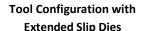
Document No.: 20009 Revision: A

Specification Summary Tool Model: CRTi4-7.0

Base Tool Characteristics								
CRTi Rated	Hoist ¹	ton	442					
Load Cap.	Torque	ft.lbs	50,000					
Comb. Load	Hoist	ton	300					
Large Hoist	Torque	ft.lbs	30,000					
Comb. Load	Hoist	ton	200					
High Torque	Torque	ft.lbs	50,000					
Typ. Circ. Prss	. Lim. ^{6,7}	psi	5,000					
Base Tool Len	gth	in	57					
Tool Stroke		in	0.61					
Max. Tool Dia	m.	in	20					
Through Hole		in	1.5					
Tool Joint		6-5/8 REG						

Volant Oil Tools Inc.

Sales Contact: Earl Secord Phone: 780.490.5185 E-mail: <u>esecord@volantproducts.ca</u> Web: <u>www.volantproducts.ca</u>


Operating and Functional Summary Casing Running Tool (CRTi) with internal grip

Volant Oil Tool's CRTi tools are designed for casing running or drilling with top drive equipped rigs to enable connection make-up, break-out, circulation and rotation. These tools are mechanically activated in tension and both rotational directions solely by top drive control using TAWG[™] (Torque Activated Wedge Grip) technology.

This patent pending architecture puts control in the hands of the driller, reducing the need for third party support to run casing. Simple intuitive operating steps for pipe engagement and release closely emulate the familiar make and break steps used to run drill pipe—stab, rotate to the right to engage and reverse to disengage. Similarly, rig-in and rig-out steps are simple, intuitive and fast. This architecture has a proven track record in running over **one million** metres of casing.

Starting from the insertion diameter of the base tool, selectable sizes of integral jaw/dies are used to configure the CRTi tool to support gripping casing of increasing internal diameter (decreasing weight). Through the use of a patent pending extended reach die structure, the gripping diameter can be further increased to include casing sizes much greater than the base tool.

Summary of Selected Slip Die Sizes ²											
	Nom.	Max		Die		Max.		Slip to			
	Pipe	Pipe wt	Min Pipe	Curv.		Tool	Tool	Pipe Body	Comp.		
Die P/N	size	3	Wt ⁴	Diam.	OAL	Diam.	Wt.	Load Eff. ¹	Cap.⁵		
	(in)	(ppf)	(ppf)	(in)	(in)	(in)	(lbs)	% Fy	(ton)		
81277	7.00	26.00	17.00	8.04	70.4	20.0	1100	80%	210		
81421	8.63	36.00	28.00	8.72	70.4	20.0	1100	80%	210		
81420	9.63	53.50	47.00	8.72	70.4	20.0	1100	80%	210		
81255	10.75	65.70	60.70	9.72	70.4	20.0	1300	80%	210		
81494	10.75	73.20	71.10	9.57	70.4	20.0	1300	80%	210		
81138	10.75	79.20	-	9.40	70.4	20.0	1300	80%	210		
81495	11.75	60.00	54.00	10.94	70.4	20.0	1400	76%	210		
81306	13.38	54.50	48.00	12.74	70.4	20.0	1900	74%	210		
81150	13.38	72.00	68.00	12.52	70.4	20.0	1900	74%	210		
81431	16.00	65.00	-	15.42	70.4	20.0	2300	59%	210		
81434	18.63	87.50	-	17.88	70.4	20.0	2600	45%	210		
81483	20.00	133.00	-	18.92	70.4	20.0	2800	51%	210		

¹ Tool hoist rating is based on API Spec. 8C; however casing load limit is further constrained by local interaction of slip dies with casing which must not exceed the efficiency indicated for individual slip die sizes to avoid excess deformation.

² Common dies sizes shown. All API casing sizes and weights with drift diameter above 5.873 in. are available.

³ Maximum pipe weight is defined by the API Spec. 5CT drift diameter of the heaviest weight casing into which the CRTi assembled with th specified die set will fit.

⁴ Indicated minimum pipe weight is based on the assumption that control of average pipe inside diameter over die grip interval does not allow pipe body area reduction less than 3.5% from nominal and additionally takes into account tool wear allowances, die penetration, casing deformation and tool stroke.

⁵ Maximum allowable compressive load applied to the tool. Some compressive load may be reacted through the coupling, this rating does not take into account bearing load limitations of the coupling.

⁶ CRTi circulation pressure capacity is generally governed by packer cup pressure capacity. Pressure capacity may be less than indicated if alternative seal arrangements are used.

⁷ CRTi hoist capacity must be reduced by the pressure end load during circulation.