

School of Engineering

Discrete Structures CS 2212 (Fall 2020)

12 – Binary Relations

© 2020 Vanderbilt University (Waseem Abbas)

Relations

Cameras = $\{C_1, C_2, C_3\}$ Servers = { S_1, S_2, S_3, S_4 } \mathbf{S}_1 We are interested in \mathbf{S}_2 **Camera-Server** "Relationship" \mathbf{C}_2 S₃ Which camera \mathbf{C}_3 "monitors" which server? S₄

Cameras = { C_1, C_2, C_3 } Servers = { S_1, S_2, S_3, S_4 }

We can use (Camera, Server) pair to denote this binary relationship.

Cameras – Servers "Relationship":

- C_1 monitors S_1
- C_1 monitors S_2
- C_2 monitors S_1 (C_2
- C_2 monitors S_2
- C_2 monitors S_3
- C_3 monitors S_3
- C_3 monitors S_4

- (C_{1}, S_{1}) (C_{1}, S_{2}) (C_{2}, S_{1})
- (C_{2}, S_{1})
- (C_{2}, S_{2})
- $(C_{2, S_{3}})$
- (C_{3}, S_{3})
 - (C_{3,} <mark>S₄)</mark>

Cameras = { C_1, C_2, C_3 } Servers = { S_1, S_2, S_3, S_4 }

So, we can describe the Camera-Server relationship by a set of (C_i, S_j) pairs.

 $\left\{\begin{array}{c} (C_{1,} S_{1}), (C_{1,} S_{2}), \\ (C_{2,} S_{1}), (C_{2,} S_{2}), (C_{2,} S_{3}), \\ (C_{3,} S_{3}), (C_{3,} S_{4})\end{array}\right\}$

Cameras = { C_1, C_2, C_3 } Servers = { S_1, S_2, S_3, S_4 }

This (relationship) set is a subset of the **Cartesian Product of Cameras × Servers**, which consists of all possible pairs between these two sets.

Cameras × **Servers** =

 $\begin{array}{c} (C_{1,} S_{1}) \ , \ (C_{1,} S_{2}) \ , \ (C_{1,} S_{3}) \ , \ (C_{1,} S_{4}), \\ (C_{2,} S_{1}) \ , \ (C_{2,} S_{2}) \ , \ (C_{2,} S_{3}) \ , \ (C_{2,} S_{4}), \\ (C_{3,} S_{1}) \ , \ (C_{3,} S_{2}) \ , \ (C_{3,} S_{3}) \ , \ (C_{3,} S_{4}) \end{array}$

 \Box

{ $(C_{1,} S_{1}), (C_{1,} S_{2}),$ $(C_{2,} S_{1}), (C_{2,} S_{2}), (C_{2,} S_{3}),$ $(C_{3,} S_{3}), (C_{3,} S_{4})$ }

Cameras – Servers (relations)

 $\{ (C_{1,} S_{1}), (C_{1,} S_{2}), (C_{1,} S_{3}), (C_{1,} S_{4}), \\ (C_{2,} S_{1}), (C_{2,} S_{2}), (C_{2,} S_{3}), (C_{2,} S_{4}), \\ (C_{3,} S_{1}), (C_{3,} S_{2}), (C_{3,} S_{3}), (C_{3,} S_{4}) \}$

Cameras × Servers (all possibilities)

Binary relation \subseteq Cartesian product

A **binary relation** R between two sets A and B is a subset of $A \times B$ (the Cartesian product) where there is a relationship between the elements of A and B.

Set of robots $M = \{r_1, r_2, r_3\}$ Cartesian product = $M \times M$ **Relation: Who can see who?** Each robot has a sensing circle and can see all robots that lie in its sensing circle.

> $(\mathbf{r}_1, \mathbf{r}_2) = \mathbf{r}_1 \text{ can see } \mathbf{r}_2$ $(\mathbf{r}_3, \mathbf{r}_1) = \mathbf{r}_3 \text{ can see } \mathbf{r}_1$

 $(\mathbf{r}_3, \mathbf{r}_2) = \mathbf{r}_3 \text{ can see } \mathbf{r}_2$

 $\{ (\mathbf{r}_1, \mathbf{r}_2), (\mathbf{r}_3, \mathbf{r}_1), (\mathbf{r}_3, \mathbf{r}_2) \} \subseteq \mathbf{M} \times \mathbf{M}$

- If (x, y) ∈ R (where R is the relationship), we can also write
 x R y indicating that there exists a binary relationship
 between x and y.
- Relations can be defined on both **finite and infinite sets**.

Example:

Some binary relations defined over the set A where $A = \{0, 1\}$ that are finite include:

- Cartesian product: $A \times A$
- Equality relationship = {(0, 0), (1, 1)}
- Less than relationship = {(0, 1)}

Example:

Some binary relations defined between the set of reals and the set of integers that are infinite include:

• x R y if $|x - y| \le 1$.

In other words, xRy (x is related to y) if the distance between real number x and integer y is at most 1.

Binary Relations – Arrow Diagram Representation

There are couple of common ways to represent binary relationships.

Arrow diagram The elements of A are listed on the left (domain) and the elements of B are listed on the right (co-domain). There is an arrow from $a \in A$ to $b \in B$ if aRb.

 \mathbf{S}_1

S₂

S₃

S₄

Binary Relations – Matrix Representation

A **matrix representation** of relation R between A and B is a rectangular array of numbers with |A| rows and |B| columns.

- Each row corresponds to an element of A
- Each column corresponds to an element of **B**.
- For a ∈ A and b ∈ B, there is a 1 in row a, column b, if aRb.
 Otherwise, there is a 0.

1	0	1	1	1	0
2	0	0	1	0	0
3	0	1	0	0	0
4	0	0	0	1	0
5	0	1	0	0	0

Binary Relations - Practice

Exercise:

- $A = \{r, o, t, p, c\}$
- B = {discrete, math, proof, proposition}

Relation: $R \subseteq A \times B$ such that (letter, word) is in the relation if that letter occurs somewhere in the word draw the following:

- 1. The **arrow diagram** representation of the relation.
- 2. The **matrix representation** of the relation.

Binary Relations - Practice

A = {r, o, t, p, c} and B = {discrete, math, proof, proposition}, R \subseteq A × B such that (letter, word) is in the relation if that letter occurs somewhere in the word

The relation R is **reflexive** if and only if

for **every**
$$x \in A$$
, xRx

In other words, every *x* is related to itself.

Reflexive

The relation R is **anti-reflexive** if and only if

for **every** $x \in A$, it is not true that xRx

Anti-reflexive

A = { a, b, c, d, e }

It is possible that a relation R is neither reflexive, nor anti-reflexive.

The relation R is **transitive** if and only if for **every** $x, y, z \in A$,

xRy and yRz implies that xRz.

The relation R is **symmetric** if and only if for **every** $x, y \in A$,

xRy implies that yRx.

The relation R is **anti-symmetric** if and only if for **every** $x, y \in A$,

xRy and yRx imply that x = y.

In other words,

if $x \neq y$, then both xRyand yRx cannot be true at the same time.

Anti-symmetric

If all robots in our previous example have exactly the **same sensing circle**, then we get a **symmetric** relation.

Why? Lets see ...

If robot *i* can see robot *j*, then robot *j* can also see robot *i* as their sensing circles are same and the distance between *i* and *j* is smaller than the radius of sensing circle for both *i* and *j*.

Consider the relation,

R: less than or equal over the set of **real numbers**.

Explain your reasoning.

- 1. Is R reflexive?
- 2. Is R symmetric?
- 3. Is R transitive?
- 4. Is R irreflexive?
- 5. Is R anti-symmetric?

Is it **reflexive**? (xRx for all $x \in A$)

Yes.

If $x \in A$ then $x \leq x$ is also true since they are equal. So the relationship is reflexive (consider $5 \leq 5$).

Is it **symmetric**? (xRy implies yRx for all $x, y \in A$)

No.

Counterexample:

- Note that $(5, 6) \in \mathbb{R}$ because $5 \le 6$.
- However (6, 5) ∉ R since 6 > 5.

Is it **transitive**? ($\forall x, y, z \in A$; xRy and yRz implies xRz)

Yes.

- If $x \le y$ and $y \le z$, then $x \le z$ for all reals.
- So the relationship is transitive.
- For example, $5 \le 6$ and $6 \le 8$ implies $5 \le 8$.

Is it **anti-reflexive**? (xRx is not true for all $x \in A$)

No.

Counterexample:

- $5 \in A$, and $5 \le 5$. So, $(5, 5) \in R$.
- Thus, by definition R is not anti-reflexive.

Is it **anti-symmetric**? (xRy and yRx implies x = y for all $x, y \in A$)

Yes.

• The only way $x \le y$ and at the same time $y \le x$ is when x = y.

Symmetric Closure

Consider a set: $A = \{a, b, c\}$ Binary relation: $R = \{(a, a), (a, b), (b, a), (b, c)\} \subseteq A \times A$

Is R symmetric? No

What is the minimum set of pairs that we need to add to R to make it reflexive?

Symmetric Closure

To obtain a symmetric closure, if there is a directed arc in one direction, add a directed arc in **opposite direction** (except self loops), if it is **missing**.

Question?

If R is a symmetric, then what will be its symmetric closure?

Question?

In terms of matrices, it means matrix and its transpose are same.

Transitive Closure

Consider a set: $A = \{a, b, c\}$ Binary relation: $R = \{(a, a), (a, b), (b, a), (b, c)\} \subseteq A \times A$

Is R transitive? No

What is the minimum set of pairs that we need to add to R to make it transitive?

 $t(R) = R \cup \{ (a, c) \}$

Is there anything missing? bRa and aRb \rightarrow bRb **??**

Transitive Closure

Consider a set: $A = \{a, b, c\}$ Binary relation: $R = \{(a, a), (a, b), (b, a), (b, c)\} \subseteq A \times A$

So, the transitive closure should include (b,b).

$$t(R) = R \cup \{(a, c), (b, b)\}$$

Transitive closure

A Practice Question

Let $\mathbf{R} \subseteq \mathbf{A} \times \mathbf{A}$ be a relation such that for every element $a \in A$, there is some $b \in B$ such that either aRb or bRa. Is it true or false? The transitive closure of the symmetric closure of R is also reflexive, that is, $\mathbf{t}(\mathbf{s}(\mathbf{R}))$ is reflexive.

Yes. Can you show how?

For illustration, lets look at an **example**.

A Practice Question

Consider a set: $A = \{a, b, c\}$ Binary relation: $R = \{(a, b), (b, a), (b, c)\} \subseteq A \times A$

Compute the three closures of R and draw graph representations.

 $r(R) = \{(a, b), (b, a), (b, c), (a, a), (b, b), (c, c)\}$ $r(R): \bigcap_{a \to c} (b) \to c$

s(R): $a \int b \int c$ $s(R) = \{(a, b), (b, a), (b, c), (c, b)\}$

 $t(R) = \{(a, b), (b, a), (b, c), (a, a), (b, b), (a, c)\}$ $t(R): a \longrightarrow b \longrightarrow c$

Relations and Orders

Binary relations can be used to formalize the notion of (partial) ordering.

What does it mean when items are **"ordered"**? Intuitively, we think that one item has to go before another.

Example:

loca Colta

Simply Grange

> Simply Cipple

1.

3.

4.

2.

(Coke < Pepsi)

(Pepsi < Orange juice)

(Orange juice < Apple juice)

Relations and Orders

Sometimes, it is very difficult to establish a **totally ranked list** (a total order of elements), for instance, where notion of precedence between some but not all pairs is present.

The notion of **partial order** is extremely useful here.

First, lets see what does it mean to **compare elements pairwise**.

List movies in the order of liking.

	Rachel	Jason	
Wizard of Oz	1	3	
Godfather	3	1	
F orest Gump	4	2	
J urassic Park	2	4	
Set of movies: { G	, F , W , J }		
Rachel's ordering:	" x < y " symbol means here that x is preferred over b, or x		
Jason's ordering:	< F	must come before b.	

List movies in the order of your liking.

Instead of a totally ranked list, **compare pairwise elements** (movies).

Then, there will be some pairwise comparisons that will represent preferences of **both** Rachel and Jason.

For Rachel: $G < F < W < J$	For Jason: $W < J < G < F$
(G < F), $(G < W)$, $(G < J)$,	(W < J), $(W < G)$, $(W < F)$,
(F < W), $(F < J)$, $(W < J)$	(J < G), $(J < F)$, $(G < F)$

So, for both persons, we know (G < F) and (W < J).

So, instead of **"completely"** ordering the elements of a set, we have **"partially"** ordered them.

$\{ (G < F), (W < J) \}$

Note that its also a **relation** (as we have been studying)

So, instead of Completely ordering the Binary relations can be used to represent partial order.

Note that its also a **relation** (as we have been studying)