> Effective Mathematics Instruction: A Focus on Language and Multiple Representations

Sarah R. Powell, Ph.D.

Associate Professor
The University of Texas at Austin

www.sarahpowellphd.com
srpowell@utexas.edu
@sarahpowellphd

$x \mathrm{~A}+\cdots$

Share your Twitter handle!

MATH INTERVENTION

For students experiencing math difficulty

With a schoolidentified disability

Persistent math difficulty

Tier 2

Tier 3

Secondary

Targeted

Intensive

Special Education

1
Systematic Instruction: Provide systematic instruction during intervention to develop student understanding of mathematical ideas.

Show More

4 Number Lines: Use the number line to facilitate the learning of mathematical concepts and

STRONG EVIDENCE procedures, build understanding of grade-level material, and prepare students for advanced mathematics.

- Show More

More

2 Mathematical Language: Teach clear and concise mathematical language and support students' use of the language to help students effectively communicate their understanding of mathematical concepts.

- Show More

5 Word Problems: Provide deliberate instruction on word problems to deepen students' mathematical understanding and support their capacity to apply mathematical ideas.
-Show More

STRONG

 EVIDENCESTRONG EVIDENCE

Representations: Use a wellchosen set of concrete and semiconcrete representations to support students' learning of mathematical concepts and procedures.

- Show More

Instructional Platform

INSTRUCTIONAL DELIVERY

INSTRUCTIONAL STRATEGIES
Fluency building
Problem solving
instruction

Instructional Platform

INSTRUCTIONAL DELIVERY

Explicit instruction

INSTRUCTIONAL STRATEGIES

Explicit Instruction

MODELING
 Step-by-step explanation

PRACTICE

Guided practice
Planned examples Independent practice

SUPPORTS

Ask high-level and low-level questions
Eliciting frequent responses
Providing affirmative and corrective feedback

Instructional Platform

INSTRUCTIONAL DELIVERY

INSTRUCTIONAL STRATEGIES

$x A+H$

1. Some math terms are shared with English but have different meanings

right
degree
2. Some math terms are shared with English but have different meanings
3. Some math words are shared with English with similar meanings (but a more precise math meaning)

4. Some math terms are shared with English but have different meanings
5. Some math words are shared with English with similar meanings (but a more precise math meaning)
6. Some math terms are only used in math

7. Some math terms are shared with English but have different meanings
8. Some math words are shared with English with similar meanings (but a more precise math meaning)
9. Some math terms are only used in math
10. Some math terms have more than one meaning
\square

Rubenstein \& Thompson (2002)

1. Some math terms are shared with English but have different meanings
2. Some math words are shared with English with similar meanings (but a more precise math meaning)
3. Some math terms are only used in math
4. Some math terms have more than one meaning
5. Some math terms are similar to other content-area terms with different meanings
variable vs.
variably cloudy
6. Some math terms are shared with English but have different meanings
7. Some math words are shared with English with similar meanings (but a more precise math meaning)
8. Some math terms are only used in math
9. Some math terms have more than one meaning
10. Some math terms are similar to other content-area terms with different meanings
11. Some math terms are homographs

eight vs. ate

sum vs. some

1. Some math terms are shared with English but have different meanings
2. Some math words are shared with English with similar meanings (but a more precise math meaning)
3. Some math terms are only used in math
4. Some math terms have more than one meaning
5. Some math terms are similar to other content-area terms with different meanings
6. Some math terms are homographs
7. Some math terms are related but have distinct meanings
factor vs. multiple
hundreds vs. hundredths
```
numerators vS. denominator
```

1. Some math terms are shared with English but have different meanings
2. Some math words are shared with English with similar meanings (but a more precise math meaning)
3. Some math terms are only used in math
4. Some math terms have more than one meaning
5. Some math terms are similar to other content-area terms with different meanings
6. Some math terms are homographs
7. Some math terms are related but have distinct meanings
8. An English math term may translate into another language with different meanings

mesa vs.

tabla

1. Some math terms are shared with English but have different meanings
2. Some math words are shared with English with similar meanings (but a more precise math meaning)
3. Some math terms are only used in math
4. Some math terms have more than one meaning
5. Some math terms are similar to other content-area terms with different meanings
6. Some math terms are homographs
7. Some math terms are related but have distinct meanings
8. An English math term may translate into another language with different meanings
9. English spelling and usage may have irregularities
10. Some math terms are shared with English but have different meanings
11. Some math words are shared with English with similar meanings (but a more precise math meaning)
12. Some math terms are only used in math
13. Some math terms have more than one meaning
14. Some math terms are similar to other content-area terms with different meanings
15. Some math terms are homographs
16. Some math terms are related but have distinct meanings
17. An English math term may translate into another language with different meanings
skip count vs. multiples
18. English spelling and usage may have irregularities
19. Some math concepts are verbalized in more than one way
20. Some math terms are shared with English but have different meanings
21. Some math words are shared with English with similar meanings (but a more precise math meaning)
22. Some math terms are only used in math
23. Some math terms have more than one meaning
24. Some math terms are similar to other content-area terms with different meanings
25. Some math terms are homographs
26. Some math terms are related but have distinct meanings
27. An English math term may translate into another language with different meanings
28. English spelling and usage may have irregularities

rhombus vs. diamond

10. Some math concepts are verbalized in more than one way
11. Informal terms may be used for formal math terms
12. Some math terms are shared with English but have different meanings
13. Some math words are shared with English with similar meanings (but a more precise math meaning)
14. Some math terms are only used in math
15. Some math terms have more than one meaning
16. Some math terms are similar to other content-area terms with different meanings
17. Some math terms are homographs
18. Some math terms are related but have distinct meanings
19. An English math term may translate into another language with different meanings
20. English spelling and usage may have irregularities
21. Some math concepts are verbalized in more than one way
22. Informal terms may be used for formal math terms

Use formal math language

Use terms precisely

What number is in the tens place?

What digit is in the tens place? What is the value of the digit in the tens place?

135

Why this is important...

- A number refers to the entire amount.
- The 3 in the tens place value is not a number, but rather a digit in the number 135 .
- Reinforces conceptual understanding of place value.
- Emphasizes that 3 is part of the number 135 with a value of 30 .

The alligator eats the bigger number

is less than OR

 is greater thanWhy this is important...

- Students must learn how to read and write the inequality symbols.
- Students must learn to read equations correctly from left to right because < and > are two distinct symbols.

Four point seven Four point oh seven

$$
\begin{array}{r}
4.7 \\
4.07
\end{array}
$$

Why this is important...

- Accurately shares the magnitude of the decimal.
- Emphasizes place value.

flips, slides, turns

reflections, translations, rotations

Why this is important...

- The informal language helps children remember the actions, but this vocabulary is not used on assessments.
- Use the formal mathematical terms.

What are examples of, "Instead of ___ Say ___?"

Use formal math language

Use terms precisely

Improper fraction Proportion

$$
\frac{8}{5}
$$

Mixed number

$$
1 \frac{3}{5}
$$

Proper fraction $\frac{2}{9}$

$$
\frac{2}{5}=\frac{8}{20}
$$

Ratio
$4: 3$
Unit fraction
$\frac{1}{6}$

Equation $9 x-4=7 x$
Expression 9x - 4
Formula $a^{2}+b^{2}=c^{2}$
Function $\quad f(x)$
Inequality $9 x-4>6 x$

Integers
 Irrational numbers
 Natural numbers
 Rational numbers

 Whole numbers

Quadrilaterals

Kite

Parallelogram

Rectangle \square

Rhombus

Square

Trapezoid

Acute angle

Obtuse angle $\xrightarrow[\text { angle }]{\longrightarrow}$

Straight angle

Acute triangle

Obtuse triangle

Right triangle

Equilateral triangle

 ΔIsosceles triangle

Scalene triangle

C

Adjacent angles

Alternate angles

Complementary angles

Corresponding angles

Supplementary angles

$$
=180^{\circ}
$$

Vertical angles

Congruent figures
$\square_{\text {Similar figures }}^{\square}$

I

Which terms do your students not use precisely?

Use formal math language

Use terms precisely

1. Use explicit instruction

 Over $\mathbf{1 5 0 , 0 0 0}$ in Print
 explicit

Effective and Efficient Teaching

ANITA L. ARCHER
CHARLES A. HUGHES

2. Use graphic organizers

Dunston \& Tyminski (2013)
2. Use graphic organizers

Dunston \& Tyminski (2013)

6. Equal: having the same amount or value.

4. Have students create glossaries

Integer Definitions

Zero Pairs
A positive and negative cancel one another;

Positive
A number that is greater than zero.

Absolute

Value
The distance of a number from zero on a number line; shown as ||

Negative
A number that is
less than zero. Identified by a minus sign.

Numerator: how many parts of the whole

Ex. 10
Odd number: a number not divided evenly by 2

- Ex. 1, 3, 5, 7, 9....

Percent: a specific number in comparison to 100 74\%
Polygon: any enclosed shape that is made up of 3 or more straight lines

5. Create a word wall

6. Preview vocabulary

Bay-Williams \& Livers (2009)

7. Cluster vocabulary

	Length	Weight
Meaning	How long something is	How heavy something is
Visual	1 Yard	2000 pounds $=1$ ton

Livers \& Bay-Williams (2014)

7. Cluster vocabulary

Rating	Word	Definition	Synonym(s)	Example	Sample Problem
2	$e x)^{\text {(esin }}$	a mathematical phrase combining operations, numbers and/or variables.	phrase algebraic expression	$\begin{array}{cc} 6 & \text { い'equal- } \\ 6 n & \text { no } \\ 6+n & \text { sign: } \end{array}$	Lucia earns \$8 per haur for babysilting and gets a $\$ 5$ tip. Write an expression to represent the amount she would earn if she worked for x hours.
2	joishor	a quantity that can change ortake many values. (refers to the letter orsymbol representing the quantity)	unknown		The variable x vepresents the number of hours charlie work in a week. Write an expression to vepresent his earnings if he carns $\$ 9$ per park
1	$p^{1000^{x}}$	the result when two or more numbers are multiplied	total answer	$\begin{array}{r} 3 \times 2=\underset{\uparrow}{\uparrow} \\ \text { product } \end{array}$	The product of 6 and a number is 24. What is the number?
3		the result of a division crefers to the number of times the divisor divides the dividend)	answer	$\begin{aligned} & 18 \div 2=9 \\ & 2 \sqrt{18}<\text { quitient } \end{aligned}$	Estimate the quotient when 365 is divided by 12.

8. Use mnemonics

Riccomini et al. (2015)

VOCABULARY CROSSWORD
ANSWERKEY

10. Use technology

What are other ways to support learning mathematics vocabulary?

Instructional Platform

INSTRUCTIONAL DELIVERY

INSTRUCTIONAL STRATEGIES

Multiple Representations

MA+ $:$

Two-dimensional images

Modeling Fractions with Cuisenaire Rods

Two-dimensional images

Numerals and symbols and words

$$
2+8=10 \quad 34=3 \text { tens and } 4 \text { ones }
$$

$$
x-6=8
$$

$$
4,179
$$

$$
\begin{array}{r}
569 \\
+\quad \\
\hline
\end{array}
$$

If you are left handed: What's one of your favorite hands-on manipulatives?

If you are right handed: What's one of your favorite virtual manipulatives?

Addition: Total (Part-Part-Whole, Combine)

Count one set, count another set, put sets together, count sum

$$
2+3=5
$$

Addition: Join (Change Increase)

Start with a set, add the other set, count sum

$$
2+3=5
$$

Subtraction: Separate (Change Decrease)

Start with a set, take away from that set, count difference

$$
5-3=2
$$

Subtraction: Difference (Compare)

Compare two sets, count difference

$$
5-3=2
$$

Multiplication: Equal Groups

Show the groups, show the amount for each group, count product

$3 \times 2=6$

Multiplication: Equal Groups

Show the groups, show the amount for each group, count product

$3 \times 2=6$

Multiplication: Comparison

Show a set, then multiply the set

\section*{| 0 | 1 | 2 | 3 | 4 | 4 | 6 | 7 | 8 | 9 | 10 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |}

$$
3 \times 2=6
$$

Division: Equal Groups (Partitive Division)

Show the dividend, divide equally among divisor, count quotient

앙
(2)

$$
8 \div 2=4
$$

Division: Equal Groups (Quotative Division)

Show the dividend, make groups of the divisor, count groups

Instructional Platform

INSTRUCTIONAL DELIVERY

INSTRUCTIONAL STRATEGIES
Fluency building

Building Fluency

Addition

Multiplication
Division

- Fluency is doing mathematics easily and accurately.
- Fluency in mathematics makes mathematics easier.
- Fluency provides less stress on working memory.
- Fluency helps students build confidence with mathematics.

Instructional Platform

INSTRUCTIONAL DELIVERY

INSTRUCTIONAL STRATEGIES
Fluency building
Problem solving
instruction

Have an attack strategy

UPSJ
 Understand
 Read and explain.

Plan

How will you solve the problem?
Solve
Set up and do the math!
, снеск
Does your answer make sense?

Teach word-problem schemas

Total

Difference

Change

Equal Groups

Comparison

Ratios/Proportions

Instructional Platform

INSTRUCTIONAL DELIVERY

INSTRUCTIONAL STRATEGIES
Fluency building
Problem solving
instruction

National Center on
INTENSIVE INTERVENTION
at American Institutes for Research ■

Intensive	Tools	Implementation	Intervention	Information
Intervention v	Charts v	Support -	Materials •	For... •

Intensive Intervention in Mathematics Course Content

Search

MODULE 4: INTENSIVE MATHEMATICS INTERVENTION: MATHEMATICS INTERVENTIO
INSTRUCTIONAL DELIVERY

NCII, through a collaboration with the University of Connecticut, developed a set of course content focused on developing educators' skills in designing and delivering intensive mathematics instruction. This content is designed to support faculty and professional development providers with instructing preservice and in-service educators who are developing and/or refining their implementation of intensive mathematics intervention.

[^0]

MODULE 5: INTENSIVE
MATHEMATICS INTERVENTION: INSTRUCTIONAL STRATEGIES

https://www.inclusionintexas.org/apps/pages/index.isp?uREC ID=2155039\&type=d\&pREC ID=2169859

Sarah R. Powell, Ph.D.

Associate Professor
The University of Texas at Austin

www.sarahpowellphd.com
srpowell@utexas.edu
@sarahpowellphd

$x \mathrm{~A}+\cdots$

[^0]: Intensive instruction was recently identified as a high-leverage practice in special educations, and DBI is a research based approach to delivering intensive instruction across content areas (NCII, 2013). This course provides learners with an opportunity to extend their understanding of intensive instruction through in-depth exposure to DBI in mathematics, complete with exemplars from actual classroom teachers.

 NCII, through a collaboration with the University of Connecticut and the National Center on Leadership in Intensive Interventions and with support from the CEEDAR Center『, developed course content focused on enhancing educators' skills in intensive mathematics intervention. The course includes eight modules that can support faculty and professional development providers with instructing pre-service and in-service educators who are learning to implement intensive mathematics intervention through data-based individualization (DBI). The content in this course complements concepts covered in the Features of Explicit Instruction Course and so we suggest that users complete both courses.

