AP Chemistry Summer HW

Directions: Read and outline chapters 1-3, you may choose the format, and I will collect your outlines on the first day of school. Answer the following AP exam questions on binder paper, be sure to show ALL work. Be prepared to explain your answers to the class on the first day of school. If you have any questions please email me at taylork@mdusd.org, I check my email twice a week during summer.

1991 B - Will require an equation from chapter $4 \Delta \mathrm{~T}_{\mathrm{f}}=\mathrm{i}_{\mathrm{f}} \mathrm{m}$ as well as $\mathrm{PV}=\mathrm{nRT}(\mathrm{R}=0.08206 \mathrm{~L} \cdot \mathrm{~atm} / \mathrm{mol} \cdot \mathrm{K})$ The molecular formula of a hydrocarbon is to be determined by analyzing its combustion products and investigating its colligative properties.
(a) The hydrocarbon burns completely, producing 7.2 grams of water and 7.2 liters of CO_{2} at standard conditions. What is the empirical formula of the hydrocarbon?
(b) Calculate the mass in grams of O_{2} required for the complete combustion of the sample of the hydrocarbon described in (a).
(c) The hydrocarbon dissolves readily in CHCl_{3}. The freezing point of a solution prepared by mixing 100. grams of CHCl_{3} and 0.600 gram of the hydrocarbon is $-64.0{ }^{\circ} \mathrm{C}$. The molal freezing-point depression constant of CHCl_{3} is $4.68^{\circ} \mathrm{C} / \mathrm{molal}$ and its normal freezing point is $-63.5^{\circ} \mathrm{C}$. Calculate the molecular weight of the hydrocarbon.
(d) What is the molecular formula of the hydrocarbon?

1986 B

Three volatile compounds X, Y, and Z each contain element Q . The percent by weight of element Q in each compound was determined. Some of the data obtained are given below.

Percent by weightMolecular

Compound		of Element Q	
	Weight		
X		64.8%	
Y	73.0%		104.
Z	59.3%		64.0

(a) The vapor density of compound X at $27^{\circ} \mathrm{C}$ and 750 mm Hg was determined to be 3.53 grams per litre. Calculate the molecular weight of compound X.
(b) Determine the mass of element Q contained in 1.00 mole of each of the three compounds.
(c) Calculate the most probable value of the atomic weight of element Q .
(d) Compound Z contains carbon, hydrogen, and element Q. When 1.00 gram of compound Z is oxidized and all of the carbon and hydrogen are converted to oxides, 1.37 grams of CO_{2} and 0.281 gram of water are produced. Determine the most probable molecular formula of compound Z.

1982 B

Water is added to 4.267 grams of UF_{6}. The only products are 3.730 grams of a solid containing only uranium, oxygen and fluorine and 0.970 gram of a gas. The gas is 95.0% fluorine, and the remainder is hydrogen.
(a) From these data, determine the empirical formula of the gas.
(b) What fraction of the fluorine of the original compound is in the solid and what fraction in the gas after the reaction?
(c) What is the formula of the solid product?
(d) Write a balanced equation for the reaction between UF_{6} and $\mathrm{H}_{2} \mathrm{O}$. Assume that the empirical formula of the gas is the true formula.

