
IJRECE VOL. 6 ISSUE 2 APR.-JUNE 2018 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 1457 | P a g e

Study of Various Methods Used in Reverse Engineering
Preeti Kathiria, Dhaval Jha

Abstract- A process to analyze the system in order to
produce its representations at a higher level of abstraction is
called Reverse Engineering. In this paper, an outline of the
various methods used for reverse engineering of the software
is presented along with the elaboration of those methods.

Keywords: Reverse engineering, Abstraction.

I. INTRODUCTION

The major factor involved in a program is to understand
and document it properly. In order to thoroughly understand a
program, we need to identify lop invariants and then analyze
the program [2]. The term reverse engineering was coined by
Chikofsky and Cross in 1990 in their seminal paper as the
process of analyzing the system under study and to identify
components of the system and relationships among them and
to construct system's representations in some alternative form
or at a higher level of abstraction [1]. Reverse engineering
means to go backwards through the development cycle in
which, the output of the implementation phase, which is in the
form of source code is converted back to the analysis phase,
which is just the reciprocal of the traditional waterfall model.

II. GOALS AND AREAS

When the source code is only available as a reliable
representation, then the reverse engineering serves as the
supporting technology which can deal with such a system[3].
Reverse engineering of a software contains multiple goals:

• Generating alternate views of the software (Clones)

• Recovering the lost information

• Reusability of the components already used in that
software

• Determining the side effects of a particular software on
the system on which it has been implemented

• Synthesizing higher abstractions

Generally, two categories of software reverse engineering
exist. For the first category, availability of the source code
for the software is there, and we try to discover the higher-
level aspects of the program, which may be poorly
documented or documented but no longer valid. For the
second category, the source code is unavailable for the
software, and, the efforts are made towards discovering one
possible source code for the software and these steps are
considered as reverse engineering. The second type is the most
common type.

The following list includes the examples of problem areas
wherein reverse engineering has been successfully applied:-

• Redocumenting program and relational databases

• Identifying reusable assets,

• Recovering architecture

• Recovering design patterns

• Building traceability between code and documentation

• Identifying clones

• Code smells and aspects

• Computing change impacts

• Reverse engineering binary code

• Renewing user interfaces

• Translating a program from one language to another

• Migrating or wrapping legacy code

• To create representations necessary for testing purpose

• To audit security and vulnerability

III. THE PROCESS OF REVERSE
ENGINEERING

Reverse engineering involves two steps: information
extraction and abstraction. Information extraction analyses
artifacts of the system under study in order to gather raw data,
while Abstraction involves creation of documents and views
which are user-oriented. As an illustration, activities under
information extraction include drawing Control Flow Graphs
(CFGs), metrics or facts from the source code. The outputs of
Abstraction can be design artifacts, traceability links, or
business objects. Firstly, the analysis of the software product
to be “reversed” is carried out and then the results of this
analysis are stored into an information base[5]. This
information is in turn used by view composers to produce
alternate views of the software product, such as metrics,
graphics, reports, etc.

Basic Architecture of reverse engineering process

IJRECE VOL. 6 ISSUE 2 APR.-JUNE 2018 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 1458 | P a g e

The aim of most of the reverse engineering tools is to
obtain abstractions or different forms of representations, from
software system implementations. However, reverse
engineering can be performed on any software artifact:

• Requirement

• Design

• Code

• Test case

• Manual pages

Reverse engineering approaches can have two broad
objectives:

• Redocumentation: The goal of Redocumentation is
to create another view of a given artifact, at the same level of
abstraction.

• Design recovery: The objective of Design recovery is
to recreate design abstractions from the source code, existing
documentation, and experts’ knowledge and from other
variety of source.

IV. EXAMPLES OF RCE

Reverse code engineering (RCE) is a process of reverse
engineering of the binary software[4].

• For instance, on the Java platform the decompilation of
binaries can be done using Jad.

• The Samba software, that permits systems, not running
Microsoft Windows, to share files with systems that are
running it, can be considered as a standard example of
software reverse engineering.

• The Wine project is a free and open source software
application that aims to allow applications designed for
Microsoft Windows to run on Unix-like operating
systems.

• The ReactOS project aims to provide binary (ABI and
API) compatibility with the current Windows OSes of the
NT branch, which in turn allows the software and drivers
written for Windows to run on a clean-room reverse-
engineered GPL free software or open-source counterpart.

V. UML TOOLS AND KDM

UML (Unified Modeling Language) tools is a process to
import and analyze the source code to generate UML
diagrams, which provides a standard way to visualize the
system. Some commonly known UML tools are Microsoft
Visio, Netbeans, MyEclipse, IBM’s Rational Software
Architect etc. These diagrams basically represent the structural
and behavior aspects of the system.

There is also more advanced approach of providing reverse
engineering other than UML, known as Knowledge Discovery

Metamodel (KDM). It is publicly available specification from
the Object Management Group (OMG).It is a common
intermediate representation for existing software systems and
their operating environments that defines common metadata
required for deep semantic integration of Application
Lifecycle Management tools. The extraction and analysis of
source, binary and byte code is delivered. In terms of analysis
of source code, the standard architecture of KDM allows to
extract the flow of the software system, architectures, and
business layer knowledge. XML can be used which can
correlate with different layers of the system knowledge for
either detailed analysis or derived analysis. The task of
representation of language constructs is quite cumbersome due
to the given number of languages. However, because of the
growth and creation of new software languages, the standard
permits the use of extensions to support the broad language set
as well as evolution. Due to the compatilibilty of KDM with
UML, BPMN, RDF and other standards, it enables migration
into other environments, thereby leveraging system knowledge
for efforts such as software system transformation and
enterprise business layer analysis.

VI. METHODS USED IN REVERSE
ENGINEERING OF THE SOFTWARE:

Various methods can be employed to accomplish the
Reverse engineering of software. The major three categories
of software reverse engineering are as given below:-

• Analysis through observation of information exchange. It
is employed in protocol reverse engineering, which deals
with bus analyzers and packet sniffers.

• The bus analyzer is a bus analyzer tool, often
combination of hardware and software, which is used in
reverse engineering. Its job is to monitor the bus traffic
and decode and display the data.

• On embedded systems, reverse engineering is governed
by tools introduced by the manufacturer, such as JTAG
ports. JTAG(Joint Test Action Group) is widely used for
IC debug ports. In embedded systems, essentially all
modern processors implement JTAG.

• SoftICE is a kernel mode debugger for Microsoft
Windows. It is designed to run underneath Windows in
such a way that the operating system is unaware of its
presence.

• The packet sniffer is defined as the software or a piece of
computer hardware which can intercept and log traffic
which passes through the network.

• Wireshark and Microsoft Network Monitor are the
examples of the packet sniffer.

VII. DISASSEMBLY USING A DISASSEMBLER

It is program which performs the translation from machine
language to assembly language. Disassembly is often

IJRECE VOL. 6 ISSUE 2 APR.-JUNE 2018 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 1459 | P a g e

formatted for human-readability rather than suitability for
input to an assembler, making it principally a reverse-
engineering tool.

• Limitations with disassembler:

• To write a disassembler which produces the code
which, when assembled, produces exactly the original binary
is possible; but it may not happen every time.

• Inspite of production of a fully correct disassembly,
problems remain if the program requires modification. For
example, the same machine language jump instruction can be
generated by assembly code to jump to a specified location
(for example, to execute specific code), or to jump to a
specified number of bytes (for example, to skip over an
unwanted branch).

• Types of disassembler:

There are two types of the disassembler:

• A stand-alone disassembler

• An interactive disassembler immediately shows the
effect of any change made by the user. For instance, the
disassembler may be initially unaware of the fact that the
section of the program is actually code, and treat it as data; if
the user specifies that it is code, the resulting disassembled
code is shown immediately, which permit the user to check it
and take further actions during the same run.

• Examples: Interactive Disassembler (IDA).

• Decompilation using decompiler:

The decompiler translates the code into a higher level of
abstraction. Usually, the decompilers do not exactly
reconstruct the original source code, and widely vary in the
intelligibility of their outputs.

Mostly, the decompilerterm is used for a program that
converts executable programs into the high-language, which,
when compiled, will produce an executable whose behavior is
the same as the original executable program.

• Uses of decompilation:

• Recovery of lost source code

• Computer security

• Interoperability (To allow information exchange
between systems)

• Error correction

• Phases in design of decompiler:

• Loader

• Disassembly

• Idioms

• Program analysis

• Data flow analysis

• Type analysis

• Structuring

• Code generation

• Examples:

• Java decompiler

• Boomerang decompiler

• JEB decompiler

VIII. CONCLUSION

Different reverse engineering methods are available for the
reverse engineering of the given software system. The use of
the appropriate method depends upon the source input we are
given (i.e. either it is a machine code or high level code) and
the kind of output we want through the process of reverse
engineering (i.e. assembly code, higher level code or UML
diagrams etc.).

References:

[1] Gerardo Canfora and Massimiliano Di Penta “New
Frontiers of Reverse Engineering”

[2] H.D. Mills and V.R. Vasuli “Understanding and
Documenting Programs” IEEE Transactions on Software
Engineering vol. 8 no. 3 pp. 270-283 1982.

[3] Robert H. Lande and Sturgis M. Sobin “Reverse
Engineering of Computer Software and U.S. Antitrust
Law”

[4] Dennis B. Smith, Hausi A. Muller, Jens H. Jahnke, Kenny
Wong, Margaret-Anne Storey and Scott R. Tilley
“Reverse Engineering: A Roadmap”

[5] Chikofsky, E. J. and Cross, J. H., "Reverse Engineering
and Design Recovery: A Taxonomy"

http://en.wikipedia.org/wiki/Decompiler
http://en.wikipedia.org/wiki/Decompiler
http://en.wikipedia.org/wiki/Decompiler
http://en.wikipedia.org/wiki/Decompiler
http://en.wikipedia.org/wiki/Decompiler
http://en.wikipedia.org/wiki/Decompiler

