VANDERBILT UNIVERSITY $\sqrt[5]{\sqrt{3}}$ School of Engineering

Discrete Structures
 CS 2212
 (Fall 2020)

12 - Binary Relations

Chapter 5:

Relations

> Cameras $=\left\{C_{1}, C_{2}, C_{3}\right\}$
> Servers $=\left\{S_{1}, S_{2}, S_{3}, S_{4}\right\}$

Cameras $=\left\{\mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{3}\right\}$
Servers $=\left\{\mathrm{S}_{1}, \mathrm{~S}_{2}, \mathrm{~S}_{3}, \mathrm{~S}_{4}\right\}$

We can use (Camera, Server)

 pair to denote this binary relationship.Cameras - Servers "Relationship":

- C_{1} monitors S_{1}
$\left(\mathrm{C}_{1}, \mathrm{~S}_{1}\right)$
- C_{1} monitors S_{2}
$\left(\mathrm{C}_{1}, \mathrm{~S}_{2}\right)$
- C_{2} monitors S_{1}
$\left(\mathrm{C}_{2}, \mathrm{~S}_{1}\right)$
- C_{2} monitors S_{2}
$\left(\mathrm{C}_{2}, \mathrm{~S}_{2}\right)$
- C_{2} monitors S_{3}
$\left(\mathrm{C}_{2}, \mathrm{~S}_{3}\right)$
- C_{3} monitors S_{3}
$\left(\mathrm{C}_{3}, \mathrm{~S}_{3}\right)$
- C_{3} monitors S_{4}
$\left(\mathrm{C}_{3}, \mathrm{~S}_{4}\right)$

$$
\begin{aligned}
& \text { Cameras }=\left\{C_{1}, C_{2}, C_{3}\right\} \\
& \text { Servers }=\left\{S_{1}, S_{2}, S_{3}, S_{4}\right\}
\end{aligned}
$$

So, we can describe the Camera-Server relationship by a set of $\left(\mathbf{C}_{\mathbf{i}}, \mathbf{S}_{\mathbf{j}}\right)$ pairs.

$$
\left\{\begin{array}{c}
\left(\mathrm{C}_{1}, \mathrm{~S}_{1}\right),\left(\mathrm{C}_{1}, \mathrm{~S}_{2}\right), \\
\left(\mathrm{C}_{2}, \mathrm{~S}_{1}\right),\left(\mathrm{C}_{2}, \mathrm{~S}_{2}\right),\left(\mathrm{C}_{2}, \mathrm{~S}_{3}\right), \\
\left(\mathrm{C}_{3}, \mathrm{~S}_{3}\right),\left(\mathrm{C}_{3}, \mathrm{~S}_{4}\right)
\end{array}\right\}
$$

$$
\begin{aligned}
& \text { Cameras }=\left\{C_{1}, C_{2}, C_{3}\right\} \\
& \text { Servers }=\left\{S_{1}, S_{2}, S_{3}, S_{4}\right\}
\end{aligned}
$$

This (relationship) set is a subset of the Cartesian Product of Cameras \times Servers, which consists of all possible pairs between these two sets.

Cameras \times Servers $=$
$\left\{\begin{array}{l}\left(\mathrm{C}_{1}, \mathrm{~S}_{1}\right),\left(\mathrm{C}_{1}, \mathrm{~S}_{2}\right),\left(\mathrm{C}_{1}, \mathrm{~S}_{3}\right),\left(\mathrm{C}_{1}, \mathrm{~S}_{4}\right), \\ \left(\mathrm{C}_{2}, \mathrm{~S}_{1}\right),\left(\mathrm{C}_{2}, \mathrm{~S}_{2}\right),\left(\mathrm{C}_{2}, \mathrm{~S}_{3}\right),\left(\mathrm{C}_{2}, \mathrm{~S}_{4}\right), \\ \left(\mathrm{C}_{3}, \mathrm{~S}_{1}\right),\left(\mathrm{C}_{3}, \mathrm{~S}_{2}\right),\left(\mathrm{C}_{3}, \mathrm{~S}_{3}\right),\left(\mathrm{C}_{3}, \mathrm{~S}_{4}\right)\end{array}\right\}$

Binary Relations

$\left.\begin{array}{ccc}\left\{\left(\mathrm{C}_{1}, \mathrm{~S}_{1}\right),\left(\mathrm{C}_{1}, \mathrm{~S}_{2}\right),\right. & \left\{\left(\mathrm{C}_{1}, \mathrm{~S}_{1}\right),\left(\mathrm{C}_{1}, \mathrm{~S}_{2}\right),\left(\mathrm{C}_{1}, \mathrm{~S}_{3}\right),\left(\mathrm{C}_{1}, \mathrm{~S}_{4}\right),\right. \\ \left(\mathrm{C}_{2}, \mathrm{~S}_{1}\right),\left(\mathrm{C}_{2}, \mathrm{~S}_{2}\right),\left(\mathrm{C}_{2}, \mathrm{~S}_{3}\right), & \subseteq & \left(\mathrm{C}_{2}, \mathrm{~S}_{1}\right),\left(\mathrm{C}_{2}, \mathrm{~S}_{2}\right),\left(\mathrm{C}_{2}, \mathrm{~S}_{3}\right),\left(\mathrm{C}_{2}, \mathrm{~S}_{4}\right), \\ \left.\left(\mathrm{C}_{3}, \mathrm{~S}_{3}\right),\left(\mathrm{C}_{3}, \mathrm{~S}_{4}\right)\right\} & & \left.\left(\mathrm{C}_{3}, \mathrm{~S}_{1}\right),\left(\mathrm{C}_{3}, \mathrm{~S}_{2}\right),\left(\mathrm{C}_{3}, \mathrm{~S}_{3}\right),\left(\mathrm{C}_{3}, \mathrm{~S}_{4}\right)\right\} \\ \text { Cameras }- \text { Servers (relations) } & & \text { Cameras } \times \text { Servers (all possibilities) }\end{array}\right\}$

A binary relation R between two sets A and B is a subset of $A \times B$ (the Cartesian product) where there is a relationship between the elements of A and B.

Binary Relations

Set of robots $M=\left\{r_{1}, r_{2}, r_{3}\right\}$
Cartesian product $=\mathrm{M} \times \mathrm{M}$
Relation: Who can see who?
Each robot has a sensing circle and can see all robots that lie in its sensing circle.

$$
\begin{aligned}
& \left(r_{1}, r_{2}\right)=r_{1} \text { can see } r_{2} \\
& \left(r_{3}, r_{1}\right)=r_{3} \text { can see } r_{1} \\
& \left(r_{3}, r_{2}\right)=r_{3} \text { can see } r_{2}
\end{aligned}
$$

$$
\left\{\left(\mathrm{r}_{1}, \mathrm{r}_{2}\right),\left(\mathrm{r}_{3}, \mathrm{r}_{1}\right),\left(\mathrm{r}_{3}, \mathrm{r}_{2}\right)\right\} \subseteq \mathrm{M} \times \mathrm{M}
$$

Binary Relations

- If $(\mathbf{x}, \mathbf{y}) \in \mathbf{R}$ (where R is the relationship), we can also write $\mathbf{x} \mathbf{R} \mathbf{y}$ indicating that there exists a binary relationship between x and y .
- Relations can be defined on both finite and infinite sets.

Example:

Some binary relations defined over the set A where $A=\{0,1\}$ that are finite include:

- Cartesian product: $\mathrm{A} \times \mathrm{A}$
- Equality relationship $=\{(0,0),(1,1)\}$
- Less than relationship $=\{(0,1)\}$

Binary Relations

Example:

Some binary relations defined between the set of reals and the set of integers that are infinite include:

- $x \mathrm{R} y$ if $|\boldsymbol{x}-\boldsymbol{y}| \leq \mathbf{1}$.

In other words, x Ry (x is related to y) if the distance between real number x and integer y is at most 1 .

Binary Relations - Arrow Diagram Representation

There are couple of common ways to represent binary relationships.
Arrow diagram The elements of A are listed on the left (domain) and the elements of B are listed on the right (co-domain). There is an arrow from $a \in A$ to $b \in B$ if $a R b$.

Binary Relations - Matrix Representation

A matrix representation of relation R between A and B is a rectangular array of numbers with $|\mathrm{A}|$ rows and $|\mathrm{B}|$ columns.

- Each row corresponds to an element of A
- Each column corresponds to an element of B.
- For $a \in A$ and $b \in B$, there is a 1 in row a, column b, if $a R b$. Otherwise, there is a 0 .

Binary Relations - Practice

Exercise:

$\mathrm{A}=\{\mathrm{r}, \mathrm{o}, \mathrm{t}, \mathrm{p}, \mathrm{c}\}$
$\mathrm{B}=\{$ discrete, math, proof, proposition\}
Relation: $\mathrm{R} \subseteq \mathrm{A} \times \mathrm{B}$ such that (letter, word) is in the relation if that letter occurs somewhere in the word draw the following:

1. The arrow diagram representation of the relation.
2. The matrix representation of the relation.

Binary Relations - Practice

$A=\{r, o, t, p, c\}$ and $B=\{d i s c r e t e$, math, proof, proposition $\}$, $\mathrm{R} \subseteq \mathrm{A} \times \mathrm{B}$ such that (letter, word) is in the relation if that letter occurs somewhere in the word

Properties of Binary Relations

The relation R is reflexive if and only if

for every $x \in \mathrm{~A}, x \mathrm{R} x$

In other words, every x is related to itself.

Properties of Binary Relations

The relation R is anti-reflexive if and only if
for every $x \in A$, it is not true that $x R x$

Anti-reflexive

Properties of Binary Relations

Reflexive ?

Anti-reflexive?

$$
A=\{a, b, c, d, e\}
$$

It is possible that a relation R is neither reflexive, nor anti-reflexive.

Properties of Binary Relations

The relation R is transitive if and only if for every $x, y, z \in \mathrm{~A}$, $x \mathrm{R} y$ and $y \mathrm{Rz}$ implies that $x \mathrm{Rz}$.

Properties of Binary Relations

The relation R is symmetric if and only if for every $x, y \in \mathrm{~A}$,

$$
x \text { Ry implies that } y R x .
$$

Properties of Binary Relations

The relation R is anti-symmetric if and only if for every $x, y \in \mathrm{~A}$,

$$
x \mathrm{R} y \text { and } y \mathrm{R} x \text { imply that } x=y .
$$

In other words,
if $x \neq y$, then both $x R y$ and $y R x$ cannot be true at the same time.

Anti-symmetric

Properties of Binary Relations

If all robots in our previous example have exactly the same sensing circle, then we get a symmetric relation.
Why? Lets see ...
If robot i can see robot j, then robot j can also see robot i as their sensing circles are same and the distance between i and j is smaller than the radius of sensing circle for both i and j.

Properties of Binary Relations - Practice

Consider the relation,
R: less than or equal over the set of real numbers.
Explain your reasoning.

1. Is R reflexive?
2. Is R symmetric?
3. Is R transitive?
4. Is R irreflexive?
5. Is R anti-symmetric?

Properties of Binary Relations - Practice

> Is it reflexive? $(x \mathrm{R} x$ for all $x \in \mathrm{~A})$

Yes.

If $x \in \mathrm{~A}$ then $x \leq x$ is also true since they are equal. So the relationship is reflexive (consider $5 \leq 5$).

Properties of Binary Relations - Practice

> Is it symmetric?
> $(x \mathrm{R} y$ implies $y \mathrm{R} x$ for all $x, y \in \mathrm{~A})$

No.

Counterexample:

- Note that $(5,6) \in R$ because $5 \leq 6$.
- However $(6,5) \notin R$ since $6>5$.

Properties of Binary Relations - Practice

Is it transitive?

$(\forall x, y, z \in \mathrm{~A} ; \quad x \mathrm{R} y$ and $y \mathrm{Rz}$ implies $x \mathrm{R} z)$

Yes.

- If $x \leq y$ and $y \leq z$, then $x \leq z$ for all reals.
- So the relationship is transitive.
- For example, $5 \leq 6$ and $6 \leq 8$ implies $5 \leq 8$.

Properties of Binary Relations - Practice

Is it anti-reflexive? $(x \mathrm{R} x$ is not true for all $x \in \mathrm{~A})$

No.

Counterexample:

- $5 \in A$, and $5 \leq 5$. So, $(5,5) \in R$.
- Thus, by definition R is not anti-reflexive.

Properties of Binary Relations - Practice

Is it anti-symmetric?
 ($x \mathrm{R} y$ and $y \mathrm{R} x$ implies $x=y$ for all $x, y \in \mathrm{~A}$)

Yes.

- The only way $x \leq y$ and at the same time $y \leq x$ is when $x=y$.

Symmetric Closure

Consider a set: $A=\{a, b, c\}$
Binary relation: $\mathrm{R}=\{(\mathrm{a}, \mathrm{a}),(\mathrm{a}, \mathrm{b}),(\mathrm{b}, \mathrm{a}),(\mathrm{b}, \mathrm{c})\} \subseteq \mathrm{A} \times \mathrm{A}$
Is R symmetric? No
What is the minimum set of pairs that we need to add to R to make it reflexive?

$$
\mathbf{s}(\mathbf{R})=\mathbf{R} \cup\{(\mathrm{c}, \mathrm{~b})\}
$$

Symmetric Closure

To obtain a symmetric closure, if there is a directed arc in one direction, add a directed arc in opposite direction (except self loops), if it is missing.

Question?

R

$$
\begin{gathered}
s(R) ? \\
\text { No }
\end{gathered}
$$

Question?

If R is a symmetric, then what will be its symmetric closure?

Question?

In terms of matrices, it means matrix and its transpose are same.

Transitive Closure

Consider a set: $A=\{a, b, c\}$
Binary relation: $\mathrm{R}=\{(\mathrm{a}, \mathrm{a}),(\mathrm{a}, \mathrm{b}),(\mathrm{b}, \mathrm{a}),(\mathrm{b}, \mathrm{c})\} \subseteq \mathrm{A} \times \mathrm{A}$
Is R transitive? No
What is the minimum set of pairs that we need to add to R to make it transitive?
$\mathbf{t}(\mathbf{R})=\mathrm{R} \cup\{(\mathrm{a}, \mathrm{c})\}$
Is there anything missing?
 $b R a$ and $a R b \rightarrow$ bRb ??

Transitive Closure

Consider a set: $A=\{a, b, c\}$
Binary relation: $\mathrm{R}=\{(\mathrm{a}, \mathrm{a}),(\mathrm{a}, \mathrm{b}),(\mathrm{b}, \mathrm{a}),(\mathrm{b}, \mathrm{c})\} \subseteq \mathrm{A} \times \mathrm{A}$

So, the transitive closure should include (b,b).

$$
\mathbf{t}(\mathbf{R})=\mathrm{R} \cup\{(\mathrm{a}, \mathrm{c}),(\mathrm{b}, \mathrm{~b})\}
$$

Transitive closure

A Practice Question

Let $\mathbf{R} \subseteq \mathbf{A} \times \mathbf{A}$ be a relation such that for every element $\mathrm{a} \in \mathrm{A}$, there is some $b \in B$ such that either $a R b$ or $b R a$.
Is it true or false?
The transitive closure of the symmetric closure of R is also reflexive, that is, $\mathbf{t}(\mathbf{s}(\mathbf{R})$) is reflexive.

Yes. Can you show how?
For illustration, lets look at an example.

A Practice Question

Consider a set: $A=\{a, b, c\}$
Binary relation: $\mathrm{R}=\{(\mathrm{a}, \mathrm{b}),(\mathrm{b}, \mathrm{a}),(\mathrm{b}, \mathrm{c})\} \subseteq \mathrm{A} \times \mathrm{A}$
Compute the three closures of R and draw graph representations.

$$
\begin{aligned}
& \mathrm{r}(\mathrm{R})=\{(\mathrm{a}, \mathrm{~b}),(\mathrm{b}, \mathrm{a}),(\mathrm{b}, \mathrm{c}),(\mathrm{a}, \mathrm{a}),(\mathrm{b}, \mathrm{~b}),(\mathrm{c}, \mathrm{c})\} \\
& \mathrm{s}(\mathrm{R})=\{(\mathrm{a}, \mathrm{~b}),(\mathrm{b}, \mathrm{a}),(\mathrm{b}, \mathrm{c}),(\mathrm{c}, \mathrm{~b})\} \\
& \mathrm{t}(\mathrm{R})=\{(\mathrm{a}, \mathrm{~b}),(\mathrm{b}, \mathrm{a}),(\mathrm{b}, \mathrm{c}),(\mathrm{a}, \mathrm{a}),(\mathrm{b}, \mathrm{~b}),(\mathrm{a}, \mathrm{c})\}
\end{aligned}
$$

Relations and Orders

Binary relations can be used to formalize the notion of （partial）ordering．

What does it mean when items are＂ordered＂？Intuitively， we think that one item has to go before another．
Example：
1．䦔
2． 8
3．圈

$$
\begin{aligned}
& \text { (Coke < Pepsi) } \\
& \text { (Pepsi < Orange juice) }
\end{aligned}
$$

（Orange juice＜Apple juice）
4.

Relations and Orders

(Orange juice < Apple juice)

Can you (completely) list drinks in the order of their preference?

Sometimes, it is very difficult to establish a totally ranked list (a total order of elements), for instance, where notion of precedence between some but not all pairs is present.

The notion of partial order is extremely useful here.
First, lets see what does it mean to compare elements pairwise.

Partial Order

List movies in the order of liking.

	Rachel	Jason	
Wizard of Oz	$\mathbf{1}$	$\mathbf{3}$	
Godfather	$\mathbf{3}$	$\mathbf{1}$	
Forest Gump	$\mathbf{4}$	$\mathbf{2}$	
Jurassic Park	$\mathbf{2}$	$\mathbf{4}$	

Set of movies: $\quad\{\mathbf{G}, \mathbf{F}, \mathbf{W}, \mathbf{J}\}$
Rachel's ordering: $\mathbf{G}<\mathbf{F}<\mathbf{W}<\mathbf{J}$
Jason's ordering: $\mathbf{W}<\mathbf{J}<\mathbf{G}<\mathbf{F}$
" $\boldsymbol{x}<\boldsymbol{y}$ " symbol
means here that x is preferred over b, or x must come before b.

Partial Order

List movies in the order of your liking

How can we order movies such that preferences of both Rachel and Jason can be realized at the same time?

2, ITUG ITJUG:

Partial Order

Instead of a totally ranked list, compare pairwise elements (movies).

Then, there will be some pairwise comparisons that will represent preferences of both Rachel and Jason.

For Rachel: $\quad \mathbf{G}<\mathbf{F}<\mathbf{W}<\mathbf{J}$
$(\mathrm{G}<\mathrm{F}),(\mathrm{G}<\mathrm{W}),(\mathrm{G}<\mathrm{J})$,
$(\mathrm{F}<\mathrm{W}),(\mathrm{F}<\mathrm{J}),(\mathrm{W}<\mathrm{J})$

For Jason: $\mathbf{W}<\mathbf{J}<\mathbf{G}<\mathbf{F}$

$$
\begin{aligned}
& (\mathrm{W}<\mathrm{J}),(\mathrm{W}<\mathrm{G}),(\mathrm{W}<\mathrm{F}), \\
& (\mathrm{J}<\mathrm{G}),(\mathrm{J}<\mathrm{F}),(\mathrm{G}<\mathrm{F})
\end{aligned}
$$

So, for both persons, we know $(\mathrm{G}<\mathrm{F})$ and $(\mathrm{W}<\mathrm{J})$.

Partial Order

So, instead of "completely" ordering the elements of a set, we have "partially" ordered them.

$$
\{(\mathbf{G}<\mathbf{F}),(\mathbf{W}<\mathbf{J})\}
$$

Note that its also a relation (as we have been studying)

Binary relations can be used to represent partial order.

