
On the Computation of the Distance-based Lower Bound on Strong
Structural Controllability in Networks

Mudassir Shabbir, Waseem Abbas, and A. Yasin Yazıcıoğlu

Abstract— A network of agents with linear dynamics is strong
structurally controllable if agents can be maneuvered from any
initial state to any final state independently of the coupling
strengths between agents. If a network is not strong structurally
controllable with given input nodes (leaders), then the dimen-
sion of strong structurally controllable subspace quantifies the
extent to which a network can be controlled by the same
inputs. Computing this dimension exactly is computationally
challenging. In this paper, we study the problem of computing a
sharp lower bound on the dimension of strong structurally con-
trollable subspace in networks with Laplacian dynamics. The
bound is based on a sequence of vectors containing distances
between leaders and the remaining nodes in the underlying
network graph. Such vectors are referred to as the distance-
to-leader vectors. We provide a polynomial time algorithm to
compute a desired sequence of distance-to-leader vectors with
a fixed set of leaders, which directly provides a lower bound
on the dimension of strong structurally controllable subspace.
We also present a linearithmic approximation algorithm to
compute such a sequence, which provides near optimal solutions
in practice. Finally, we numerically evaluate and compare our
bound with other bounds in the literature on various networks.

I. INTRODUCTION

Network controllability has been an important research
topic in the broad areas of network and cooperative control.
A primary goal is to drive a network of dynamical agents,
each of which shares information with a subset of others,
to a desired state by an external control signal given to a
subset of agents referred to as leaders. Building on the clas-
sical controllability results from linear systems theory and
utilizing tools from graph theory, new insights on controlling
networks have been developed in recent years. An important
aspect of network controllability is the effect of coupling
strengths between agents, which are often represented by
edge weights in the underlying network graph. For a fixed
set of leaders, a network’s controllability might change with
different choices of edge weights. However, it might be
infeasible or extremely difficult in practice to assign precise
edge weights due to uncertainties, numerical inaccuracies,
and inexact system parameters.

Consequently, we desire to characterize controllability
while discounting the effect of edge weights. In other words,

M. Shabbir is with the Computer Science Department at the Information
Technology University of the Punjab, Lahore, Pakistan (Email: mudas-
sir@rutgers.edu).

W. Abbas is with the Electrical Engineering Department at the Infor-
mation Technology University of the Punjab, Lahore, Pakistan (Email:
w.abbas@itu.edu.pk).

A. Y. Yazıcıoğlu is with the Department of Electrical and Computer
Engineering at the University of Minnesota, Minneapolis, MN, USA (Email:
ayasin@umn.edu).

we want to relate controllability purely with the structure
of the underlying network graph, and independent of edge
weights. Such a notion of controllability is referred to as the
strong structural controllability (SSC). It is easy to verify if
a network is strong structurally controllable. However, if it
is not, then computing how much of the network is strong
structurally controllable, or more precisely the dimension of
strong structurally controllable subspace (formally defined in
Section II-B) is an extremely challenging problem.

In this paper, we study the problem of computing a tight
lower bound on strong structural controllability of networks
with Laplacian dynamics. We consider a bound proposed in
[1] that depends on distances between nodes in a graph. The
distance based bound is useful in characterizing SSC in terms
of the underlying network structure, selecting leaders, and
exploiting trade-off between controllability and robustness
[2]. The main idea is to obtain distances between leaders and
other nodes, arrange them in vectors called distance-to-leader
vectors, and then construct a particular sequence of such
vectors satisfying some montonicity conditions. Computing
distances between nodes is straightforward, however, con-
structing sequences that ultimately provide bound on SSC is
computationally challenging. We provide efficient algorithms
with performance guarantees to compute such sequences.
Our main contributions are as follows:

1) We provide a dynamic programming based exact al-
gorithm to compute optimal sequence of vectors con-
sisting of distances between leaders and other nodes
in O(m(n log n + nm)) time, which directly gives a
tight lower bound on SSC of networks. Here m is the
number of leaders and n is the total number of nodes
in the network.

2) We propose an approximation algorithm that computes
near-optimal sequence of distance-to-leader vectors in
practice and takes O(mn log n) time. If there exists a
sequence of length n of distance-to-leader vectors, then
the network is SSC, and our greedy algorithm always
returns such a sequence if it exists.

3) We numerically evaluate and compare our bound with
another bound that is based on the notion of zero
forcing sets (ZFS).

A. Related Work

The notion of strong structural controllability was intro-
duced in [3] and the first graph-theoretic condition for single
input systems was presented. For multi-input systems, [4]
provided a condition to check SSC in O(n3) time, where
n is the number of nodes. Authors in [5] refined previous

results and further provided a characterization of SSC. To
check if the system is strong structurally controllable with
given inputs, an algorithm based on constrained matchings
in bipartite graphs with time complexity O(n2) was given
in [6]. In [7], an algorithm with a runtime linear in the
number of nodes and edges was presented to verify whether
a system is strong structurally controllable. The relationship
of SSC and zero forcing sets (ZFS) was explored in [8],
[9], and it was established that checking if a system is
strong structurally controllable with given input nodes is
equivalent to checking if the set of input nodes is a ZFS
in the underlying network graph.

The notion of strong structurally controllable subspace
[10], which is an extension of the ordinary controllable
subspace, is particularly useful to quantify controllability in
cases where networks are not strong structurally controllable.
In fact, the dimension of such a subspace (formally described
in Section II-B) quantifies how much of the network is con-
trollable in the strong structural sense (that is, independently
of edge weights) with a given set of inputs. Some lower
bounds on the dimension of SSC have been proposed in the
literature. In [10], a lower bound based on the derived set
of input nodes (leaders) was presented, which was further
studied in [11], [12]. With a single input node, the dimension
of SSC can be at least the diameter of the underlying network
graph [13]. In [1], a tight lower bound on the dimension
of SSC was proposed that was based on distances between
leaders and other nodes in the graph. The main idea was to
compute a certain sequence of vectors consisting of distances
between nodes in graph. The bound was used to explore
trade-off between SSC and network robustness in [2].

Further studies in this direction include leader selection
to achieve desired structural controllability (e.g., [14], [15]),
and network topology design for a desired control perfor-
mance (e.g., [16], [17]).

II. PRELIMINARIES AND A LOWER BOUND ON STRONG
STRUCTURAL CONTROLLABILITY

A. Notations

We consider a network of n dynamical agents represented
by a simple (loop-free) undirected graph G = (V,E) where
the node set V represent agents, and the edge set E repre-
sents interconnections between agents. An edge between vi
and vj is denoted by eij . The neighborhood of node vi is
Ni , {vj ∈ V : eij ∈ V }. The distance between vi and
vj , denoted by d(vi, vj), is simply the number of edges in
the shortest path between vi and vj . Edges can be weighted,
and the weighting function w : E → R+ assigns positive
weight wij to the edge eij . These weights define the coupling
strength between nodes. If there is no edge between vi and
vj , then we define wij = 0.

Each agent vi ∈ V has a state xi ∈ R and the
overall state of the system, without loss of generality, is
x =

[
x1 x2 · · · xn

]T ∈ Rn. Agents update states
following the Laplacian dynamics given below.

ẋi = −Lwx+Bu, (1)

where Lw ∈ Rn×n is the weighted Laplacian matrix of G
and is defined as Lw = ∆ − Aw. Here, Aw ∈ Rn×n is the
weighted adjacency matrix, in which the ijth entry is,

[Aw]ij =

{
wij if eij ∈ E,
0 otherwise, (2)

and ∆ ∈ Rn×n is a degree matrix as below.

[∆]ij =

{ ∑n
k=1Aik if i = j

0 otherwise. (3)

The matrix B ∈ Rn×m in (1) is an input matrix. m
is the number of leaders (inputs), which are the nodes
to which an external control signal is applied. Let V` =
{`1, `2, · · · , `m} ⊂ V be the set of leaders, then Bij = 1 if
node i ∈ v is also a leader `j , otherwise Bij = 0.

B. Strong Structural Controllability (SSC)

A state xf ∈ Rn is a reachable state if there exists an input
u that can drive the network in (1) from the origin to xf in
a finite amount of time. A network G = (V,E) with edge
weights w and leaders V` is called completely controllable if
every point in Rn is reachable. Complete controllability can
be checked by computing the rank of the following matrix,
called controllability matrix.

Γ(Lw, B) = [B (−Lw)B (−Lw)
2B · · · (−Lw)

n−1B] .

Network is completely controllable if and only if the
rank of Γ(Lw, B) is n, in which case (Lw, B) is called
a controllable pair. Note that edges in G define the struc-
ture—location of zero and non-zero entries in the Laplacian
matrix—of the underlying graph. The exact values of non-
zero entries, and hence, the rank of resulting controllability
matrix depends on the weights assigned to edges. For a given
graph G = (V,E) and V` leaders, rank(Γ(Lw, B)) might be
different from rank(Γ(Lw′ , B)), where w and w′ are two
different choices of edge weights.

A network G = (V,E) with V` leaders is strong struc-
turally controllable if and only if (Lw, B) is a controllable
pair for any choice of non-zero edge weights w, or in other
words, rank(Γ(Lw, B)) = n for all w. At the same time,
the dimension of strong structurally controllable subspace,
or simply the dimesnion of SSC, denoted by γ(G,V`), is

γ(G,V`) = min
w

(rank Γ(Lw, B)) . (4)

Roughly, γ(G,V`) quantifies how much of the network
can be controlled with V` leaders and with any choice of
edge weights.

C. A Distance-based Lower Bound on the Dimension of SSC

We use a tight lower bound on the dimension of SSC as
proposed in [1]. The bound is based on the distances between
nodes in a graph. Assuming m leaders V` = {`1, · · · , `m},
we define distance-to-leader vector for each vi ∈ V as

Di =
[
d(`1, vi) d(`2, vi) · · · d(`m, vi)

]T ∈ Zm.

The jth component of Di, denoted by Di,j , is d(`j , vi).
Next, we define a sequence of distance-to-leader vectors,
called as pseudo-monotonically increasing sequence below.

Definition (Pseudo-monotonically Increasing Sequence
(PMI)) A sequence of distance-to-leader vectors D is PMI
if for every ith vector in the sequence, denoted by Di, there
exists some j ∈ {1, 2, · · · ,m} such that

Di,j < Di′,j , ∀i′ > i. (5)

We say that Di satisfies the PMI property at coordinate j
whenever Di,j < Di′,j , ∀i′ > i.

An example of distance-to-leader vectors is illustrated in
Figure 1. A PMI sequence of length five is

D =

[[
3
0©

]
,

[
2
1©

]
,

[
0©
3

]
,

[
2
2©

]
,

[
1©
3

]]
. (6)

Indices of circled values in (6) are the coordinates at which
[

0
3

]
[

1
3

] v1

v2 v3

v4 v5 v6

[
1
2

]
[

2
2

] [
2
1

] [
3
0

]
v6

Fig. 1: A network with two leaders V` = {`1, `2} = {v1, v6},
along with the distance-to-leader vectors of nodes. A PMI sequence
of length five is D = [D1 D2 · · · D5] = [D6 D5 D1 D4 D2].

the corresponding distance-to-leader vectors are satisfying
the PMI property. The length of PMI sequence of distance-
to-leader vectors is related to the dimension of SSC as stated
in the following result.

Theorem 2.1: [1] If δ is the length of longest PMI
sequence of distance-to-leader vectors in a network
G = (V,E) with V` leaders, then

δ ≤ γ(G,V`). (7)

Problem: Our goal is to efficiently compute a PMI sequence
of maximum length, and hence, a lower bound on the
dimension of SSC. Moreover, we would like to compare the
distance-based bound with the other known bounds.

In the next section, we provide an algorithm to compute
a PMI sequence of maximum length, and in Section IV, we
provide a greedy approximation algorithm.

III. COMPUTING SSC BOUND – AN EXACT ALGORITHM

Main result of this section is as follows:1

Theorem 3.1: Given a graph G on n vertices, and m
leaders, a longest PMI sequence of distance-to-leader vectors
can be computed in O(m(n log n+ nm)).
We will provide a dynamic programming based algorithm of
prescribed time complexity.

1Due to space limitations, some proofs are omitted and can be found in
[18], which is an extended version of this paper.

Note that the distance-to-leader vector Di can be viewed
as a point in Zm and problem of computing longest PMI se-
quence is equivalent to finding a corresponding subsequence
of such points. We find that treating Di’s as points improves
the readability of our algorithms, so we will stick to this
view for the rest of the paper. With a slight abuse of notation,
Di,j will now represent coordinate j of a point Di ∈ Zm

for 1 ≤ j ≤ m. We start our discussion with the following:
Fact 3.2: Without loss of generality, we may assume that

points Di are distinct.
Otherwise we can throw away multiple copies of the same
point as duplicate points can not satisfy the PMI property
(defined above) on any coordinate.

The following observation is crucial to our algorithms.
Observation 3.3: Given a set of points D1, D2 . . . , Dn, if

there exists a point Di and an index j such that Di,j < Di′,j

for all Di 6= Di′ , then Di is a unique minimum point in the
direction j and there is a longest PMI sequence that starts
with Di.

However, it is possible that there is no unique minimum
in any direction. This leads us to the definition of a conflict
and conflict-partition.

Definition (Conflict-partition) A conflict is a set of points
X that can be partitioned into X1,X2 . . . ,Xm such that all
points Dp ∈ Xi have Dp,i = Dq,i if Dq ∈ Xi and Dp,i ≤
Dq,i if Dq /∈ Xi. Further, |Xi| > 1 for all i. Such a partition
is called conflict-partition or c-partition for short.2

An example of conflict is illustrated in Figure 2.

`i

`j

v1 v3

v2 v6 v9

v8 v7 v4

i

j

D3

D4

D2D1

v5

D5

Fig. 2: A graph with two leaders and the plot of distance-to-leader
vectors as points in a plane. Point set X = {D1, D2, D3, D4, D5}
constitutes a conflict, where Xi = {D3, D4, D5} and Xj =
{D1, D2}.

It is easy to see that a PMI sequence can not contain
all points in a conflict. In fact, we can strictly bound the
number of points from a conflict that can be included in a
PMI sequence.

Lemma 3.4: Let X1,X2 . . . ,Xm be a c-partition of a
conflict X for a given set of points, then any PMI sequence
contains at most |X | −min(|X1|, |X2|, . . . , |Xm|) + 1 points
from X .

A proof of the above lemma is available in [18]. As
an example, consider points X = {D1, D2, D3, D4, D5}
in Figure 2. In this set, there are two points with the
minimum ith coordinate and three points with the minimum

2In general, parts of a partition do not intersect. For the lack of a better
term, we are slightly abusing this term in the sense that parts Xi intersect
at at most one element.

jth coordinate. If D1 is picked as the first point (among
this set) we must either drop D2 or all D3, D4, D5 for
future consideration in the PMI sequence. Similarly if D3

is picked before everyone else, we can not pick either of
D4, D5, or any of D1, D2 for future consideration regardless
of the other points. Note that the bound in Lemma 3.4 is
tight: if we remove |Xi| − 1 points from the smallest part
of a c-partition, all remaining points can easily satisfy the
PMI property on coordinate i unless some of these remaining
points are included in any other conflict.

A. Recursive Algorithm

In this section, we design a recursive algorithm that we
will covert into a dynamic programming approach in Sec-
tion III-B. First we define a few notations. In the following,
Łi denotes a list of points ordered by non-decreasing ith

coordinate. Łi
j denotes the jth point in the list Łi, and Łi

j,k

is the (integer) value of kth coordinate of Łi
j

3. Let D be a
set of n points in Zm. In the beginning we will sort all
points with respect to all coordinates. So we will get m
lists {Ł1,Ł2, . . . ,Łm} of n points each. This enables us
to perform a sweep-line (sweep-hyperplane to be precise)
algorithm. We will return a sequence D of points which
is initially empty. Without loss of generality all points in
D are distinct. If there is a point Dq in D with a unique
minimum along some coordinate j, we will add Dq at the
end of current PMI sequence D, remove Dq from all lists
Łi, and recursively continue. Otherwise, if there is no unique
point Dq with a minimum value along any axis, then for each
i there are multiple points in Łi whose ith coordinate is equal
to Łi

1,i. As suggested by Lemma 3.4, we can not include all
of these points to PMI, so we need to make a decision to
include some of these points and exclude the other points.
We will recursively consider all possibilities and pick the one
that results in longest PMI sequence. We outline the details
in Algorithm 1, and state the following proposition (proof is
available in [18]).

Proposition 3.5: Algorithm 1 returns a longest PMI se-
quence of distance-to-leader vectors in time O(m(n−m)/2).

An example run of the algorithm on the graph in Figure 1
with V` = {v1, v6} is illustrated in [18]. Algorithm 1
takes prohibitively exponential time even for the case of
two leaders. Next, we design an algorithm that is based on
dynamic programming and returns an optimal solution in
polynomial time when the number of leaders is fixed.

B. Dynamic Programming Algorithm

In this section we present a dynamic programming algo-
rithm that returns length of a longest PMI sequence given
distance-to-leader vectors as a set of points. To obtain a
longest PMI sequence, standard augmentation methods can
be easily employed.
Let c1, c2, . . . , cm be a set of non-negative integers and
D[c1,c2,...,cm] be a longest PMI sequence in which the value at

3We recommend to use linked priority queues or similar data structure for
these lists so that one could easily delete a point from lists while maintaining
respective orders in logarithmic time.

Algorithm 1 Recursive Algorithm for PMI

1: procedure PMI-R(Ł1,Ł2 . . . ,Łm) . Recursive routine
2: if |Ł1| <= 1 then
3: return Ł1 . one point is always a PMI
4: end if
5: Xi ← {Łi

j : Łi
j,i = Li

1,i} for all i.
6: if ∃i such that |Xi| = 1 then . Check for unique

min.
7: return [Łi

1 PMI-R(Ł1 \ Xi,Ł2 \ Xi, . . . ,Łm \
Xi)].

8: else
9: for i ∈ 1 : m do. Check point in each direction

10: Di ← [Łi
1 PMI-R(Ł1 \Xi, . . . ,Łm \Xi)]

11: end for
12: return largest Di

13: end if
14: end procedure

ith coordinate of any point is at least ci. Let α[c1,c2,...,cm] be
the length of such a sequence. Our algorithm will memoize
on α[c1,c2,...,cm].

From our discussion in Section III-A, we conclude that
α[c1,c2,...,cm] can be obtained by the following recurrence:

α[c1,c2,...,cm] = max
1≤i≤m

(α[c1,c2,...,ci+1,...,cm] + 1ci), (8)

where

1ci =

{
1 if ∃ Dp s.t. Dp,i = ci and Dp,j ≥ cj ,∀j 6= i.
0 otherwise.

(9)
We plan to pre-compute and memoize all required values of
α[c1,...cd] in a table. Clearly there are infinitely many possible
values for ci but we observe the following:

Observation 3.6: Let Łi
j,i, and Łi

j+1,i be ith coordinate
values of two consecutive points in Łi (as defined previ-
ously), then

α[c1,c2,...,x,...,cm] = α[c1,c2,...,Łi
j+1,i,...,cm]

for all Łi
j,i < x ≤ Łi

j+1,i.
Observation 3.6 implies that there are at most n different

values for each variable ci, which gives at most n unique
values for α[c1,c2,...,cm]. Thus, we only keep a table of size
nm for computation and storage of solutions to all subprob-
lems. The details of dynamic program are in Algorithm 2.
For some intuition on the working of dynamic program, we
refer the reader to Figure 3.

We provide the proof of Proposition 3.7 and illustrate the
algorithm in detail through an example in [18].

Proposition 3.7: Algorithm 2 computes a PMI sequence
of maximum length in time O(m × (n log n + nm)) where
m is the number of leaders and n is total number of nodes.

Theorem 3.1 follows directly from Proposition 3.7.
Remark 3.8: For an implementation on platforms that do

not offer ready to use multi-dimensional data-structures, we
find it useful to hash the values of computed solution to a

(a) (b) (c)

(d) (e)

Fig. 3: The figure illustrates possible scenarios for PMI recurrence
as used in the dynamic program with two leaders. Assume origin
of these figures to be (0, 0). In the case (a) there are separate points
along both coordinates, so we have A0,0 = max(A0,1 + 1, A1,0 +
1). In the case (b) there are two points along x and one point
along y, so we have A1,1 = max(A1,2 + 1, A2,1 + 1). Note that
point (1, 1) is minimum along both x and y coordinates. In the
case (c) there are two points along y and one point along x, so
A3,1 = max(A3,2 + 1, A4,1 + 1). In Figure (d), there is a point
along x and a point along y (same point in this case), so we have
A3,2 = max(A3,3 + 1, A4,2 + 1). In case (e) there is a point in x
coordinate but no point along y, so A1,3 = max(A1,4+1, A3,3+0).

Algorithm 2 PMI - Dynamic Program

1: procedure PMI-DP (Ł1,Ł2 . . . ,Łm)
2: zi be number of unique values of ith coordinate

among all points.
3: z = max(z1, z2 . . . , zm)
4: Define a m-dimensional array A with dimensions

(z + 1)× (z + 1)× . . . (z + 1)
5: Let Ac1,c2,...,cm , i.e. value of A at index set
c1, c2, . . . , cm represents α[c1,c2,...,cm] as in (8).

6: for k from 1 to m do
7: Ac1,c2,...,cm ← 0 for ck = z, ck′ ≤ z, k′ 6= k.
8: end for
9: for j from z − 1 to 0 do

10: for k from 1 to m do
11: Compute Ac1,c2,...,cm for ck = j, ck′ ≤

j, k′ 6= k using (8).
12: end for
13: end for
14: return A0,0,...,0

15: end procedure

list, and use the recursive algorithm (PMI-R) with a check
in the first line to not go through the subroutine if the current
subproblem has already been solved and hashed once.

Remark 3.9: We note that an exact algorithm to compute
longest PMI sequence in O(mn) was proposed in [1].
However dynamic programming solution in Algorithm 2
computes longest PMI sequence in a much lesser time, that
is, O(m× (n log n+ nm)).

IV. COMPUTING SSC BOUND – A GREEDY
APPROXIMATION ALGORITHM

We observe that the dynamic programming algorithm
described above runs well for graphs with several hundreds
of nodes on a decent machine. However, when the number
of nodes is much higher, or when the number of leaders is
large, it becomes impractical. In the following, we propose a
more efficient greedy approximation algorithm, which gives
very close to optimal solutions in practice as illustrated
numerically in Section V. Runtime complexity is linearithmic
in the size of the input, thus it works well for computing quite
accurate approximate PMI sequences for almost all practical
networks.

The main idea behind the greedy algorithm is to make
locally an optimal choice when faced with the situation
in Lemma 3.4, that is, when including a point in PMI
results in discarding a subset of points from possible future
consideration. Locally best thing to do in this case is to pick
a point that results in the loss of minimum number of other
points. We outline the details in Algorithm 3.

Algorithm 3 PMI-Greedy Algorithm

1: procedure PMI-GREEDY(Ł1,Ł2 . . . ,Łm)
2: D ← ∅ . Initially empty sequence
3: while Ł1 6= ∅ do
4: Xi ← {Łi

j : Łi
j,i = Li

1,i} for all i.
5: if ∃i such that |Xi| = 1 then . Unique min.
6: D ← [D Xi]
7: Remove Xi from all lists.
8: else
9: Let j ← arg mini |Xi| . Get smallest Xi

10: D ← [D Łj
1]

11: Remove all points in Xj from all lists.
12: end if
13: end while
14: return D
15: end procedure

Proposition 4.1: Algorithm 3 computes an approxi-
mate PMI sequence in time O(mn log n), and is an m-
approximation, where m is the number of leaders and n is
the total number of nodes in a graph. Further, Algorithm 3
also has an approximation ratio of log n if m ≤ log n, or
m ≥ n

logn .
Proof: Available in [18].

We also illustrate the greedy algorithm in [18]. If there
exists a PMI sequence of length n, then the network is
strong structurally controllable with a given set of leaders.
The greedy algorithm presented above always returns a PMI
sequence of length n if there exists one. We state this result
in the following lemma, and provide a proof in [18].

Lemma 4.2: If there exists a PMI sequence of length n,
then Algorithm 3 always returns an optimal PMI.

V. NUMERICAL EVALUATION

In this section, we numerically evaluate our results on
Erdös-Rényi (ER) graphs in which any two nodes are adja-
cent with a probability p. First, we compare the performance
of exact dynamic programming algorithm (Algorithm 2) and
the approximate greedy algorithm (Algorithm 3) for comput-
ing the maximum length PMI sequences. In Figure 4(a), we
plot lengths of PMI sequences computed using Algorithms 2
and 3 as a function of p while fixing the number of leaders,
which are selected randomly. Second, we fix p = 0.075,
and plot PMI length as a function of number of leaders in
Figure 4(b). We mention that each point in plots in Figure 4
is an average of 50 randomly generated instances. From the
plots, it is clear that the greedy algorithm, which is much
faster as compared to the DP algorithm, performs almost as
good as the dynamic programming algorithm.

0.05 0.125 0.2 0.275 0.35
p

16

18

20

22

24

26

P
M

I l
en

gt
h

 DP
 Greedy

(a) n = 200, |V`| = 8

2 4 6 8
No. of leaders

5

10

15

20

25

P
M

I l
en

gt
h

 DP
 Greedy

(b) n = 200, p = 0.075

Fig. 4: Comparison of dynamic programming and greedy algo-
rithms for computing PMI sequences.

Next, we numerically compare PMI sequence based bound
with another bound on the dimension of SSC that is based
on the notion of Zero Forcing Sets (ZFS) [8], [10]. In
Figure 5(a), we plot these bounds as function of p while
fixing the number of leaders. In Figure 5(b), we fix p and plot
SSC bound as a function of number of leaders. We observe
that PMI-based bound significantly outperforms the ZFS-
based bound in all the cases. Similar results are obtained
in the case of Barabási-Albert (BA) graphs (illustrated in
[18]).

0.04 0.06 0.08 0.1 0.12
p

0

20

40

60

80

100

S
S

C
 lo

w
er

 b
ou

nd

 PMI
 ZFS
 Diam

(a) n = 100, |V`| = 30

10 20 30 40 50
No. of leaders

0

20

40

60

80

100

S
S

C
 lo

w
er

 b
ou

nd

 PMI
 ZFS
 Diam

(b) n = 100, p = 0.06

Fig. 5: Comparison of PMI and ZFS-based bounds. Diameters of
graphs are also plotted.

VI. CONCLUSION

We studied computational aspects of a lower bound on
the dimension of SSC in networks with Laplacian dynamics.

The bound is based on a sequence of distance-to-leader
vectors, and has been used to explore trade-off between
robustness and strong structural controllability [2]. However,
no efficient algorithms to compute the bound were known.
In this paper, we studied the problem in detail and provided
first polynomial time algorithm to compute longest sequence
of distance-to-leader vectors with a fixed set of leader nodes,
which directly provided a bound on the dimension of SSC.
We also presented a linearithmic approximation algorithm to
compute the sequence, which provided near optimal solutions
in practice. In the future, we hope to apply these results to
further explore trade-offs between controllability and other
desirable network properties including structural robustness.

REFERENCES

[1] A. Yazıcıoğlu, W. Abbas, and M. Egerstedt, “Graph distances and
controllability of networks,” IEEE Transactions on Automatic Control,
vol. 61, no. 12, pp. 4125–4130, 2016.

[2] W. Abbas, M. Shabbir, A. Y. Yazıcıoğlu, and A. Akber, “On the trade-
off between controllability and robustness in networks of diffusively
coupled agents.” in American Control Conference (ACC), 2019.

[3] H. Mayeda and T. Yamada, “Strong structural controllability,” SIAM
Journal on Control and Optimization, vol. 17, pp. 123–138, 1979.

[4] K. Reinschke, F. Svaricek, and H.-D. Wend, “On strong structural
controllability of linear systems,” in 31st IEEE Conference on Decision
and Control (CDC), 1992, pp. 203–208.

[5] J. C. Jarczyk, F. Svaricek, and B. Alt, “Strong structural controllability
of linear systems revisited,” in 50th IEEE Conference on Decision and
Control and European Control Conference (CDC-ECC), 2011.

[6] A. Chapman and M. Mesbahi, “On strong structural controllability of
networked systems: A constrained matching approach.” in American
Control Conference (ACC), 2013, pp. 6126–6131.

[7] A. Weber, G. Reissig, and F. Svaricek, “A linear time algorithm to
verify strong structural controllability,” in 53rd IEEE Conference on
Decision and Control (CDC), 2014, pp. 5574–5580.

[8] N. Monshizadeh, S. Zhang, and M. K. Camlibel, “Zero forcing sets
and controllability of dynamical systems defined on graphs,” IEEE
Transactions on Automatic Control, vol. 59, pp. 2562–2567, 2014.

[9] M. Trefois and J.-C. Delvenne, “Zero forcing number, constrained
matchings and strong structural controllability,” Linear Algebra and
its Applications, vol. 484, pp. 199–218, 2015.

[10] N. Monshizadeh, K. Camlibel, and H. Trentelman, “Strong targeted
controllability of dynamical networks,” in 54th IEEE Conference on
Decision and Control (CDC), 2015, pp. 4782–4787.

[11] S. S. Mousavi and M. Haeri, “Controllability analysis of networks
through their topologies,” in 55th IEEE Conference on Decision and
Control (CDC), 2016, pp. 4346–4351.

[12] S. S. Mousavi, M. Haeri, and M. Mesbahi, “On the structural and
strong structural controllability of undirected networks,” IEEE Trans-
actions on Automatic Control, vol. 63, no. 7, pp. 2234–2241, 2018.

[13] S. Zhang, M. Cao, and M. K. Camlibel, “Upper and lower bounds
for controllable subspaces of networks of diffusively coupled agents,”
IEEE Transactions on Automatic control, vol. 59, pp. 745–750, 2014.

[14] V. Tzoumas, M. A. Rahimian, G. J. Pappas, and A. Jadbabaie,
“Minimal actuator placement with bounds on control effort,” IEEE
Transactions on Control of Network Systems, vol. 3, pp. 67–78, 2016.

[15] A. Clark, B. Alomair, L. Bushnell, and R. Poovendran, “Submodu-
larity in input node selection for networked linear systems: Efficient
algorithms for performance and controllability,” IEEE Control Systems
Magazine, vol. 37, no. 6, pp. 52–74, 2017.

[16] C. O. Aguilar and B. Gharesifard, “Graph controllability classes for the
laplacian leader-follower dynamics,” IEEE transactions on automatic
control, vol. 60, no. 6, pp. 1611–1623, 2015.

[17] S. S. Mousavi, M. Haeri, and M. Mesbahi, “Robust strong structural
controllability of networks with respect to edge additions and dele-
tions,” in American Control Conference (ACC), 2017.

[18] M. Shabbir, W. Abbas, and A. Y. Yazıcıoğlu, “On the computation of
a lower bound on strong structural controllability in networks,” 2019.
[Online]. Available: https://arxiv.org/abs/1909.03565

