Device Options for Stroke Prevention in Atrial Fibrillation

David A. Sandler, MD, FACC, FHRS Director, Heart Rhythm Service Oklahoma Heart Institute

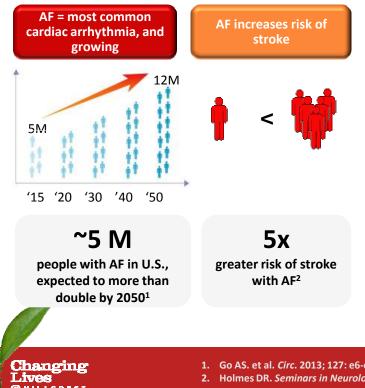
Disclaimers

- Janssen speakers bureau
- Pfizer speakers bureau
- Bristol-Myers Squibb speaker bureau
- Boston Scientific advisory board
- Abbott/St Jude research grants

Agenda

- Etiology of stroke in AF
- Pharmacologic therapy
- Device-based therapy

Agenda


• Etiology of stroke in AF

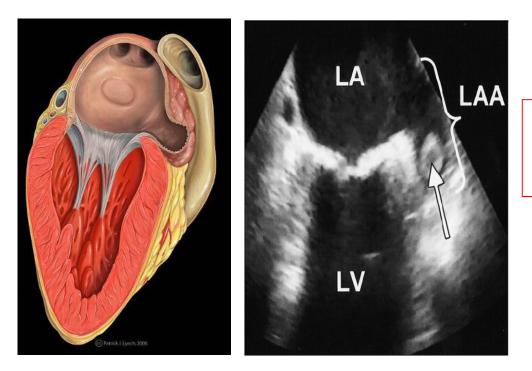
- Pharmacologic therapy
- Device-based therapy

AF is a Growing Problem Associated with Greater Morbidity and Mortality

Higher stroke risk for older patients and those with prior stroke or TIA

15-20% of all strokes are AF-related

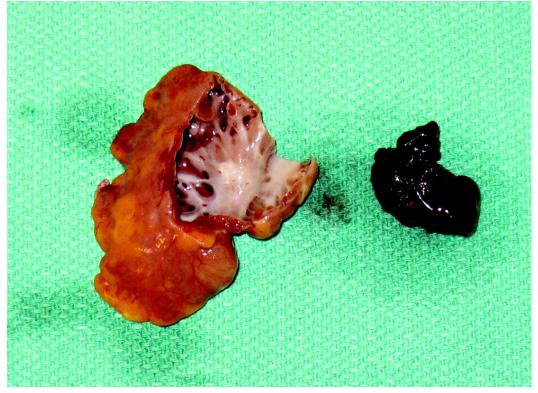
AF results in greater disability compared to non-AF-related stroke


High mortality and stroke recurrence rate

@ HILLCREST

- 1. Go AS. et al. Circ. 2013; 127: e6-e245.
- 2. Holmes DR. Seminars in Neurology 2010;30:528-536.

Left Atrial Appendage


Source of thrombus in >90% of NVAF patients

Blackshear JL and Odell JA. AnnThorac Surg 1996;61:755

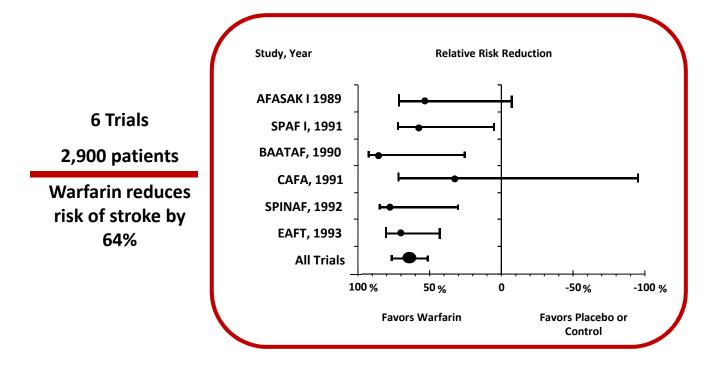
Changing Lives

Excised LAA with Extracted Thrombus

Richard P. Whitlock et al. Circulation. 2009;120:1927-1932

Agenda

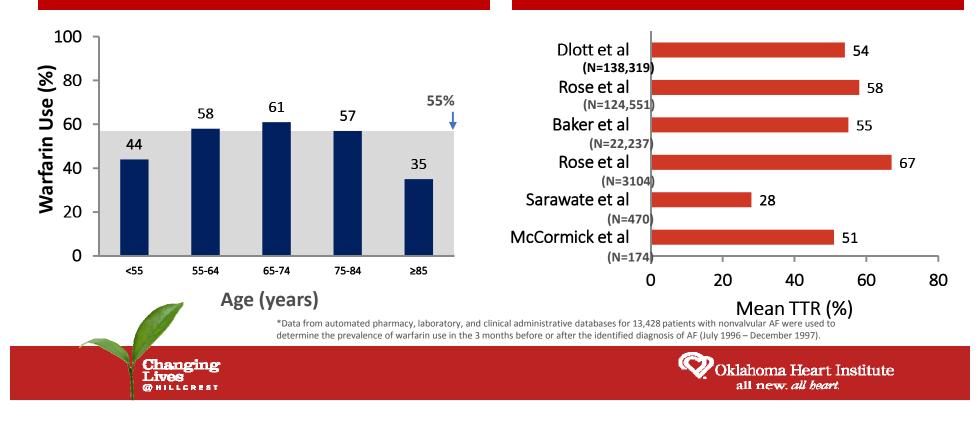
- Etiology of stroke in AF
- Pharmacologic therapy
- Device-based therapy

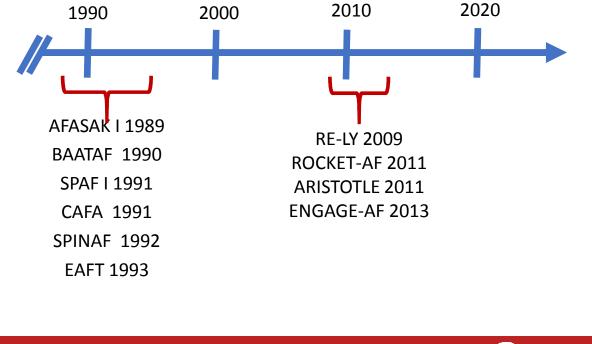


Warfarin for AF

Changing Lives

@ HILLCREST

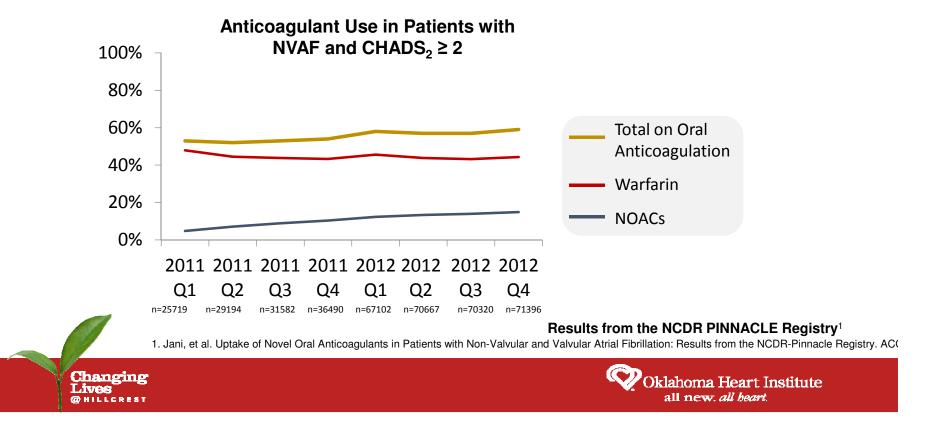

From: Hart RG, et al Ann Intern Med. 2007;146:857-867


Using Warfarin Remains Challenging

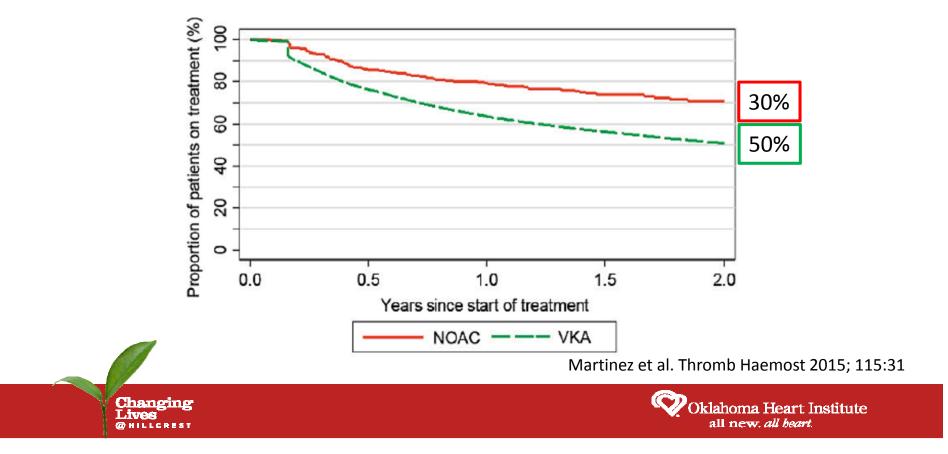
AF patients without contraindications

Mean Time in Therapeutic Range (TTR)

AF Timeline



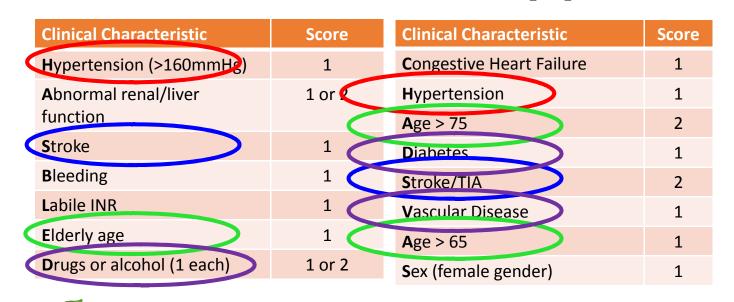
Changing Lives @HILLCREST


The Novel Anticoagulants

	dabigatran (Pradaxa)	rivaroxaban (Xarelto)	apixaban (Eliquis)	edoxaban (Savaysa)
Mechanism	Direct Thrombin inhibitor	Factor Xa Inhibitor	Factor Xa inhibitor	Factor Xa inhibitor
Half-Life (t _{1/2})	14 hours	5 – 13 hours	12 hours	6 – 11 hours
Dosing	150mg BID CrCl>30 75mg BID CrCl 15-30	20mg qd CrCl>50 15mg qd CrCl 30-49	5mg BID 2.5mg BID (age>80, Cr>1.5 or wt <60Kg)	60mg qd CrCl 50-95 30mg qd CrCl 15-50
Population in Study	Age 71.5 CHADS ₂ = 2.1 TTR 64%	Age 73 CHADS ₂ = 3.5 TTR 57.8%	Age 70 CHADS ₂ = 2.1 TTR = 62.2%	Age 72 CHADS ₂ = 2.8 TTR = 68.4%
Stroke Risk	Superior	Non-inferior	Superior	Similar
Bleeding Risk	Similar	Superior	Superior	Lower
Mortality Reduction	12% (p=0.051)	8% (p=0.15)	11% (p=0.047)	8% (p=0.08)

Rate of Anticoagulation in High-Risk NVAF Patients Has Not Improved

Estimate of Persistence of OAC Therapy


Discontinuation Rates of Anticoagulation

Treatment	Study Drug Discontinuation Rate	Major Bleeding (rate/year)		
Rivaroxaban ¹	24%	3.6%		
A mina ha m?		2 10/		
reduction for patients with AF who are seeking an alternative to long-term OACs (60 mg / 30 mg)				
Warfarin ¹⁻⁴	17 – 28%	3.1-3.6%		

The Dilemma

HAS-BLED

CHA₂DS₂VASc

Changing Lives

Bleeding Risk Increases Over Lifetime

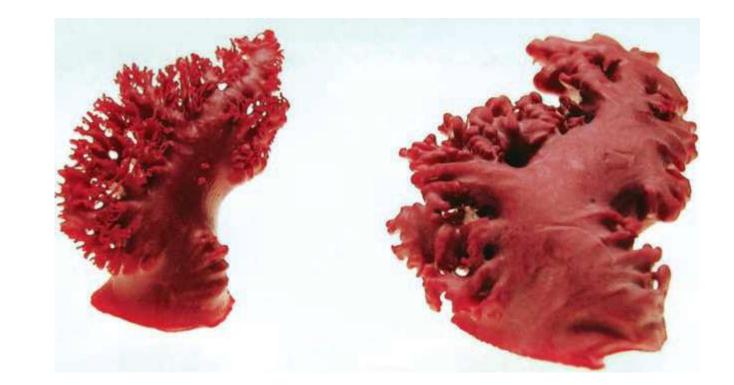
HAS-BLED Score	Annual % Bleed Risk	10-Year Bleeding Risk (%)
0	0.9	8.6
1	3.1	29.2
2	4.1	34.2
3	5.8	45.0
4	8.9	60.6
5	9.1	61.5

*Lip JACC 2011

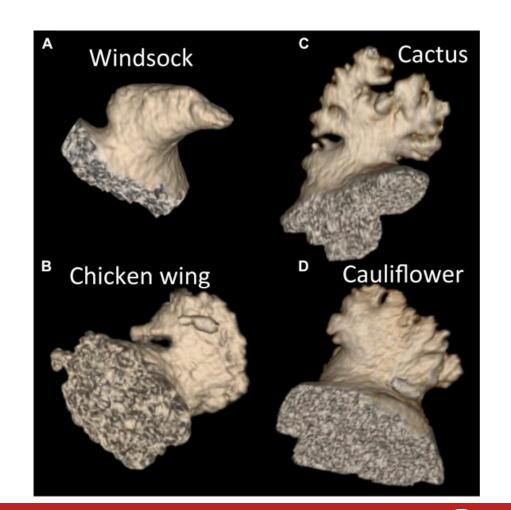
** Assumes constant risk despite increasing age and bleeding risk is independent from bleeding risk in previous years

Agenda

- Etiology of stroke in AF
- Pharmacologic therapy
- Device-based therapy

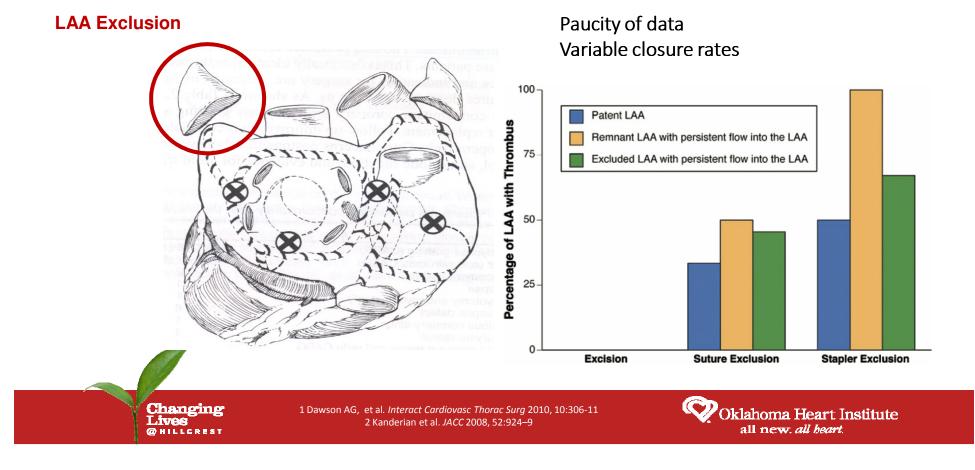


Right Atrium Left Atrium


Changing Lives @HILLCREST

Changing Lives

Changing Lives @HILLCREST



Hypothesis

Eliminating blood flow in the LAA will reduce the risk of stroke without the inherent risks of anticoagulation

Surgical Experience

AtriClip

Changing Lives @HILLGREAT

EXCLUDE Trial

Subject has any one of the following risk factors and is thought to benefit from LAA exclusion:

- CHADS score > 2
- Age > 75 years
- Hypertension and age > 65 years
- History of AF (any classification)
- Previous Stroke

Changing

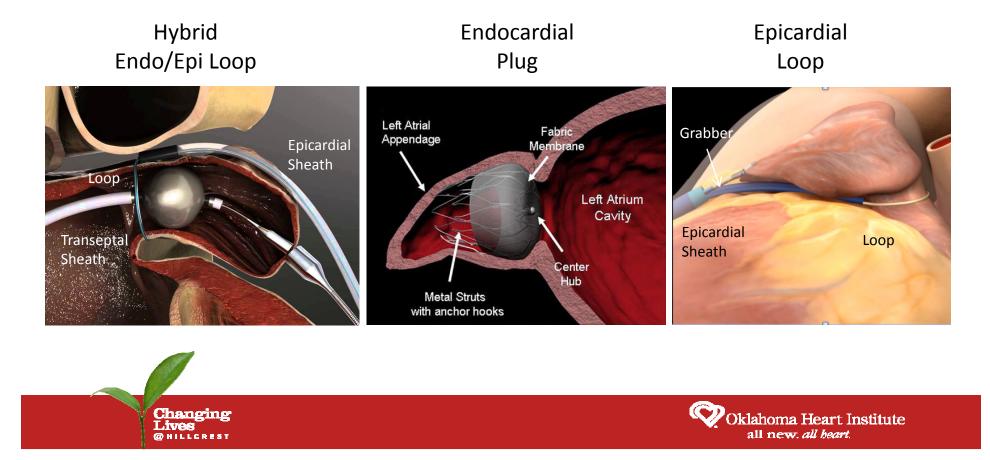
MHILLCRES1

Lives

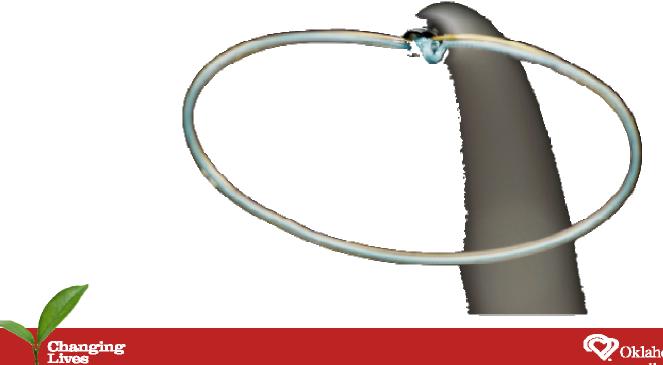
- 70/70 clips placed successfully
- 69/70 complete exclusion confirmed by intra-op TEE
- 60/61 exclusion confirmed by 3 month CT Scan
- No device or clip procedurerelated adverse events reported in the study

Ailawadi G J Thorac Cardiovasc Surg. 2011;142(5):1002-9,

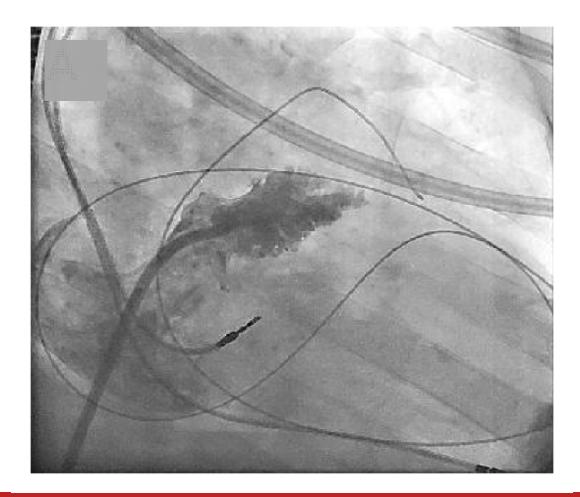
... "occlusion of the LAA, under direct visualization, in conjunction with other open-heart cardiac procedures" which we hope and pray leads to...


FDA Approves the AtriClip for Stroke Prevention in Atrial Fibrillation Patients Λ

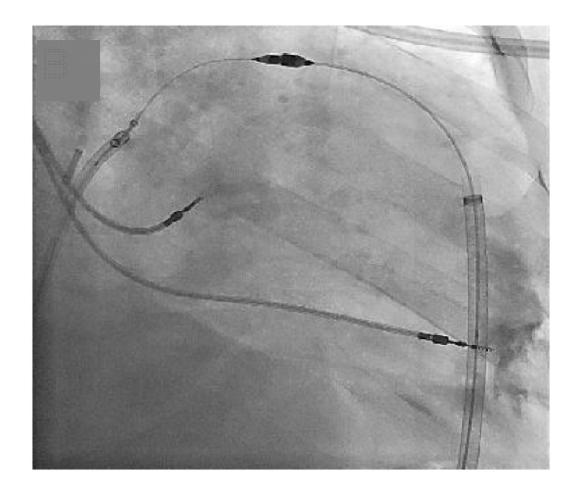
June 18, 2010 12:05 AM CT



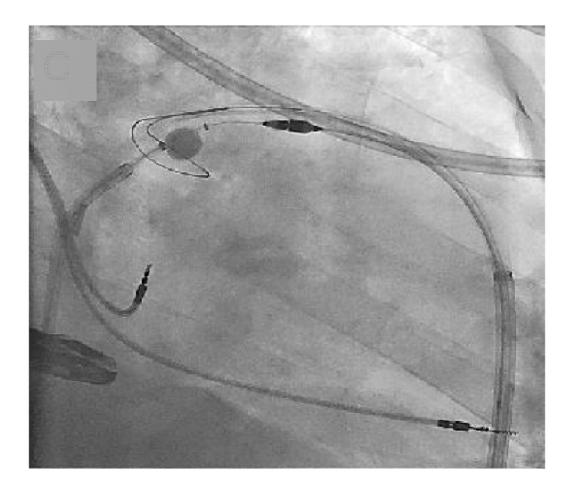
Types of Percutaneous Appendage Closure

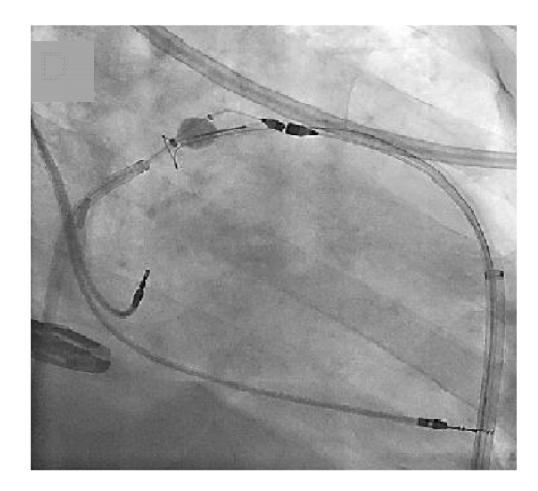


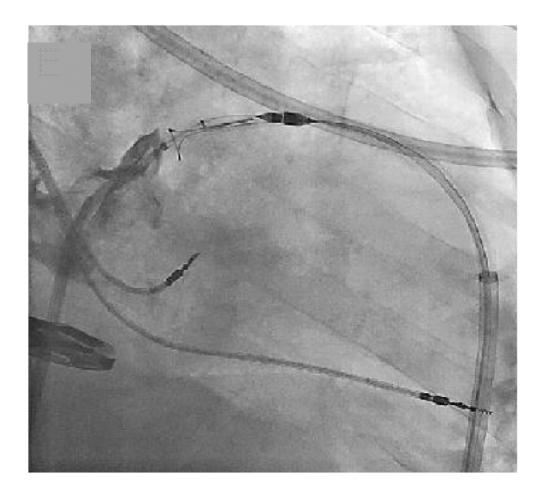
FDA Approval in 2009 for "soft tissue approximation"

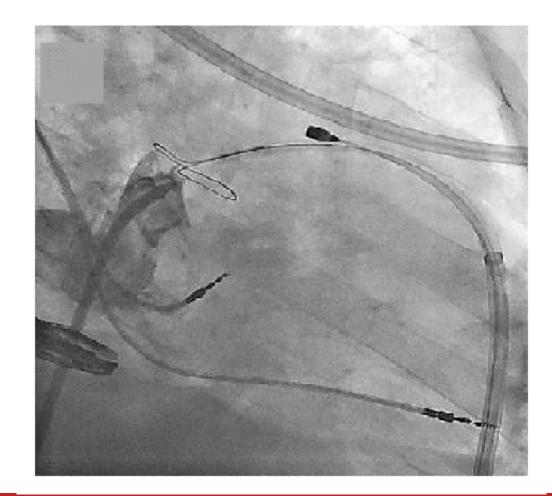


@ HILLCREST

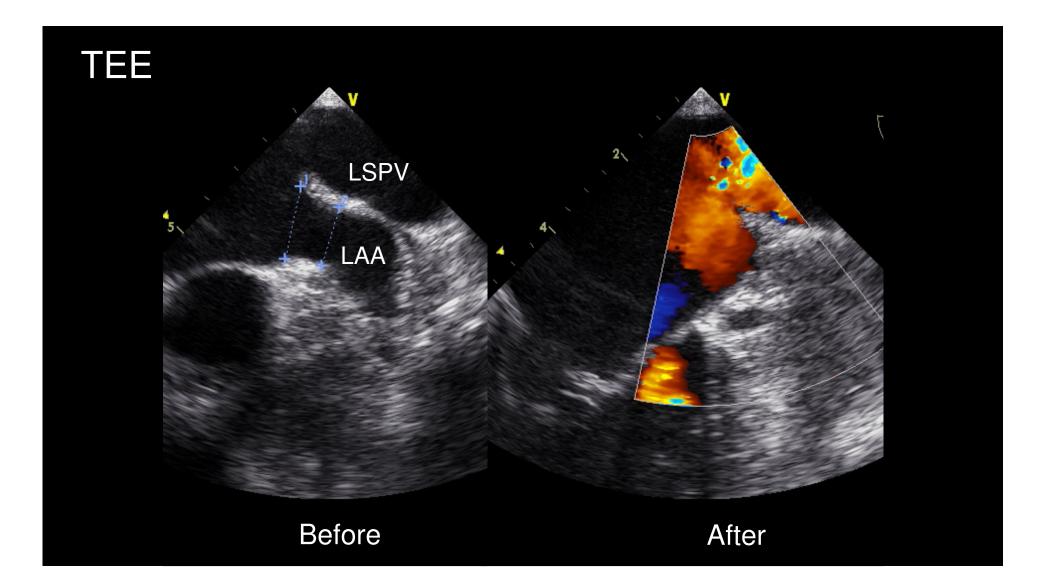

Changing Lives


Changing Lives @HILLGREST


Changing Lives @HILLCREST


Changing Lives @HILLGREST

Changing Lives @HILLCREST



Changing Lives @HILLCREST

Fluoroscopy

Lariat Registry of 154 Patients

TABLE 3Reasons for Procedural Failure of LeftAtrial Appendage Ligation With the Lariat Device (N = 22)

Lariat unable to be deployed	9 (48)	
Pericardial adhesions	5	
LAA anatomy	2	
Aborted procedure after RV perforation	2	
Residual Leak \ge 5 mm	1 (6)	0 70/
Major complication before discharge	15 (71)	9.7%

Values are n or n (%). In 2 patients with procedural failure, there was both a major complication and the lariat was not deployed. In 1 patient, there was both a residual leak \geq 5 mm and a major complication.

LAA = left atrial appendage; RV = right ventricular.

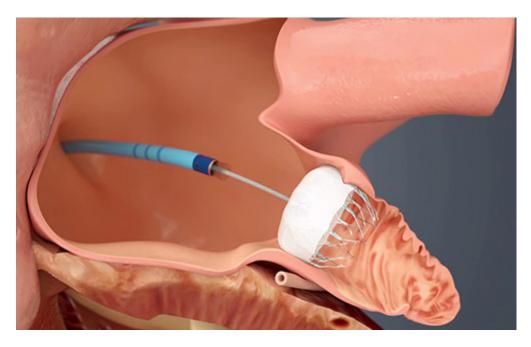
Price MJ et al J Am Coll Cardiol 2014;64:565–72

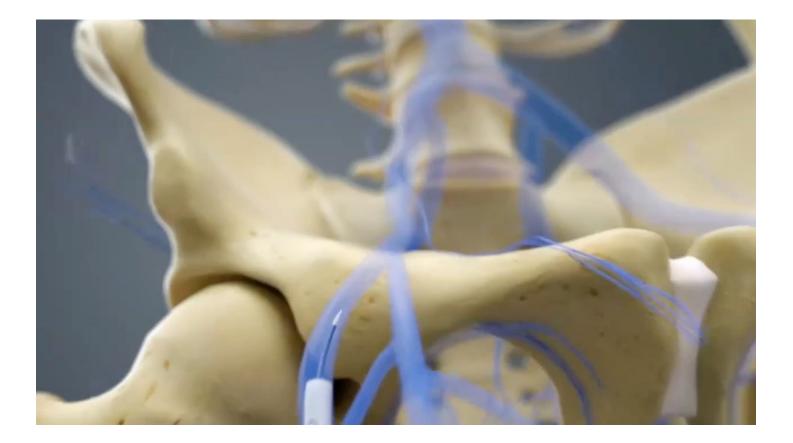
We identified 45 adverse events through June 30, 2015 that occurred in patients undergoing LAA closure procedures with the LARIAT Suture Delivery Device and/or its associated devices. These reports describe 6 patient deaths and other serious medical complications including laceration and/or perforation of the heart, complete LAA detachment from the heart, bleeding (hemorrhage), low blood pressure (hypotension), fluid collection around the heart (pericardial effusion), fluid collection around the heart that causes low blood pressure and decreased heart function leading to shock (cardiac tamponade), and fluid collection around the lung (pleural effusion). Of the 45 adverse events reported to the FDA, 34 (approximately 75%) resulted in the need to perform emergency heart surgery.

Be aware that the safety and effectiveness of the LARIAT Suture Delivery Device to close the LAA and prevent stroke in patients with atrial fibrillation has not been established.

Changing Lives MILLCRES

July 13, 2015


Oklahoma Heart Institute all new. *all beart*.


Oklahoma Heart Institute all new. all heart.

Endocardial Plug Concept: Exclude the LAA from central circulation

Changing Lives

PROTECT AF Study Overview

Study Design & Objective	Prospective, randomized (2:1), non-inferiority trial of LAA closure vs. warfarin in non-valvular AF patients for prevention of stroke
Primary Endpoint	<u>Efficacy</u> : Composite end point of stroke, cardiovascular death or systemic embolization <u>Safety</u> : Major bleeding, device embolization or pericardial effusion
Statistical Plan	All analyses by intention-to-treat Bayesian (stratified for CHADS ₂ score) : Primary Efficacy and Safety endpoints Cox Proportional: All Secondary Analyses
Patient Population	n = 707 Mean CHADS ₂ = 2.2, CHA ₂ DS ₂ -VASc = 3.5
Key Inclusion Criteria	Paroxysmal / Persistent / Permanent AF CHADS ≥ 1 (93% had a CHA ₂ DS ₂ -VASc Score ≥2) Eligible for long-term warfarin therapy
Mean Follow-Up	2,717 patient-years, 48 months
Number of Sites	59 in the United States and Europe Enrollment Feb 2005 – June 2008
Changing Lives @HILLGREST	Oklahoma Heart Institute all new. all heart.

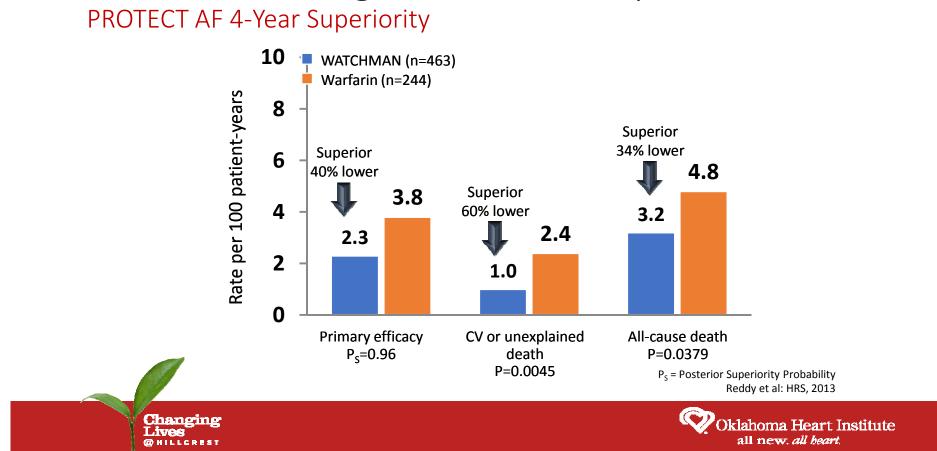
PROTECT AF 4-Year Results

	Device group rate	Control group rate	Hazard ratio WATCHMAN/ warfarin (95% CI)	Ρ
Primary efficacy	2.3	3.8	0.61 (0.38, 0.97)	0.0348
CV death	1.0	2.4	0.40 (0.21, 0.75)	0.0045
All stroke	1.5	2.2	0.70 (0.39, 1.26)	0.2244
Hemorrhagic stroke	0.2	1.1	0.16 (0.04, 0.51)	0.0049
Ischemic stroke	1.4	1.1	1.30 (0.64, 2.84)	0.4921
Disabling stroke	0.5	1.2	0.37 (0.15, 1.00)	
All-cause mortality	3.2	4.8	0.66 (0.45, 0.98)	0.0379
Primary safety	3.6	3.1	1.21 (0.78, 1.94)	0.4051

Device superior to Control: primary efficacy, CV death, hemorrhagic stroke and all-cause mortality

Reddy, VY et al. JAMA. 2014;312(19):1988-1998.

Oklahoma Heart Institute all new. all beart.

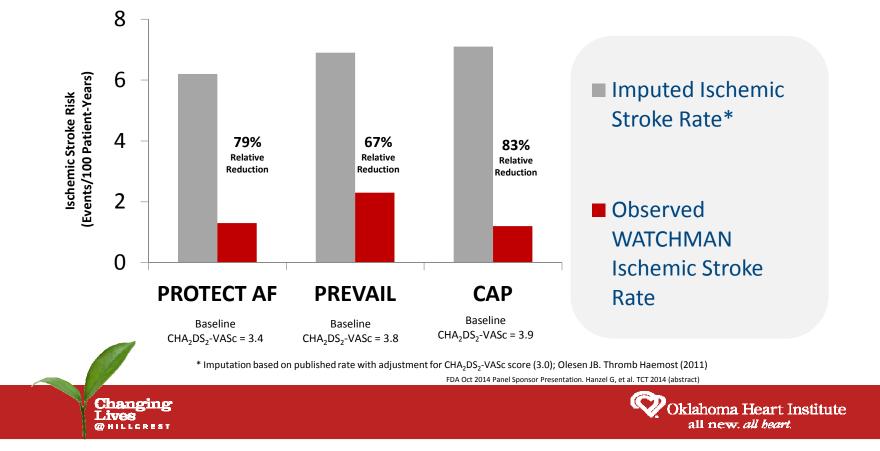

PROTECT AF 4-Year Results

	Device group rate	Control group rate	Hazard ratio WATCHMAN/ warfarin (95% C	
Primary efficacy	2.3	3.8		
CV death	1.0	2.4	Apixaban	Warfarin
All stroke	1.5	2.2		
Hemorrhagic stroke	0.2	1.1	0.24	0.47 P=<.001
Ischemic stroke	1.4	1.1	0.97	1.05 P=.42
Disabling stroke	0.5	1.2		
All-cause mortality	3.2	4.8	Aristotle, NE	JM 2011

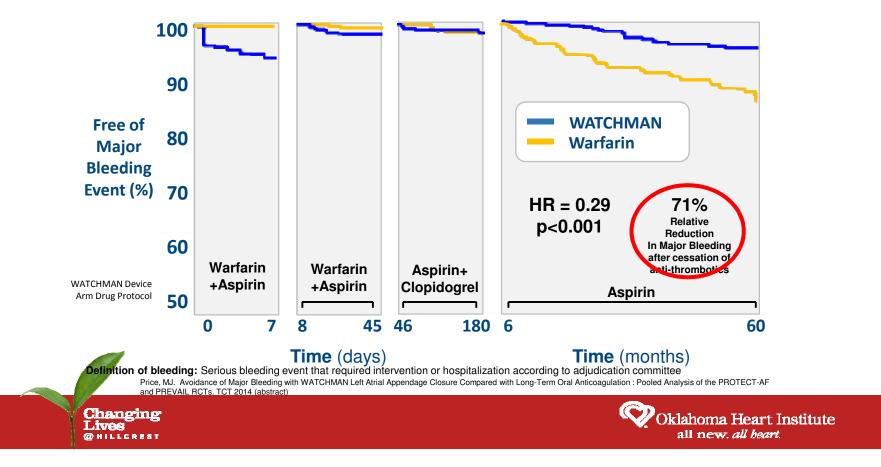
Benefit of NOACs is reduction of CNS bleed. Apixaban cuts CNS bleed in half c/w warfarin. LAA closure reduces CNS bleed 5-fold.

Changing Lives @HILLCREST

Woklahoma Heart Institute all new. all beart.



Watchman Long-Term Follow up PROTECT AF 4-Year Superiority


Meta-Analysis Shows Comparable Primary Efficacy Results to Warfarin

			HR	p-value
Efficacy	H		0.79	0.22
All stroke or SE	-		1.02	0.94
Ischemic stroke or SE			1.95	0.05
Hemorrhagic stroke	·		0.22	0.004
Ischemic stroke or SE	>7 days		1.56	0.21
CV/unexplained death	·	•	0.48	0.006
All-cause death		H	0.73	0.07
Major bleed, all		- -	1.00	0.98
Major bleeding, non proced	ure-related		0.51	0.002
	Favors WATCHMAN 🗲	→ Favors wa	rfarin	
0.01	0.1 Hazard Ratio (95%)	cı) ¹	10	
Changing Lives @HILLCREST	Source: Holmes DR, et al. Holmes, DR et al. J/ Press. Combined data set of all PROTECT AF an WATCHMAN patients versus chronic warfarin p	d PREVAIL		lahoma Hear all new. <i>all be</i>

LAA Occlusion with WATCHMAN[™] Reduces Ischemic Stroke Over No Therapy

PROTECT AF/PREVAIL Pooled Analysis: Less Bleeding with WATCHMANTM Device

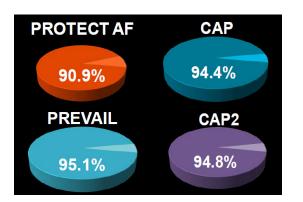
Eliminating blood flow in the LAA will reduce the risk of stroke without the inherent risks of anticoagulation

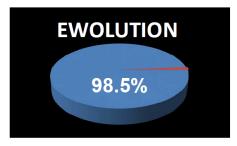
2 questions remain:

- •Can you guys in the real world have similar results?
- •OK, lets talk \$\$\$

Oklahoma Heart Institute all new. all beart.

What is Happening in the "Real World"? **EWOLUTION** Registry

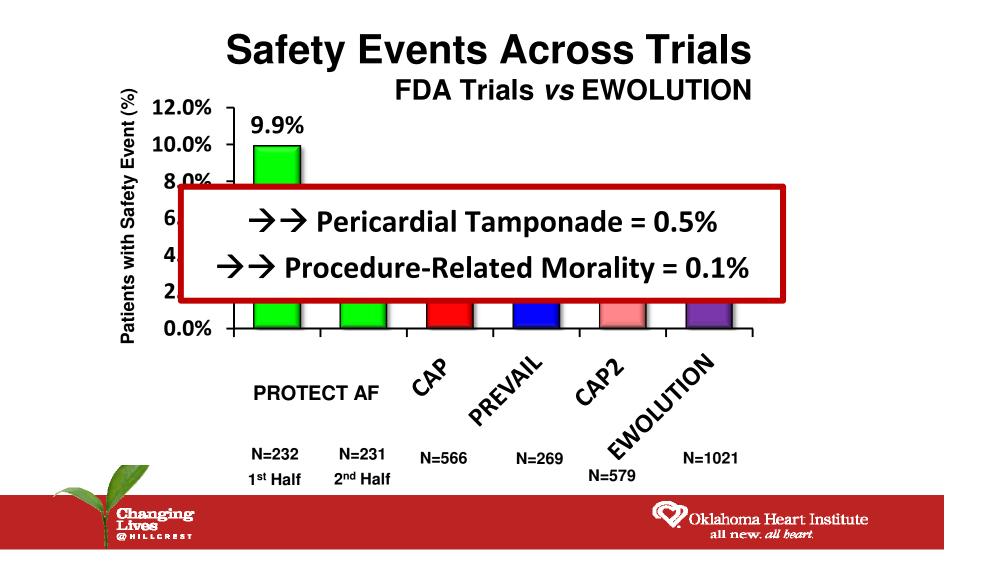

- Prospective, Multicenter (n=47), • Non-randomized Registry
- Enrollment •
 - **Consecutive Watchman Patients**
 - 47 sites: Europe, Russia, Middle East
 - From October 2013 May 2015 _
 - **Total Enrollment = 1021 pts** _
- Follow-Up: ٠
 - Normally 1-3 months postimplant
 - Annually for at least 2 years


Changing Lives

@ HILLCREST

Post-Implant OACs: Per Physician _ preference

What is implant success in the "real world"?



Comparison of proportions between all studies: p=<0.001

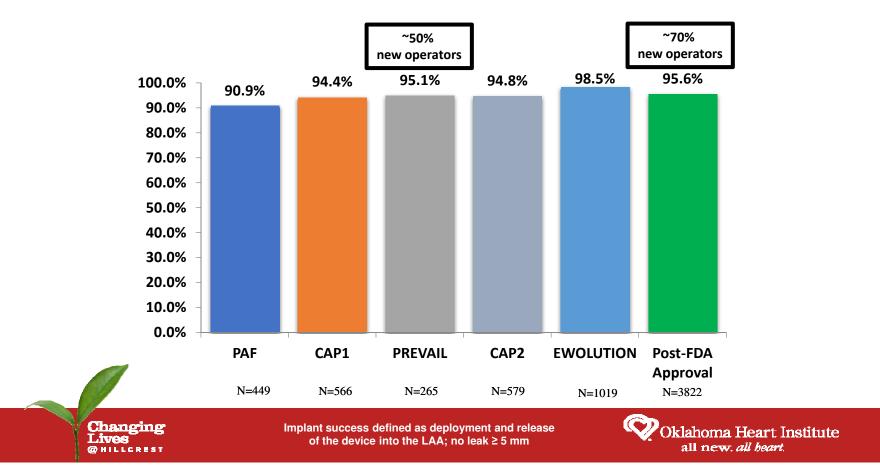
L.Boersma et al, AHA LBCT - Orlando (2015)

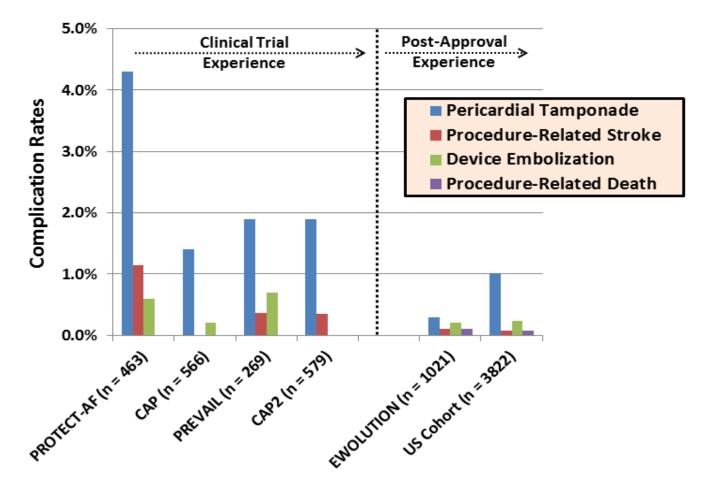
Oklahoma Heart Institute all new. all beart.

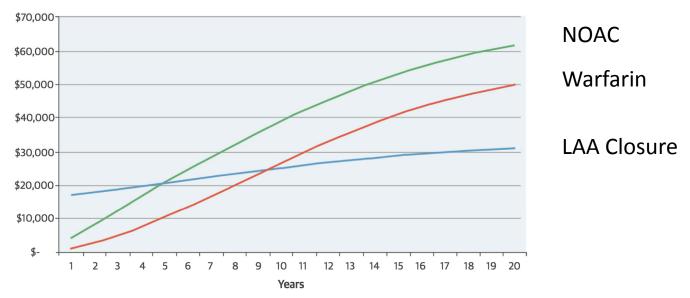
Post-Approval U.S. Experience With Left Atrial Appendage Closure for Stroke Prevention in Atrial Fibrillation

Vivek Y. Reddy, MD,^a Douglas N. Gibson, MD,^b Saibal Kar, MD,^c William O'Neill, MD,^d Shephal K. Doshi, MD,^e Rodney P. Horton, MD,^f Maurice Buchbinder, MD,^g Nicole T. Gordon, BSEE,^h David R. Holmes, MDⁱ

ABSTRACT

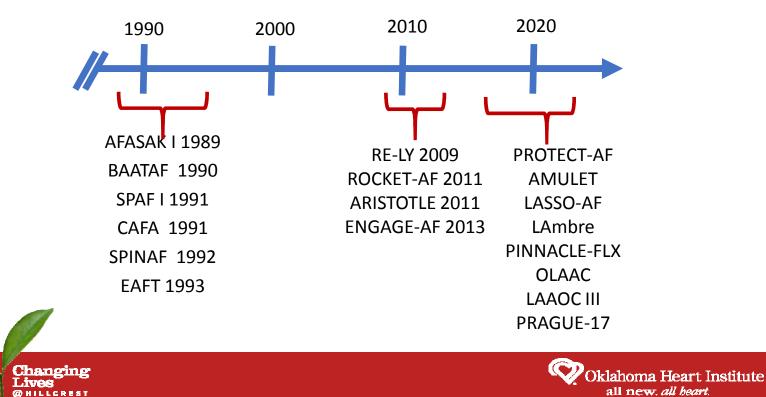

BACKGROUND Left atrial appendage closure (LAAC) was approved by the U.S. Food and Drug Administration (FDA) as a stroke prevention alternative to warfarin for patients with nonvalvular atrial fibrillation. However, clinical decisionmaking is confounded by the fact that although LAAC attenuates the anticoagulant-related lifetime risk of bleeding, implantation is associated with upfront complications. Thus, enthusiasm for LAAC as a treatment option has been appropriately tempered, particularly as the therapy is introduced beyond the clinical trial sites into general clinical practice.


Reddy VY et al J Am Coll Cardiol 2017;69:253-61

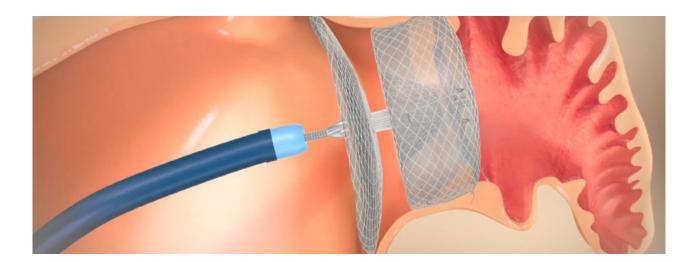

Procedural Success

Comparison of Procedural Parameters Across Watchman Studies

Cumulative Cost and Time to Cost-Effectiveness Following Treatment Initiation: Warfarin Versus NOACs Versus LAAC

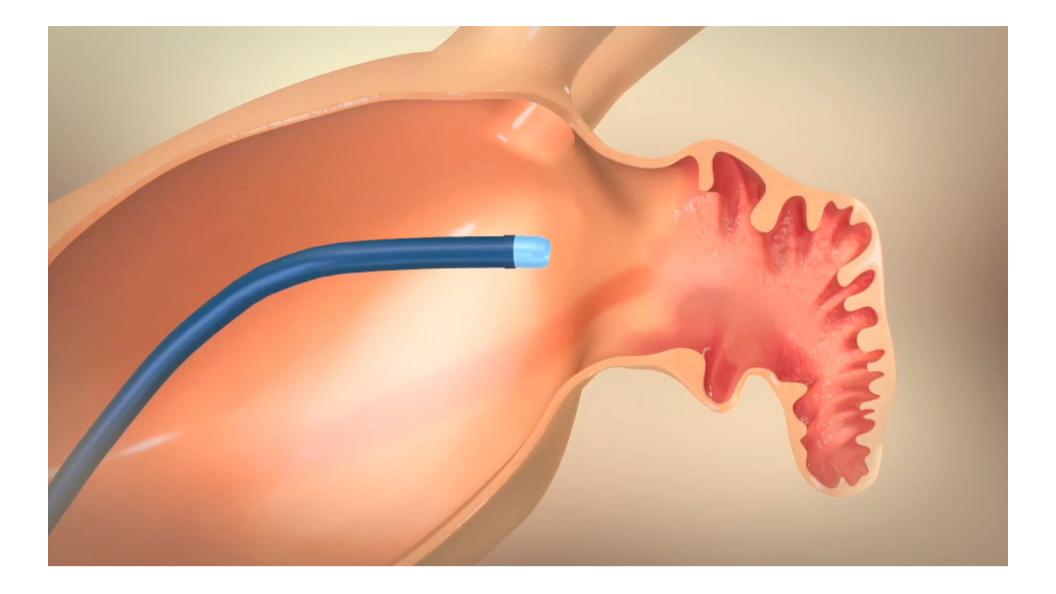

	Time to Clinical Effectiveness (Incremental QALYs)	Time to Cost-Effectiveness (Cost per QALY)	Time to Dominance (More Effective, Less Costly)
LAAC vs. warfarin	Year 3 (0.015)	Year 7 (\$42,994/QALY)	Year 10
NOACs vs. warfarin	Year 1 (0.008)	Year 16 (\$48,446/QALY)	N/A
LAAC vs. NOACs	Year 5 (0.007)	Year 5 (Dominant)	Year 5

Changing Lives

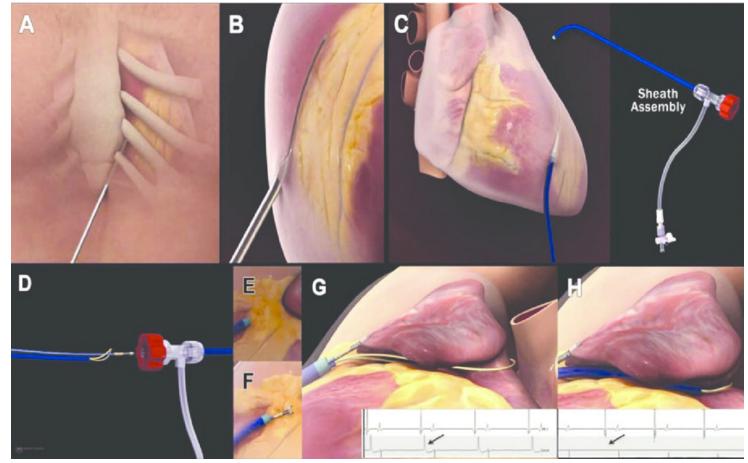

Reddy, V.Y. et al. J Am Coll Cardiol. 2015; 66(24):2728–39.

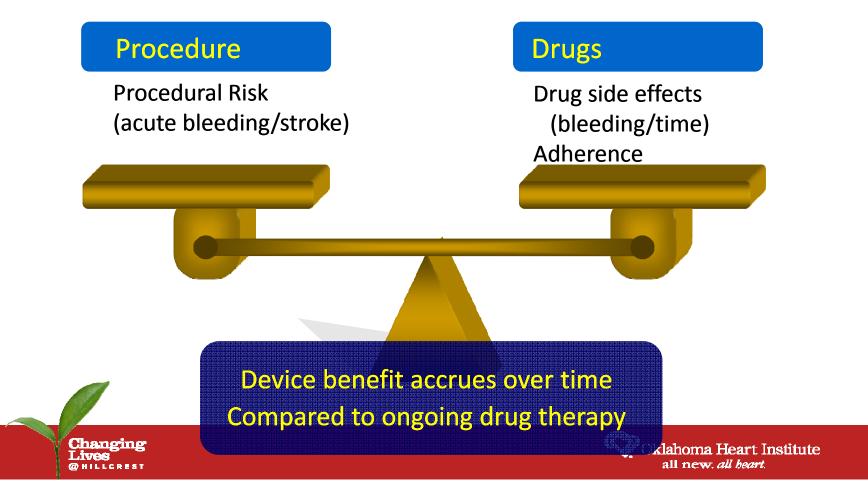
Oklahoma Heart Institute all new. all beart.

AF Timeline



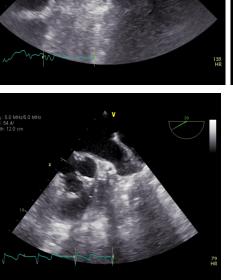
Amulet



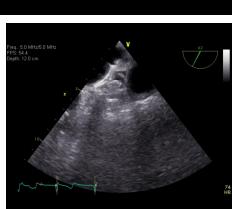


Completely Epicardial

LAA Closure vs. Anticoagulation

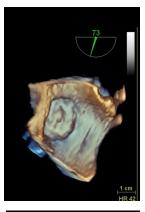

Watchman Indication

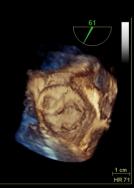
- High risk of stroke
 - $CHADS_2 \ge 2$
 - $CHA_2DS_2VASc \ge 3$
- Suitability for short-term warfarin but deemed unable to take long term oral anticoagulation
- A formal shared decision making interaction with an independent non-interventional physician using an evidence-based decision tool on oral anticoagulation



Mr. M

Mrs. M




Pre

Post

3D-TEE

Conclusions

- The LAA appendage is the source of 90% stroke in NVAF
- Warfarin and NOACS significantly reduce risk of stroke, but increase risk of bleeds
- LAA closure reduces the risk of stroke WITHOUT increasing risk of bleed

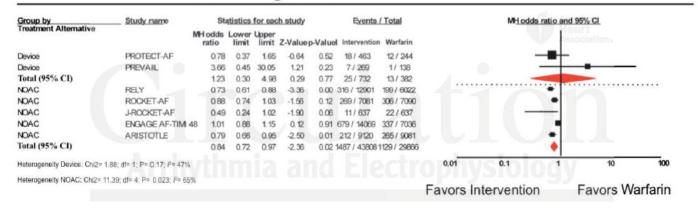
Device Options for Stroke Prevention in Atrial Fibrillation

David A. Sandler, MD, FACC, FHRS Director, Heart Rhythm Service Oklahoma Heart Institute

Oklahoma Heart Institute all new. all beart.

- PRAGUE-17
- LAAOS III

Oklahoma Heart Institute all new. all beart.


Stroke or Systemic Embolism in the Elderly

up by Study name		S	tatistics	for eac	h study	Event	s / Total		MH odds n	atio and 9	5% CI	
ment Alternative		MH odds ratio	Lower	Upper limit	Z-Value	P-Value Intervent	ion Warfarin			1		
Device	PROTECT-AF	0.56	0.31	1.01	-1.91	0.06 25/228	25/138		-	H		
Device	PREVAIL	1.64	0.62	4.33	1.01	0.31 17/160	6/89				-	
Total (95% C	3)	0.89	0.31	2.56	-0.21	0.83 42/388	31/227					
NOAC	RELY	0.75	0.58	0.96	-2.24	0.03 156 / 4828	101/2360			÷		
NOAC	ROCKET-AF	0.80	0.63	1.02	-1.77	0.08 125/ 3082	154 / 3082			•		
NOAC	ARISTOTLE	0.72	0.54	0.97	-2.19	0.03 79/2743	109 / 2752			•		
NOAC	ENGAGE AF-TIM 4	8 0.79	0.65	0.96	-2.33	0.02 184 / 5627	230/5610			-		
Total (95% C	ŋ	0.77	0.68	0.87	-4.24	0.00 544 / 1628	0594 / 13804			•		
Heterogene	ity Device: Chi2= 3.4	47; df= 1;	P= 0.06	s; P= 72	%			0.01	0.1	1	10	1
Heterogene	ity NOAC: Chi2= 0.4	15; df= 3;	P= 0.93	; <i>P</i> =0				Favors Inter	vention		Favors W	/arfar

Briceno et al Circ EP; DOI: 10.11 Reversion All news. all news. all news. all news.

Stroke or Systemic Embolism

Briceno et al Circ EP; DOI: 10.116 Roklahome. Heart Institute all new. all beart.

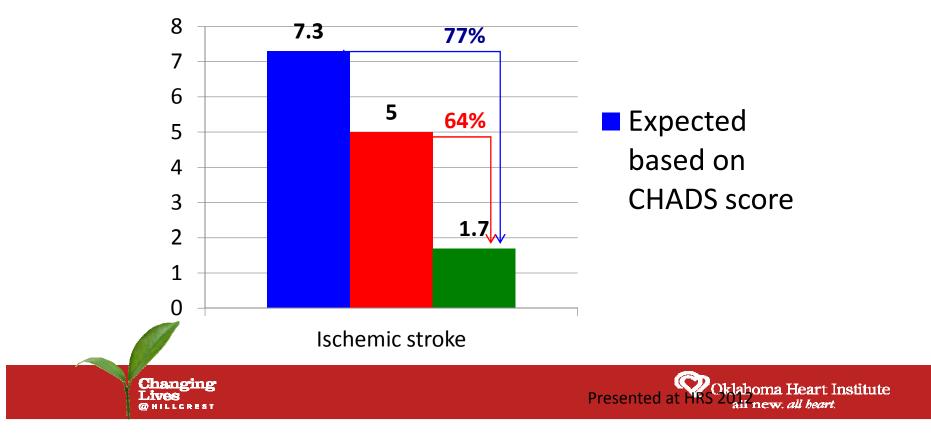
Mortality

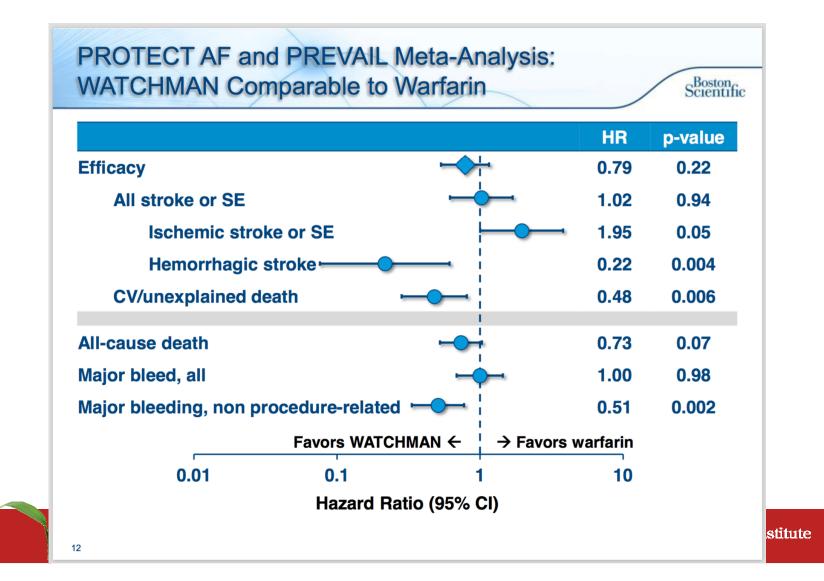
	Study name	dy name Statistics for each study			th study	Events / Total			MH odds ratio and 95% Cl				
	Hodds	Lower			-Value	Intervention	Warfarin						
Device	PROTECT-AF	0.60	0.31	1.14	-1.56	0.12	21/463	18/244					
Device	PREVAIL	1.20	0.31	4.72	0.26	0.79	7/269	3/138			-+-		
Total (95% CI)		0.68	0.38	1.22	-1.29	0.20	28/732	21/382			-		
NOAC	RELY	0.90	0.80	1.01	-1.86	0.06	884 / 12091	487 / 6022					
NOAC	ROCKET-AF	0.83	0.69	1.00	-1.96	0.05	208 / 7061	250 / 7082			-		
NOAC	J-ROCKET-AF	1.40	0.44	4.45	0.58	0.56	7/637	5/637				_	
NOAC	ENGAGE AF-TIM 48	0.89	0.81	0.97	-2.59	0.011	510 / 14069	839 / 7036					
NOAC	ARISTOTLE	0.89	0.79	1.00	-2.00	0.05	603 / 9120	669 / 9081			- A.		
Total (95% CI)		0.89	0.84	0.94	-4.15	0.003	212 / 42978	2250 / 29858					
Heterogeneity Device: C	hi2= 0.82; df= 1; P= 0.36	6; <i>P</i> = 0							0.01	0.1	01	10	100
Heterogeneity NOAC: CI	hi2= 1.14; df= 4; P= 0.89	9; <i>P</i> = 0											
									Favors	Intervent	tion	Favors Wa	arfarin

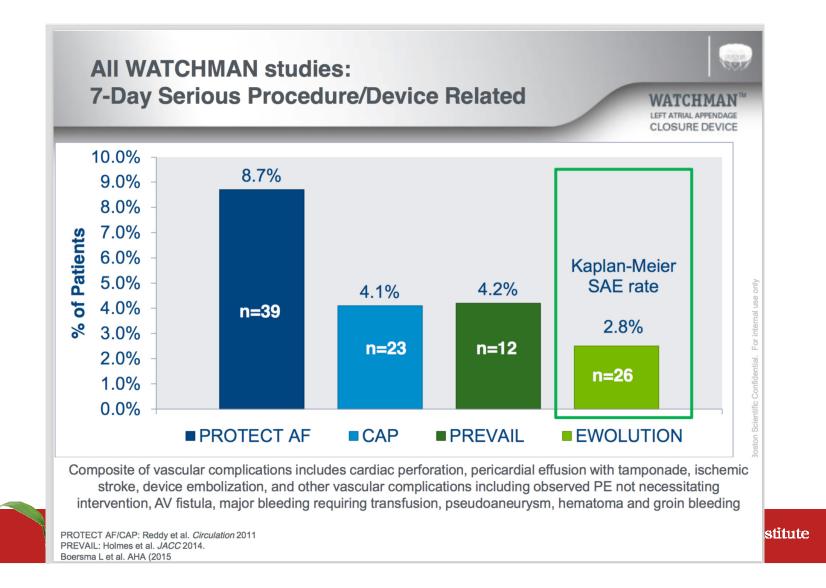
Briceno et al Circ EP; DOI: 10.116 ROKIAhome. Heart Institute all new. all beart.

Watchman

- 150 AF patients contraindicated for long-term warfarin therapy were included in the ASAP Registry
 - Average CHADS₂ = 2.8
 - Average CHA₂DS₂VASc score = 4.4
 - Mean age 72.5
 - Mean patient follow-up was 14.4 months






Most Studied LAAC Device

	PROTECT AF	CAP Registry	PREVAIL	CAP2 Registry	Totals
Enrollment	2005-2008	2008-2010	2010-2012	2012-2014	\frown
Enrolled	800	566	461	579	2406
Randomized	707		407		1114
WATCHMAN: warfarin (2:1)	463 : 244	566	269 :138	579	1877: 382
Mean Follow- up (years)	4.0	3.7	2.2	0.58	N/A
Patient-years	2717	2022	860	332	5931
Changing Changing Lives @ HILLCREST	ion.				lahoma Hea all new. <i>all b</i>

ASAP Registry

Conclusion – last slide

Oklahoma Heart Institute all new. all beart.

The NOACs

Medication	Trial	FDA Approval
Dabigatran (Pradaxa)	RE-LY	October 19, 2010
Rivaroxaban (Xarelto)	ROCKET-AF	November 4, 2011
Apixaban (Eliquis)	ARISTOTLE AVERROES	December 28, 2012
Edoxaban (Savaysa)	ENGAGE-AF-TIMI 48	January 8, 2015

Changing Lives @HILLCREST

NOACs: Clinical Challenges

- No validated tests of anticoagulation intensity
- No established therapeutic range
- No confirmation of adherence
- One antidote available, others on the way.
- No long-term safety data
- Requirement for CrCL monitoring
- Limited cardioversion/ablation experience
- Uncertain bridging/discontinuation information
- Complex pharmacology
- No head-to-head trials

Changing Lives @HILLCREST

Oklahoma Heart Institute all new. all beart.

HAS-BLED Score

		Clinical Characteristic	Score	
	Н	Hypertension	1	
	А	Abnormal renal or liver function (1 each)	1 or 2	
	S	Stroke	1	
	В	Bleeding	1	
	L	Labile INR	1	
	E	Elderly age	1	
	D	Drugs or alcohol (1 each)	1 or 2	
		Maximum Score	9	
	creatinine ≥ 20 normal (ULN) ir Labile INRs: uns	GBP > 160 mmHg; Abnormal renal function: Chronic dialysis, ro Dμmol/L; Abnormal liver function: Chronic hepatitis, bilirubin n association with AST/ALT/ALP > 3 x ULN; Bleeding: Previous stable/high INRs, in therapeutic range < 60%; Age > 65 years;	> 2x upper limit of history, predisposition; Drugs/alcohol:	
ŗi	Concomitant us	se of antiplatelet agents, non-steroidal anti-inflammatory drug		He
R	EST	Pisters R, et al. <i>Chest</i> , 2010;138:1093-100	all new	. all

eart Institute 1 beart

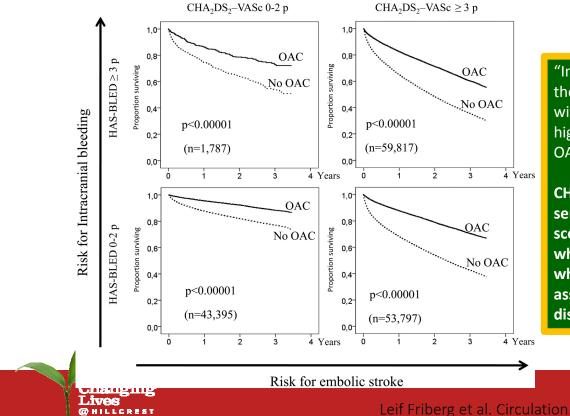
Chang Lives


HAS-BLED Bleeding Risk Classifications

	Score	Bleeding Risk Classification (% bleeds per 100 patient-years)
	0-1	Low Risk (1.1%)
	2	Intermediate Risk (1.9%)
	<u>></u> 3	High Risk (4.9%)
1 1	hanging Lives HILLCREST	Pisters R, et al. Chest, 2010;138:1093-100

The Dilemma

HAS-BLED


CHA₂DS₂VASc

Changing Lives @HILLCREST

Net Clinical Benefit of Warfarin in AF

"In almost all patients with AF, the risk of ischemic stroke without OAC treatment is far higher than the risk of ICH with OAC."

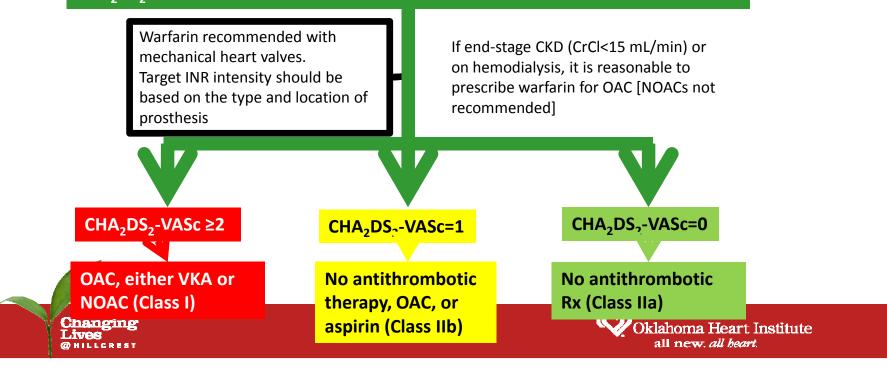
CHA₂DS₂-VASc score was more sensitive than the CHADS₂ score in identifying patients who were 'truly low risk' in whom anticoagulation may be associated with a net disadvantage

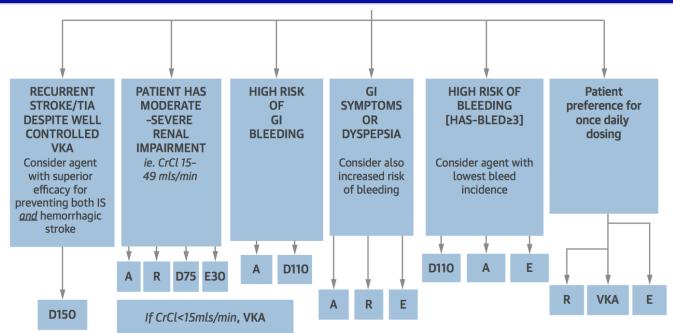
Leif Friberg et al. Circulation. 2012;125:2298126evv. all beart.

Use of the CHA₂DS₂-VASc and HAS-BLED Scores to Aid Decision Making for Thromboprophylaxis in Nonvalvular Atrial Fibrillation

Deirdre A. Lane, PhD; Gregory Y.H. Lip, MD

"HAS-BLED should not be used as an excuse not to prescribe anticoagulation, but rather to highlight those patients in whom caution with such treatment and regular review is warranted"


- Circulation 2012;126:860



2014 AHA/ACC/HRS Guideline for the Management of Patients With Atrial Fibrillation January CT et al. *Circulation 2014; 130: e199-e267*

Antithrombotic therapy based on shared decision-making, discussion of risks of stroke and bleeding, and patient's preferences CHA₂DS₂-VASc score recommended to assess stroke risk

Choose the OAC considering the patient profile and/or preferences

A = apixaban

D = dabigatran

E = edoxaban

- R = rivaroxaban
- VKA = vitamain K antagonist

Lip GYH and Lane DA JACC 2015;66(21):2282-4

Thank You

Oklahoma Heart Institute all new. all beart.

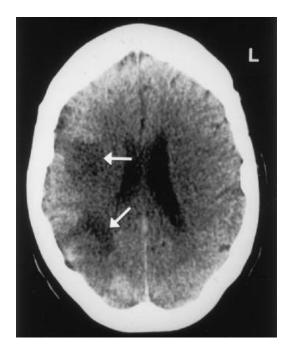
Low use of AC References

1Hsu J, Maddox T, Kennedy T, et al. Oral anticoagulant therapy prescription in patients with atrial fibrillation across the spectrum of stroke risk. Insights from the NCDR RINNACLE registry. JAMA Cardiol2016;

DOI:10.1001/jamacardio.2015.0374. Articl

е

2Piccini Sr J, Fonarow G. Preventing stroke in patients with atrial fibrillation-a steep climb away from achieving peak performance. JAMA Cardiol 2016; DOI:10.1001/jamacardio.2015.0374. Edito rial


Changing Lives @ HILLCREST

Oklahoma Heart Institute all new. all beart

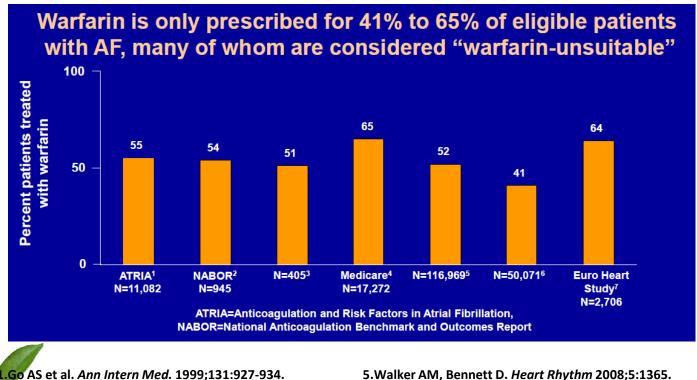
Atrial Fibrillation and Stroke

- Atrial fibrillation is responsible for 1/5 strokes
- In the US between 75,000 and 95,000 strokes per year are caused by atrial fibrillation

Charten 2001 Lives @HILLCREST

- From 6252 citations, they used 12 published studies (10 randomized controlled trials [RCTs] or pooled RCTs and two prospective observational cohort studies) with almost 100,000 patients for their analysis.
- The pooled unadjusted estimate for the risk of thromboembolism in NPAF patients was 2.2% annually (95% CI 1.81%–2.53%) vs 1.5% annually (95% CI 1.23%–1.76%) in PAF patients. This translated to a 36% higher risk of thromboembolism in NPAF relative to PAF (HR 1.36, 95% CI 1.17–1.57; P<0.001), a difference that persisted in an analysis adjusted for other variables.
- The authors found similar relationships with all-cause mortality. Using six of the 12 studies (45,570 patients) that reported mortality, the pooled unadjusted estimate for mortality rate in NPAF was 3.9% per year (95% CI 3.04%–4.74%) vs 2.8% per year (95% CI 2.11%–3.47%). This led to a 46% higher mortality rate for NPAF relative to PAF. After adjustment for risk factors, the mortality risk in NPAF was 22% higher relative to PAF (HR 1.22, 95% CI 1.09–1.37; P<0.001).
- Bleeding rates did not differ between NPAF and PAF patients.
- In secondary analyses, the authors explored the effect of oral anticoagulant (OAC) treatment in the two types of AF. In three studies that did not include patients on OAC, the relative risk of thromboembolism in NPAF vs PAF was 1.69 (95% CI 1.15–2.48, P=0.007). In five studies where all patients received OAC (either warfarin or a new OAC), the unadjusted RR of stroke or systemic embolism in NPAF vs PAF was 1.27 (95% CI 1.15–1.41, P <0.001).

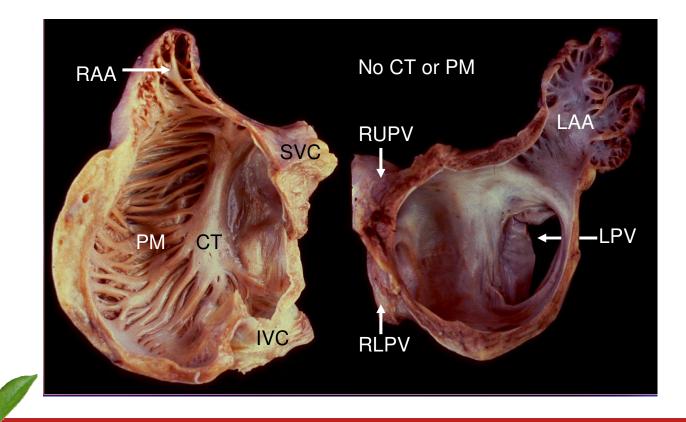
Ganesan AN, Chew DP, Hartshorne T, et al. The impact of atrial fibrillation type on the risk of thromboembolism, mortality,


and bleeding: A systematic review and meta alysis. Eur Heart J 2016; DOI:10.1093/eurheartj/ehw007. Abstance. all beart.

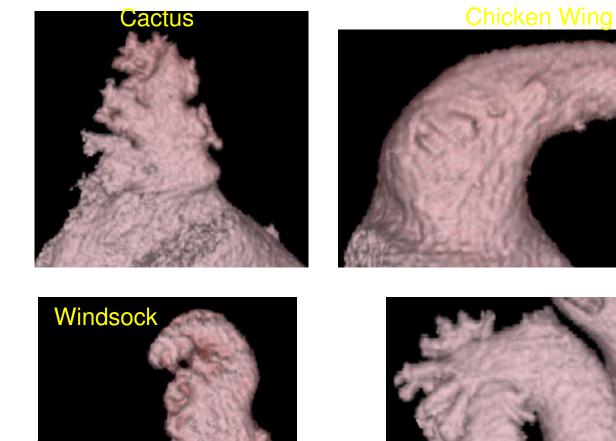
Patient Risk Factors Across Trials

Characteristic	PROTECT AF N=707	CAP N=566	PREVAIL N=407	CAP2 N=579	p-value
CHADS ₂ Score	2.2 ± 1.2	2.5 ± 1.2	2.6 ± 1.0	2.7 ± 1.1	<0.0001
CHADS ₂ Risk Factors	(% of Patients)			
CHF	26.9	23.3	19.1	27.1	0.004
Hypertension	89.8	91.4	88.8	92.5	0.15
Age ≥ 75	43.1	53.6	51.8	59.7	<0.001
Diabetes	26.2	32.4	24.9	33.7	0.001
Stroke/TIA	18.5	27.8	30.4	29.0	<0.0001
CHA ₂ DS ₂ -VASc	3.5 ± 1.6	3.9 ± 1.5	4.0 ± 1.2	4.5 ± 1.3	<0.0001
Oct 2014 Panel Sponsor Presentation.				Q	Oklahoma H

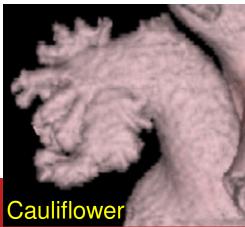
Changing Lives @HILLCREST Cklahoma Heart Institute all new. all beart.


Eligible AF Patients Receiving Warfarin Therapy

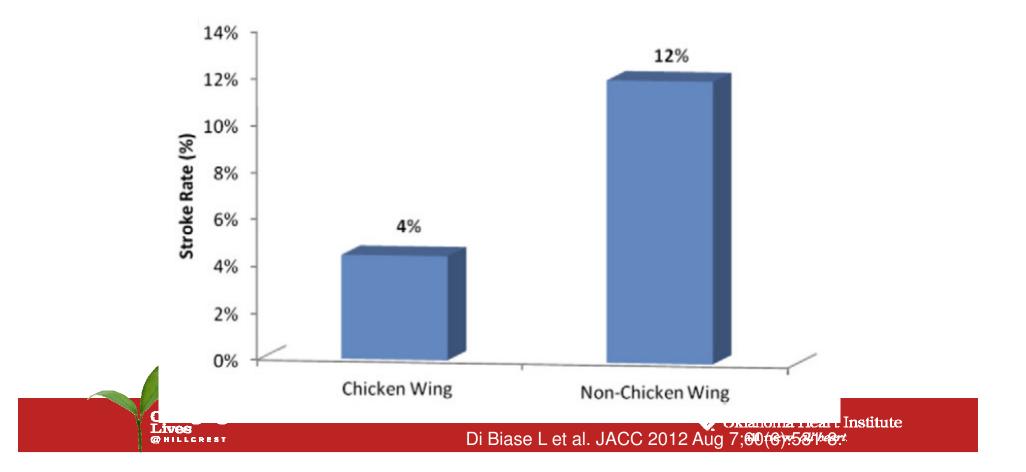
1.Go AS et al. Ann Intern Med. 1999;131:927-934. 2.Waldo AL et al. J Am Coll Cardiol. 2005;46:1729. 3.Hole Edge al. Stroke. 2006;37:1075-1080. 1.Hole Edge al. Stroke. 2006;37:1070-1074.

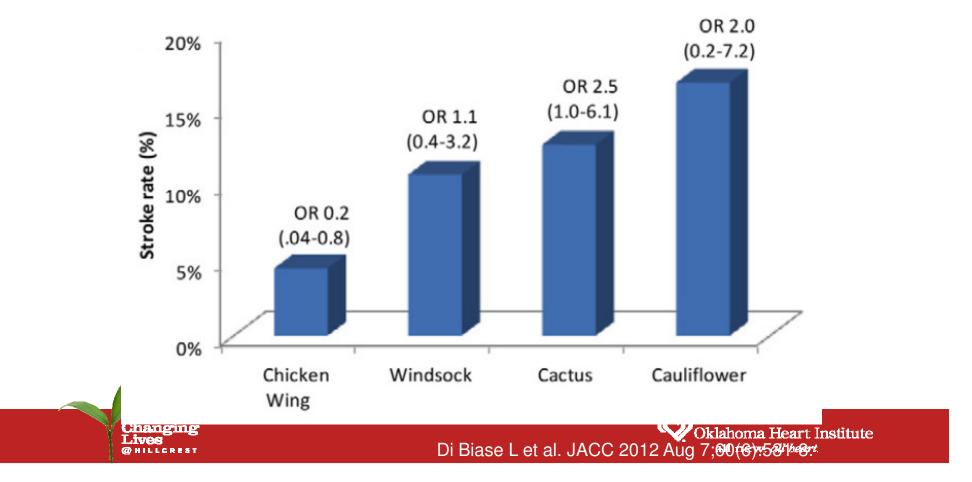

6.Williams CJ et al. American College of Cardiology 58th Annual Scientific Session; March 29-312-3000ma Heart Institute 7.Nieuwlaat R et al. *Eur Heart J.* 2006;27:3018-30262 *heart*.

Right Atrium Left Atrium



Changing Lives @HILLCREST



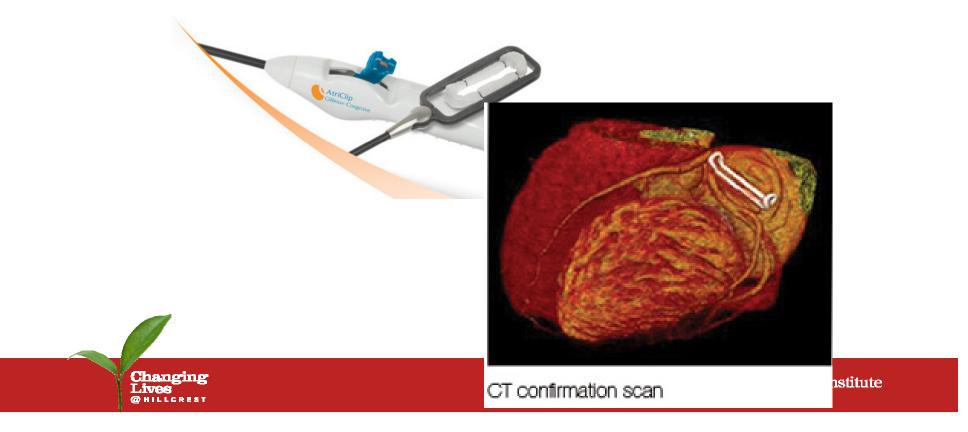


Di Biase L et al. homa Heart Institute inew *all heart* 7:60(6):531-8.

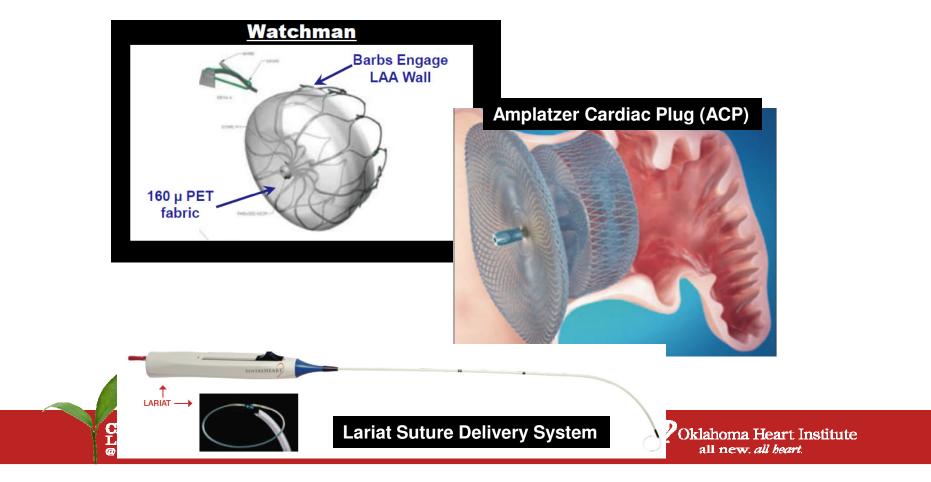
LAA Morphology and Risk of Stroke

LAA Morphology and Risk of Stroke

Importance of Left Atrial Appendage

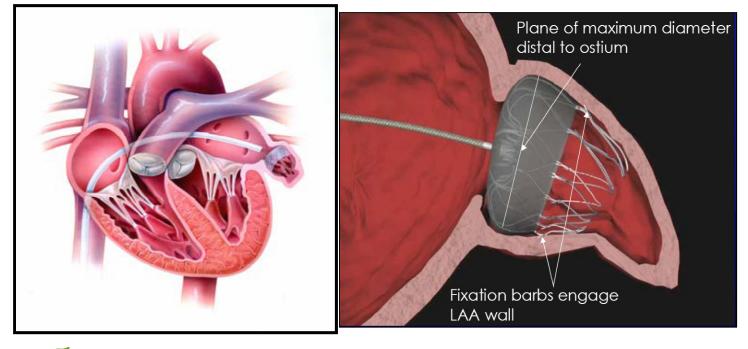


Blackshear, Odel. Ann Thorac Surg. 1999 Blackshear, Odel. Ann Thorac Surg. 1999 Blackshear


Minimally Invasive Surgical LAA Exclusion

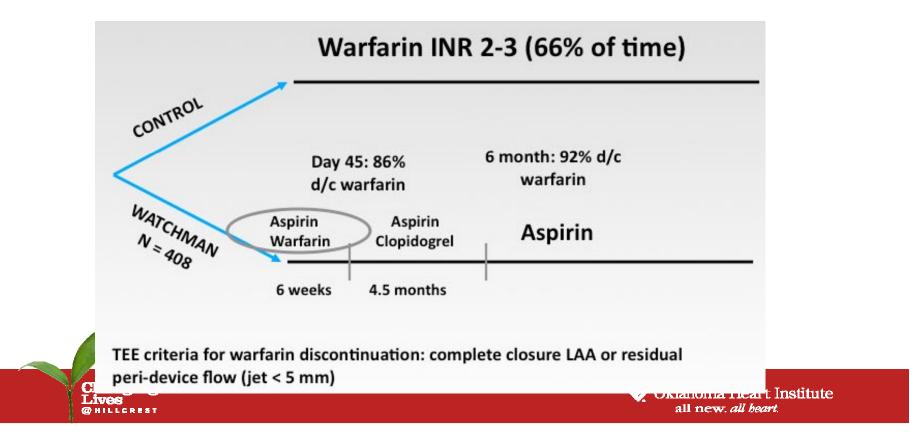
AtriCure Gets FDA OK for its AtriClip Device

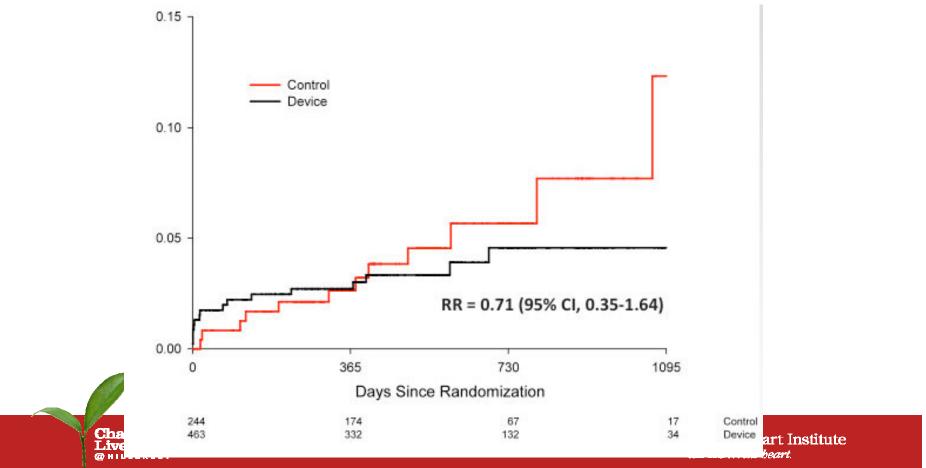
E Filed under: Cardiac Surgery , Cardiology , Surgery

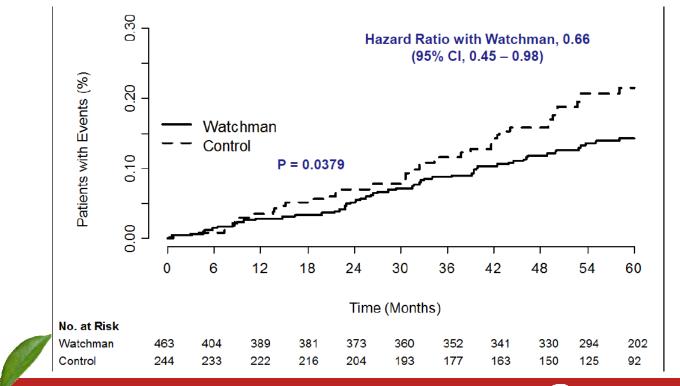


Percutaneous LAA Exclusion

Watchman Device


Endocardial Left Atrial Appendage Exclusion




PROTECT-AF: Methods

PROTECT-AF: All Stroke

Longterm Results of PROTECT-AF All-Cause Mortality

Changing Lives VY Reddy et al. Late-Brea Glinical Trials Heart Rhythm Society Scientific Sessional 201/3

Longterm Results of PROTECT-AF Conclusions

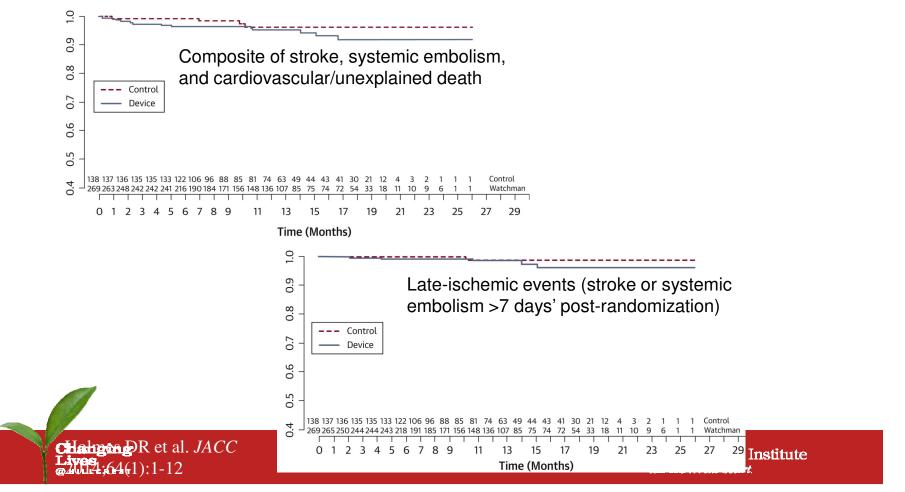
- The LAA is critical to the pathogenesis of stroke
- "Local" therapy with Watchman is superior to Warfarin
 - 40% reduction of stroke / systemic embolism / CV death
 - 60% reduction in Cardiovascular Mortality
 - 34% reduction in All-Cause Mortality
- Safety event rate similar, but bimodal distribution
- Event rate diminishes with operator experience
 - 2.2% (CAP Registry)
 - 1.9% (PREVAIL: 40% New Operators)

VY Reddy et al. Late-Breat Continion Aria Sart Institute Heart Rhythm Society Scientific Session #2043

Rationale for PREVAIL

- Concerns with early PROTECT AF safety results
 - High initial rate of pericardial effusions and procedure related strokes
 - Some WATCHMAN patients did not receive their assigned treatment (i.e., implant failures)
 - Safety outcome of procedures performed by new operators
- CAP study demonstrated improved outcomes with operator experience
- Second randomized trial to confirm late PROTECT AF and CAP safety results (PREVAIL)

Changing Lives @HILLGREAT


PREVAIL Trial

- 407 patients randomized (2:1) to either LAA closure or warfarin therapy
 - 25% treated by new operators
- Preliminary results:
 - 95.1% implant success
 - Achieved safety endpoints
 - 4.4% vascular complication rate
 - Watchman achieved two of three primary efficacy endpoints despite over-performing control (Warfarin) group.

Await Watchman Approval

<section-header>

This is an investigational device. An FDA advisory panel recommended approval on 4/24/09. In March 2010, the FDA requested that a confirmatory study be conducted to further substantiate the safety and efficacy of this device.

Await Watchman Approval

"In 2010 <u>the FDA issued a complete response letter</u> following the first advisory panel. Last year a scandal broke out when <u>the</u> <u>American College of Cardiology cancelled a prestigious latebreaking clinical trial presentation of the PREVAIL trial after the</u> company broke an embargo by giving trial results to investors. Last December the FDA's Circulatory System Devices Panel <u>voted</u> <u>13-1 in favor of the device</u>, but as I reported at the time the lopsided vote did not provide a full indication of lingering concerns about the device by panel members. In particular, panel members repeatedly expressed concern about the potential for overuse of the device. They also had trouble interpreting the major clinical trials with the device.A date has not yet set a date for the third panel. The company now anticipates approval of Watchman in the first half of 2015."

Changing Lives

Efficacy = Closed

# Pts	
Intent-to-Treat	
Acute Closure	
30d Closure	
90d Closure	
ONE Year	
Closure	
Access	
Requirement	
Chaoping fety & Efficacy Study, JACC 2012 Lives @ minGlober = < 1mm	Closure defined as "complete" would = O Oktahognan Hearn Institute

Safety

		Device Related	Other Complications	All	
	LARIAT ^I				
	Watchman ^{II}				
	vvalennan				
	Amplatzer ^{III}				
CL	II=123 henging iv s	PA Puncture 1 (0.9%)	¢	Oklahoma Hea	

Lariat Watchman

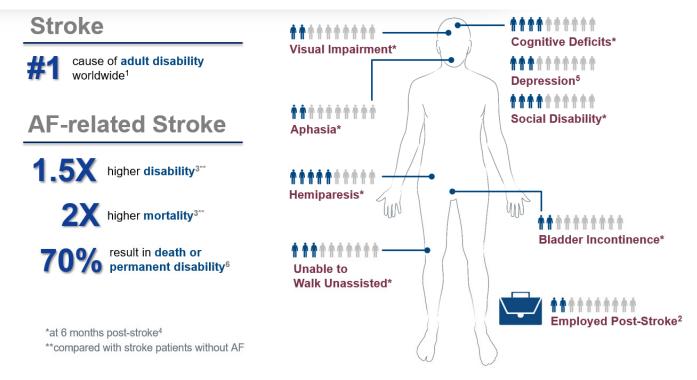
• No anticoagulation

• No prior cardiac surgery

• LAA anatomy restrictions

Lariat Candidates

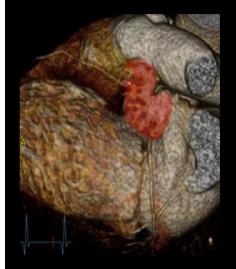
- AF Patients at risk for thromboembolic complications (CHADS₂ ≥ 1) who are unable to take chronic anticoagulation
 - No prior cardiac surgery
 - Anatomy appropriate for device (as determined by CT angiography)
 - Widest point of LAA < 4 cm
 - LAA not behind pulmonary artery
 - No thrombus within left atrial appendage at time of procedure



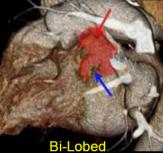
AF related strokes are debilitating

Changing

@ HILLCREST


Lives

¹Chee and Tan. Med J Malaysia 69.3 (2014): 119-23. ²Steedharan et al. Journ of the neurological sciences 332.1 (2013): 97-101. ³Lamassa et al. Stroke 32.2 (2001): 392-398. ⁴Kelly-Hayes et al. Journ of Stroke and Cerebrovascular Diseases 12.3 (2003): 119-126. ⁵Loo and Gan. International Journ of Stroke 7.2 (2012): 165-167. ⁶Holmes DR, Seminars in Neurology 2010;30:528–536.


Pre-Screening

Typical Compatible if <u><</u>40mm

Chicken Wing: Compatible if <u><</u>40mm

Wide Fan Shape

titute

Site of Thrombus in Atrial Fibrillation

Non-Rheumatic

Setting	No. of Patients	LA Appendage	LA Cavity	
TEE ^a	317	66	1	
TEE	233	34	1	
Autopsy	506	35	12	
TEE	52	2	2	
TEE	48	12	1	
TEE and Operation	171	8	3	
SPAF III TEE Study	359	19	1	
TEE	272	19	0	
TEE	60		0	
Total	1,288	201	21	
	90%			

Changing Lives @HILLCREST Blackshear JL and Odell JA. AnnThorac Surg 1996;61:755

