are related but have distinct meanings
8. An English math term may translate into another language with different meanings

mesa vs.

tabla

1. Some math terms are shared with English but have different meanings
2. Some math words are shared with English with similar meanings (but a more precise math meaning)
3. Some math terms are only used in math
4. Some math terms have more than one meaning
5. Some math terms are similar to other content-area terms with different meanings
6. Some math terms are homographs
7. Some math terms are related but have distinct meanings
8. An English math term may translate into another language with different meanings
9. English spelling and usage may have irregularities
10. Some math terms are shared with English but have different meanings
11. Some math words are shared with English with similar meanings (but a more precise math meaning)
12. Some math terms are only used in math
13. Some math terms have more than one meaning
14. Some math terms are similar to other content-area terms with different meanings
15. Some math terms are homographs
16. Some math terms are related but have distinct meanings
17. An English math term may translate into another language with different meanings
skip count vs. multiples
18. English spelling and usage may have irregularities
19. Some math concepts are verbalized in more than one way
20. Some math terms are shared with English but have different meanings
21. Some math words are shared with English with similar meanings (but a more precise math meaning)
22. Some math terms are only used in math
23. Some math terms have more than one meaning
24. Some math terms are similar to other content-area terms with different meanings
25. Some math terms are homographs
26. Some math terms are related but have distinct meanings
27. An English math term may translate into another language with different meanings
28. English spelling and usage may have irregularities

rhombus vs. diamond

10. Some math concepts are verbalized in more than one way
11. Informal terms may be used for formal math terms

What are the ways you see your students experience difficulty with the vocabulary of math?

Use formal math language

Use terms precisely

$|x A+\cdots|$

What number is in the tens place?

What digit is in the tens place? What is the value of the digit in the tens place?

135

Why this is important...

- A number refers to the entire amount.
- The 3 in the tens place value is not a number, but rather a digit in the number 135 .
- Reinforces conceptual understanding of place value.
- Emphasizes that 3 is part of the number 135 with a value of 30 .

The alligator eats the bigger number

is less than OR

 is greater thanWhy this is important...

- Students must learn how to read and write the inequality symbols.
- Students must learn to read equations correctly from left to right because < and > are two distinct symbols.

Four point seven Four point oh seven

$$
\begin{array}{r}
4.7 \\
4.07
\end{array}
$$

Why this is important...

- Accurately shares the magnitude of the decimal.
- Emphasizes place value.

Identify examples of "Instead of \qquad , say
\qquad " -

Use formal math language

Use terms precisely

$$
\begin{array}{|cc}
\text { Improper fraction } & \text { Proportion } \\
\frac{8}{5} & \frac{2}{5}=\frac{8}{20} \\
\text { Mixed number } & \text { Ratio } \\
1 \frac{3}{5} & 4: 3 \\
\text { Proper fraction } & \text { Unit fraction } \\
\frac{2}{9} & \frac{1}{6}
\end{array}
$$

Equation $9 x-4=7 x$
Expression 9x - 4
Formula $a^{2}+b^{2}=c^{2}$
Function $\quad f(x)$
Inequality $9 x-4>6 x$

Integers Irrational numbers Natural numbers Rational numbers Whole numbers

Quadrilaterals

Kite

Parallelogram

Rectangle

Rhombus

Square

Trapezoid

Acute angle

Obtuse angle $\rightarrow \overrightarrow{\text { angle }}$

Straight angle

Acute triangle

Obtuse triangle

Right triangle

Equilateral triangle

 ΔIsosceles triangle

Scalene triangle

Adjacent angles

Alternate angles

Complementary angles

Corresponding angles

Supplementary angles

$$
=180^{\circ}
$$

Vertical angles

Congruent figures
$\square_{\text {Similar figures }}^{\square}$

I

Strategies for Teaching Mathematics Language

Discuss terms you want your students to use with precision.

Use formal math language

Use terms precisely

1. Use explicit instruction

 Over $\mathbf{1 5 0 , 0 0 0}$ in Print
 explicit

Effective and Efficient Teaching

ANITAL. ARCHER
CHARLES A. HUGHES

2. Use graphic organizers

Dunston \& Tyminski (2013)
2. Use graphic organizers

Dunston \& Tyminski (2013)

3. Have students create vocabulary cards

4. Equal: having the same amount or value.

4. Have students create glossaries

Integer Definitions

Zero Pairs
A positive and negative cancel one another;

Positive
A number that is greater than zero.

Absolute
Value
The distance of a number from zero on a number line; shown as ||

Negative
A number that is
less than zero. Identified by a minus sign.

Numerator: how many parts of the whole

Ex. 10
Odd number: a number not divided evenly by 2

- Ex. 1, 3, 5, 7, 9....

Percent: a specific number in comparison to 100

- 74\%

Polygon: any enclosed shape that is made up of 3 or more straight lines

5. Create a word wall

6. Preview vocabulary

Bay-Williams \& Livers (2009)

7. Cluster vocabulary

	Length	Weight
Meaning	How long something is	How heavy something is
Visual	1 Yard	2000 pounds $=1$ ton

Livers \& Bay-Williams (2014)

7. Cluster vocabulary

Rating	Word	Definition	Synonym(s)	Example	Sample Problem
2	$e x)^{\text {(es) }}$	a mathematical phrase combining operations, numbers and/or variables.	phrase algebraic expression	$\begin{array}{cc} 6 & \text { "'equal: } \\ 6 n & \text { noeq: } \\ 6+n & \text { sign: } \end{array}$	Lucia earns \$8 per har for babysilting and gets a $\$ 5$ tip. Write an expression to represent the amount she would earn if she worked for x hours.
2	$\sqrt{2 j 2002}$	a quantity that can change ortake many values. (refers to the letter orsymbol cepresenting the quantity)	unknown		The variable x vepresents the number of hous charlie wors in a week. Write an expression to vepresent his earnings if he earns $\$ 9$ per
1	$p^{100 e^{3 x}}$	the result when two or more numbers are multiplied	total answer	$\begin{array}{r} 3 \times 2=\begin{array}{c} 1 \\ \uparrow \\ \text { product } \end{array} \end{array}$	The product of 6 and a number is 24 . What is the number?
3		the result of a division crefers to the number of times the divisor divides the dividend)	answer	$\begin{aligned} & 18 \div 2=9 \\ & 2 \sqrt{18}<\text { quotent } \end{aligned}$	Estimate the quotient when 365 is divided by 12.

8. Use mnemonics

Riccomini et al. (2015)

VOCABULARY CROSSWORD
ANSWERKEY

10. Use technology

una figura bidimensional (plana) con 4 lados, exactamente 1 par de los cuales son paralelos

Math Learning Center

Math Lingo

Strategies for Teaching Mathematics Language
Discuss your strategy for focusing on mathematical language in your teaching.

Fluency

Instructional Platform

INSTRUCTIONAL DELIVERY

INSTRUCTIONAL STRATEGIES
Fluency building

Building Fluency

Fluency is doing mathematics easily and accurately.

Fluency in mathematics makes mathematics easier.

Fluency provides less stress on working memory.

Fluency helps students build confidence with mathematics.

With fluency, it is important to emphasize both conceptual learning and procedural learning.

100 addition facts

Single-digit addends sum to a single- or double-digit number

> | 5 | (addend) |
| ---: | :--- |
| +4 | (addend) |
| 9 | (sum) |

100 subtraction facts

Subtrahend and difference are single-digit numbers and minuend is single- or double-digit number

> (minuend)
> (subtrahend)
> (difference)

100 multiplication facts

Multiplication of single-digit factors results in a single- or double-digit product

$$
\begin{aligned}
2 & \text { (factor) } \\
\times 3 & \text { (factor) } \\
\hline 6 & \text { (product) }
\end{aligned}
$$

Division

90 division facts

Divisor and quotient are single-digit numbers and dividend is single- or double-digit number

$$
\begin{array}{cccc}
8 & \div & 4 & 2 \\
\text { (dividend) } & \text { (divisor) } & \text { (quotient) }
\end{array}
$$

Build fluency with math facts.

- Addition: single-digit addends
- Subtraction: single-digit subtrahend
- Multiplication: single-digit factors
- Division: single-digit divisor

$$
\begin{array}{r}
5 \\
+\quad 8 \\
\hline \quad 9 \\
\times \quad 4
\end{array} \quad \begin{array}{r}
6 \\
\\
\hline
\end{array} \quad 86
$$

Build fluency with whole-number computation

$\begin{array}{r}1009 \\ -\quad 724 \\ \hline\end{array}$
7250
$\begin{array}{r}7 \quad 15 \\ \hline\end{array}$

Build fluency with rational-number computation

$$
\begin{array}{rr}
1.4 & \frac{2}{3} \times \frac{3}{4} \\
+\quad 3.9 & \\
\hline
\end{array}
$$

$\frac{9}{4}-\frac{3}{8}$
7.892
$\div \quad 0.14$

Build fluency with integer computation

> | 1.4 | 6 |
| ---: | ---: |
| $+\quad-3.9$ | $\times-12$ |

$$
-14-(-7)=
$$

Addition	Subtraction
Multiplication	Division

What fluency practice do your students need?

Instructional Platform

INSTRUCTIONAL DELIVERY

INSTRUCTIONAL STRATEGIES
Fluency building
Problem solving
instruction

What is your mathematical language goal for the next 4 weeks?

What is your fluency goal for the next 4 weeks?

Schedule for This Year

September 19	Mathematics Language and Fluency
October 17	High-Quality Tier 1
December 5	Leveraging Word Problems - Part 1
January 26	Leveraging Word Problems - Part 2
February 16	High-Quality Mathematics Assessment March 16

Sarah R. Powell, Ph.D.

Associate Professor
The University of Texas at Austin

srpowell@utexas.edu

@sarahpowellphd

