

#### Electron Engineering of Thermoelectric Materials

G. Jeffrey Snyder

Northwestern University

Evanston IL, USA

http://thermoelectrics.matsci.northwestern.edu







Pei, Snyder, *Advanced Materials*, **24**, 6125 (2012) May, Snyder CRC Handbook (2012)

## **Thermoelectric Device**





# **Carrier Concentration**









# TE: Valence Metals with Band Gap



#### Thermoelectric materials are typically:

Nearly Valence Balance compounds with band gap (Usint Zintl concept of Valence)

• Band Gap < 0 is *Semi-Metal* = bad for Thermoelectrics

#### Where concentration of valence imbalance = free carrier concentration

- free Carrier Concentration measured by Hall Effect  $n_H$ 

Transport properties are metallic

Northwestern Materials Science and Engineering

Heavily doped, degenerate semiconductors



Toberer, May, Snyder Chem. Mat., 22, p. 624 (2010)

# **Carrier Concentration Tuning**



PbTe<sub>1-x</sub>I<sub>x</sub> lodine (I) supplies one more electron than Tellerium (TE)



lodine (I<sup>-</sup>) replaces Te<sup>2-</sup> producing 1 e<sup>-</sup>



From Room Temperature Hall Effect





carrier concentration



# Hall Effect



#### Hall Effect

Magnetic Field deflects mobile charges Hall Effect measurements give:

Sign of Charge Carrier

- *n* (electron) or *p* (hole) type Carrier concentration
- $n_{\rm H} = 1/R_{\rm H}e$ Mobility
  - $\mu_{\rm H} = \sigma/n_{\rm H}e$
- Hall Effect of Extrinsic Semicond.
  - Constant  $n_{\rm H}$  at low temp
    - $n_{\rm H}$  = dopant concentration

#### Rises at high temp

• minority carriers activated across Band Gap







## **Rigid Bands**





# Solid-State Synthesis





Northwestern Materials Science and Engineering

Snyder, Müller et al., Appl. Phys. Lett., 87, p. 171903 (2005)

# Homogeneous n-type PbTe<sub>1-x</sub>I<sub>x</sub>







Lalonde, Pei, Snyder Energy and Environmental Science 4, 2090 (2011)

## Impurities reduce Mobility



#### Similar case - isovalent substitution (solid solutions)



Mobility reduced due to alloy scattering (disorder scattering)

Relaxation time:

$$\tau_{alloy} = \frac{8\hbar^4}{3\sqrt{2}\pi\Omega C_A (1 - C_A) U^2 m_b^{*3/2} (k_B T)^{1/2}} (\varepsilon + \varepsilon^2 \alpha)^{-1/2} (1 + 2\varepsilon \alpha)^{-1}$$



# Doping on Cation vs Anion site



#### Same substitution has different influence on n- and p- alloys





Heng Wang, G. Jeffrey Snyder *Materials Horizons* 2, 10.1039/C5MH00021A (2015) Takagiwa et al., *APL* 101, 092102 (2012)

# **Degenerate Semiconductor Behavior**







Non-Degenerate Resistivity (Intrinsic Semiconductor)

$$\ln\left(\frac{1}{\rho}\right) = \frac{-E_g}{2k_B T}$$

# 1. Scattering Mechanism

1. Scattering Mechanism

Acoustic Phonon Scattering at High Temperatures







# 2. Effective Mass



- 2. Effective Mass (e.g. at 300K) Pisarenko Plot of Seebeck vs Carrier Concentration indicates quality of band model
  - parabolic, Kane (linear), multiple bands



$$\alpha = \frac{8\pi^2 k_B^2}{3eh^2} m^* T \left(\frac{\pi}{3n}\right)^{2/3}$$

Degenerate (Metals)



# 3. Mobility Parameter $\mu_0$



- 3. Mobility parameter  $\mu_0$  (near temp of max *zT*) Plot of Mobility vs Carrier Concentration also indicates quality of band model
  - parabolic, Kane (linear), multiple bands

Northwestern Materials Science and Engineering



# 4. Electronic Thermal Conductivity



4. Lorenz factor from Seebeck only independent of carrier concentration or Temperature subtract to get lattice thermal conductvity



H-S Kim, Snyder et. al. APL Materials, 3, 041506 (2015)



# **Optimum Carrier Concentration**







# 5. Predict *zT* and Doping

5. *zT* as function of doping
Predicts peak *zT*predicts optimum carrier concentration







Quality factor parameter





# Seebeck Coefficient



# Thermopower (Abs. of Seebeck Coefficient) is a good measure of E<sub>F</sub>/kT

Lorenz Factor

H-S Kim, Snyder et. al. APL Materials, 3, 041506 (2015)



#### **Effective Mass**

$$S = \frac{2k_B^2}{3e\hbar^2}T\left(\frac{\pi}{3n}\right)^{2/3}(1+r)m_{Seebeck}^*$$

Band Gap

$$E_g = 2eS_{\max}T_{\max}$$

Snyder et. al. J12.00004, 3:06pm Room: 007C



Gibbs, Snyder et. al. *Materials Horizons*, **2**, 68 (2015) *Applied Physics Letters* **106**, 022112 (2015)





with Free electron-like (single parabolic) band (SPB) mass has analogy to classical mechanics

Free Electron –like Effective Mass

$$E = \frac{mv^2}{2} = \frac{p^2}{2m} = \frac{\hbar^2 k^2}{2m^*}$$

and is commonly used for electrical conductivity DOS, n, cyclotron

$$\sigma = \frac{ne^2\tau}{m^*} \qquad \mu = \frac{e\tau}{m^*}$$

hermoelec

Northwestern Materials Science and Engineering

a common definition is effective mass tensor

 $\frac{1}{m_{ij}^{*}} = \frac{\partial^2 E}{\hbar^2 \partial k_i \partial k_j}$ but how is it related to measurements?





 $\sigma$  = conductivity f = Fermi function  $\zeta$  = chemical potential g = DOSv = velocity  $\tau$  = relaxation time E = energyT = temperature

# Seebeck Effective Mass



In Thermoelectrics we measure thermopower [Seebeck coefficient] gives reduced chemical potential (reduced Fermi level) = chemical potential / kTand Hall Effect for carrier concentration

$$S_{exp} \longrightarrow S = \frac{k_B}{e} \left( \frac{(2+\lambda)F_{\lambda+1}}{(1+\lambda)F_{\lambda}} - \eta \right) \longrightarrow \eta_{SPB}$$

$$n_{exp} \longrightarrow n = \frac{1}{4\pi^2} \left( \frac{2m_d^* k_B T}{\hbar^2} \right)^{3/2} F_{1/2} \longrightarrow$$

$$m_{d,Seeb}^*$$



Need to have scattering parameter r and band shape For Parabolic bands in degenerate limit (metals):

$$S = \frac{2k_B^2}{3e\hbar^2}T\left(\frac{\pi}{3n}\right)^{2/3}(1+r)m_{Seebeck}^*$$



Wilson The Theory of Metals (1954)

 $\sigma = \text{conductivity}$   $\alpha = S = \text{Seebeck coefficient}$  r = scattering parameter f = Fermi function  $\zeta = \text{chemical potential}$  g = DOS v = velocity  $\tau = \text{relaxation time}$  E = energy T = temperature





In Thermoelectrics we measure electrical conductivity and Hall Effect

$$\sigma = \frac{ne^2\tau}{m_I^*} \qquad \mu = \frac{e\tau}{m_I^*}$$

Even for Parabolic bands we need to distinguish band degeneracy  $N_V$ 



 $\sigma = \text{conductivity}$   $\alpha = S = \text{Seebeck coefficient}$  r = scattering parameter f = Fermi function  $\zeta = \text{chemical potential}$  g = DOS v = velocity  $\tau = \text{relaxation time}$  E = energy T = temperature



Wilson The Theory of Metals (1954)

# Valley Degeneracy $N_{\nu}$



 $N_{v}$  is number of carrier pockets (valleys)

Spherical Fermi Surface

free-electron model



*Multiple valley* when:

- Symmetrically equivalent (not at  $\Gamma$ )
- Different bands at band gap • (orbital degeneracy)



hermoelectrics Northwestern Materials Science and Engineering



PbTe v:  $N_v = 4$ , 12 c:  $N_v = 4$ 

Si





#### **Band Gap**





## **Band Gap**



Excitation of minority carriers across band gap

reduces Seebeck leads to peak in zT











Gibbs, H-S Kim, GJS Applied Physics Letters 106, 022112 (2015)

# Goldsmid-Sharp Maximum Seebeck



Doping changes S vs TBut peak S is limited by  $E_g$ 

 $E_g = 2eS_{\max}T_{\max}$ 





Gibbs, H-S Kim, GJS Applied Physics Letters 106, 022112 (2015)

# **Optical Band gap**







Pb<sub>1</sub>Te<sub>1</sub> Pb<sub>1.001</sub>Te<sub>1</sub>

x = 0.0004

x = 0.0055 x = 0.0100

0.6

0.4

0.2

[(α/K - FC) hν]<sup>2</sup>

Optical band gap appears larger with doping but may actually decrease

Thermoelectrics Northwestern Materials Science and Engineering Gibbs, Snyder, et al. New Journal Physics 15, 075020 (2013).



## **Band Engineering**





#### Seebeck Mass



Want to Know: is Seebeck changing because of *m*\* DOS effective mass (scattering *r* doesn't change) or *n* simply carrier concentration

for degenerate (heavily doped semiconductors, metals):

$$S = \frac{2k_B^2}{3e\hbar^2}T\left(\frac{\pi}{3n}\right)^{2/3}(1+r)m_{Seebeck}^*$$





J. P. Heremans, Snyder et al. *Science* **321**, p 554 (2008) Pei, Snyder et al *NPG Asia Materials* **4**, e28 (2012)

# **Quality Factor**





# High $N_V$ in PbTe





# Band Convergence with Alloying







# Single Band Mass



## small Effective mass





Northwestern Materials Science and Engineering Takagiwa, Snyder, et al. Applied Physics Letters 91, 092102(2012).



# **SnTe Small Effective Mass**

# Light band 0.14me in SnTe better than high Nv band









Zhou, Snyder, et al, Physical Chemistry Chemical Physics (2014)



## Non-Parabolic Bands effect on Mass



# non parabolic Bands



Band edge should be parabolic but Deep into bands they are complex non parabolic shape may change curvature (mixed n- p-type)

Light, low  $E_g$  Bands often linear parabolic at band extrema physical – no cusps linear at high E like Dirac cone band What is effect on transport, effective mass?









Variety of measurement Techniques:

hermoelectrics

Northwestern Materials Science and Engineering

Faraday Rotation, Thermomagnetic (Seebeck, Nernst), Optical Reflectivity

W. Zawadzki Advances in Physics 23, 435 (1974).



#### Increasing m\* in Kane Band



Figure 1. Influence of non-parabolicity on effective mass, density-of-states and carrier concentration. The solid lines in each of the three figures show the variation for a parabolic band, for which  $m^*(E) = m_0 = \text{const.}$ ,  $D(E) \propto E^{1/2}$ , and  $n \propto E^{3/2}$ . Two cases of non-parabolicity are considered. The symbols  $\bullet$ , indicate first-order non-parabolicity, which is given by  $\gamma = E(1 + E/E_1)$ . The  $\vee$  symbols indicate second-order non-parabolicity, which is given by  $\gamma = E(1 + E/E_1 + E^2/E_2^2)$ . In the latter calculation,  $E_2$  was taken as equal to 2  $E_1$ . In both of the non-parabolic band calculations,  $m^*(E) = m_0^* d\gamma/dE$ ,  $D(E) \propto (m_0^*)^{3/2} [\gamma(E_F)]^{1/2} (d\gamma/dE)$ , and  $n \propto (m_0^*)^{3/2} [\gamma(E_F)]^{3/2}$ .

#### Variety of measurement Techniques:

Faraday Rotation, Thermomagnetic (Seebeck, Nernst), Optical Reflectivity

Thermoelectrics Northwestern Materials Science and Engineering

W. Zawadzki *Advances in Physics* **23**, 435 (1974) Kaydanov, Young, Coutts, *MRS* (2000)



For nonparabolic dispersion, e.g. Kane-like

'energy dependent mass' often defined as

$$m^{*}(E) = m_{P}^{*} \equiv \frac{p}{v}$$
  $m_{P}^{*}(E) = m_{0}^{*} \left(1 + \frac{2E}{E_{g}}\right)$ 

but properties are not simply a function of  $m^*(E)$ 

$$g(E) = \frac{4\pi \left(2m_p^*\right)^{\frac{3}{2}} E^{\frac{1}{2}}}{h^3} \left(\frac{1+\frac{E}{E_g}}{1+\frac{2E}{E_g}}\right)^{\frac{1}{2}} \qquad n = \frac{8\pi \left(2m_p^*\right)^{\frac{3}{2}} E^{\frac{3}{2}}}{3h^3} \left(\frac{1+\frac{E}{E_g}}{1+\frac{2E}{E_g}}\right)^{\frac{3}{2}}$$

Do all properties at least increase with increasing  $m^*(E)$ ?

$$S = \frac{2k_B^2}{3e\hbar^2}T\left(\frac{\pi}{3n}\right)^{2/3}(1+r-\lambda)m_P^* \qquad \lambda = \frac{4E}{E_g}\left(1+\frac{E}{E_g}\right)$$



W. Zawadzki *Advances in Physics* **23**, 435 (1974) Young, Coutts, Kaydanov *American Vacuum Society* (1999)

 $E + \frac{E^2}{E_g} = \frac{\hbar^2 k_B^2}{2m_0^*}$ 

# Linear or Parabolic



For r = 0,  $\tau$  and DOS (g) cancel each other

$$S = \frac{\pi^2}{3} \frac{k_B^2 T}{e} \left( \frac{2\partial v}{v\partial E} + \frac{\partial t}{\tau \partial E} + \frac{\partial g}{g\partial E} \right)$$

so *S* depends on dv/dElinear dv/dE = 0







 $v \equiv \frac{dE}{\hbar dk}$ 

Constant  $m_0^*$  parabolic is definitely better



## Non parabolic Seebeck *m*\*





#### $m^*(E)$ depends on scattering – decreases for $r = 0, \frac{1}{2}$ !



W. Zawadzki Advances in Physics 23, 435 (1974) Young, Coutts, Kaydanov American Vacuum Society (1999) Experiment of Kane Band m\*<sub>Seebeck</sub>





SnTe – the only one with some evidence of decreasing m\* Zhou, Gibbs 2014

InSb/InAs – Different Scattering mechanism, not fair to compare



Zhou, Gibbs, et al. Phys.Chem.Chem.Phys. 16, 20741 (2014)



#### Non-spherical Fermi Surface







# Spherical, Ellipsoidal, non-Elipsiodal



#### Parabolic Bands may not be isotropic





This is just cubic materials ...

## Fermi Surface Area *m*\*



Boltzmann Transport integral over all k space

$$\sigma_{ij} = \frac{e^2}{4\pi^3} \iiint v_i v_j \tau \frac{-\partial f}{\partial E} d\vec{k} \qquad S\sigma_{ij} = \frac{e^2}{4\pi^3} \iiint v_i v_j \tau (E - \zeta) \frac{-\partial f}{\partial E} d\vec{k}$$

Transform to integrate over Fermi Surface S first than Energy

$$\sigma = \frac{e^2}{4\pi^3} \int \left( \oint_E v\tau \, dS \right) \frac{-\partial f}{\partial E} dE$$



Fermi Surface volume is number of electrons, *n* 

Larger Fermi Surface due to complexity should give higher conductivity and Thermopower





X Chen, Parker, Singh *Sci. Reports* **3**, 3168 (2013) Singh *PRB* **81**, 195217(2010)