
IJRECE VOL. 6 ISSUE 2 APR-JUNE 2018  ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE) 

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING 

 A UNIT OF I2OR 708 | P a g e  
 

Efficient Processing of Test Database Reduction Scheme 
DH. Srinivasan1, G.V. Padma Raju2 

1PG scholar, 2Professor, 
12Department of Computer science and Engineering, SRKR Engineering College, Bhimavaram 

 

 

Abstract- Functional testing of uses that procedure the data put 

away in databases frequently requires a cautious plan of the 

test database. The bigger the test database, the more 
troublesome it is to create and keep up tests and also to load 

and reset the test information. This paper exhibits a way to 

deal with decrease a database as for an arrangement of SQL 

queries and a scope foundation. The reduction procedures look 

through the lines in the underlying database that add to the 

scope so as to locate a delegate subset that fulfills an 

indistinguishable scope from the underlying database. The 

approach is computerized and effectively executed against 

vast databases and complex queries. The assessment is done 

more than two genuine applications and an outstanding 

database benchmark. The outcomes demonstrate an expansive 
level of reduction and in addition versatility in connection to 

the measure of the underlying database and the time expected 

to play out the reduction. 

 

Keywords- Test database reduction, test coverage of code, test 

design. 

 

I. INTRODUCTION 

Database applications include the management of a lot of 

information put away and sorted out in numerous tables. This 

information are normally overseen utilizing an outsider 

segment called the Database Management System (DBMS) 
that provides superior and a high level of adaptability and 

constancy. The application can get to the put away 

information utilizing some sort of query language. In spite of 

the persistent improvements in new advancements, for 

example, NoSQL databases and perseverance systems, 

applications dealing with the information utilizing Relational 

DBMS and the Structured Query language (SQL) are 

universal in practically all mechanical and business divisions. 

Testing software applications includes an essential movement 

that comprises of expounding test cases; each having sets of 

test case preconditions, inputs and expected yields [3]. The 
tester needs to provide enough significant contributions to 

order to practice the application code however much as could 

reasonably be expected. On the off chance that the application 

includes a database, the elaboration of test databases is a 

deciding variable.  

On a few events, the test database might be by a long shot the 

most imperative segment of the information, (for example, 

reports, logical queries or dashboards). Making a test database 

includes various specialized and commonsense difficulties. 

The test database ought to contain enough significant 

information to sufficiently practice the application under test. 
Be that as it may, populating the test database turns into a 

troublesome undertaking in light of the very interrelated 

nature of tables. Test databases ought to be kept little in order 

to encourage:  

1) The productivity of the reset of the test database,  

2) The blame confinement and investigating of fizzled tests,  

3) The test yield assessment when a test produces numerous 

yields from the database, and  

4) The upkeep and extensible of test contents. Consider, for 

instance, the accompanying situation: A database contains 

orders made by clients. Each order has the data about the 
client and the warehouse that will supply the merchandise.  

This data is put away in a fundamental table (order) with the 

order ID (oid), client ID (cid), warehouse ID (wid) and the 

order status. The warehouse table incorporates its ID (wid) 

and its name. Another revealing module is a work in progress 

and one of the reports comprises in showing every single 

dropped order (status = 'C') and the warehouse name. The 

engineer makes the report in light of the accompanying query:  

SELECT o.oid, o.status, c.cid, w.name  

FROM order o, warehouse w  

WHERE o.wid =w.wid AND o.status = 'C'  

The test necessities for this report incorporate making test 
databases with orders with status 'C' and other distinctive 

statuses. Likewise, as the warehouse is doled out in the wake 

of entering an order, there must be orders in the test database 

that have been dropped when the task of a warehouse. Making 

test databases needs a trade-off between the nature of the 

information from the testing perspective and down to earth 

issues identified with populating and stacking the test 

database. The tester may embrace diverse methodologies that 

range from 1) beginning from a formerly populated database 

(e.g., a duplicate of the production database) to 2) beginning 

from an unfilled database. In the event that testing is finished 
utilizing a production database, the real outcomes must be 

looked at numerous rows in the answer to guarantee they meet 

the particular. Specifically it ought to be watched that every 

single detailed line are incorporated and there are no 

overlooked rows. For this situation the query isn't right as it 

disregards dropped orders that don't have a warehouse 

relegated yet. The wellspring of the blame in the query is that 



IJRECE VOL. 6 ISSUE 2 APR-JUNE 2018  ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE) 

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING 

 A UNIT OF I2OR 709 | P a g e  
 

the join between tables ought to be a left join. It ought to be 

composed as:  

SELECT o.oid, o.status, c.cid, w.name FROM order o  

LEFT JOIN warehouse w ON o.wid = w.wid  

WHERE o.status = 'C'  

In addition, if the test is additionally robotized, its execution 
will require a reset of the database to separate this test from 

others that change the database, which is additional tedious as 

the span of the database grows.  

The second methodology is to begin from a vacant database. 

The tester is allowed to make a content to populate a test 

database containing just the rows that satisfy the test 

prerequisites. The examination of the real outcomes is less 

demanding as fewer rows at the yield must be checked and 

whatever is left of the database is speedier. Be that as it may, 

the tester needs to indicate each line and its qualities (counting 

all segments in the tables included, which are rearranged in the 

illustration) and to populate extra tables to guarantee 
referential respectability. A middle system that constitutes a 

trade-off between the above would comprise of extricating a 

subset of the information that satisfies the test prerequisites 

from the production database and creating a content to 

populate the test database with this subset. This is a reduction 

of the production database. On the off chance that it is made 

consequently, this would encourage the testing as it contains 

few, however important information (that cover the test 

necessities of the query). It is less demanding to check the 

genuine outcomes (they contain less rows) and simpler to 

populate and stack the test database (the content would be 
consequently made).  

The extent of this paper identifies with this middle system: 

Given a database, create a littler database containing 

significant information to empower its utilization as a test 

database. To achieve this, 1) we begin from an underlying 

database (that can be taken from a production database in the 

wake of muddling confidential information) and an 

arrangement of queries that have been issued to the database 

(which can be taken from the execution log enlisted by the 

DBMS). 2) In order to have the capacity to choose significant 

test information from the underlying database we utilize a test 

paradigm called SQL Full Predicate Coverage (SQLFpc) [4] 
which is a variation of Modified Condition/Decision Coverage 

(MCDC) [5],[6] particularly custom fitted for SQL. Given a 

SQL query and a test database, the SQLFpc paradigm 

characterizes an arrangement of test necessities, each spoke to 

as a coverage rule (composed as a SQL articulation). The 

execution of the tenets against the underlying database decides 

if the test necessities for the query are met. 3) Then the 

information which fulfill every coverage rule are recovered, 

decreased to a subset and embedded into another database (at 

first unfilled) which constitutes the lessened test database. 

 
II. LITERATURE SURVEY 

Writing overview is the most critical advance in software 

improvement process. Before building up the instrument it is 

important to decide the time factor, economy n organization 

quality. Once these things r fulfilled, ten subsequent stages are 

to figure out which working system and language can be 

utilized for building up the apparatus. Once the developers 
begin assembling the instrument the software engineers 

require parcel of outside help. This help can be gotten from 

senior developers, from book or from sites. Before building 

the system the above consideration are considered for building 

up the proposed system. 

 

“An analysis of the effectiveness of different coverage criteria 

for testing relational database schema integrity constraints”, 

These fundamentally vital limitations guarantee the 

cognizance of relational information in a database, protecting 

it from rules that could disregard prerequisites, for example, 

"usernames must be interesting" or "the host name can't be 
absent or obscure." This article is the first to propose coverage 

criteria, got from rationale coverage criteria that set up various 

levels of testing for the plan of trustworthiness requirements in 

a database mapping. These range from basic criteria that 

command the testing of effective and unsuccessful INSERT 

proclamations into tables to further developed criteria that test 

the definition of complex respectability limitations, for 

example, multi-section PRIMARY KEYs and self-assertive 

CHECK imperatives. Because of various seller understandings 

of the structured query language (SQL) particular as to how 

trustworthiness limitations ought to really work by and by, our 
criteria vitally represent the hidden semantics of the database 

management system (DBMS). 

 

“Program-input generation for testing database applications 

using existing database states”, Utilizing a current database 

state is alluring since it has a tendency to be illustrative of 

certifiable items' qualities, identifying issues that could cause 

disappointments in true settings. In any case, to cover a 

particular program-code divide (e.g., square), fitting project 

inputs additionally should be created for the given existing 

database state. To address this issue, in this paper, a novel 

approach that produces program contributions for 
accomplishing high code coverage of a database application, 

given a current database state. This approach utilizes 

emblematic execution to track how program inputs are 

changed before showing up in the executed SQL queries and 

how the imperatives on query comes about influence the 

application's execution. One critical test in our concern 

setting is the hole between program-input limitations got 

from the program and from the given existing database state; 

fulfilling the two sorts of requirements is expected to cover a 

particular program-code parcel. Our approach incorporates 

novel query definition to bridge this hole. We fuse the 
information instantiation segment in our system to manage 



IJRECE VOL. 6 ISSUE 2 APR-JUNE 2018  ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE) 

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING 

 A UNIT OF I2OR 710 | P a g e  
 

the case that no powerful program input esteems can be 

accomplished. We decide how to produce new records and 

populate them in the new database state with the end goal 

that the code along the way can be secured.  

 

“The Impact of Equivalent, Redundant and Quasi Mutants on 
Database Schema Mutation Analysis”, Since the relational 

database is an imperative part of certifiable software and the 

diagram assumes a noteworthy part in guaranteeing the nature 

of the database, relational construction testing is basic. This 

paper presents strategies for enhancing the effectiveness and 

exactness of transformation examination, a set up strategy for 

evaluating the nature of test cases for database mappings. 

Utilizing a DBMS-free unique portrayal, the displayed 

strategies consequently identify and expel mutants that are 

either comparable to the first blueprint, excess as for different 

mutants, or bothersome in light of the fact that they are valid 

for certain database systems. Applying our systems for 
incapable mutant evacuation to an assortment of compositions, 

a considerable lot of which are from genuine sources like the 

U.S. Bureau of Agriculture and the Stack Overflow site, 

uncovers that the introduced static examination of the DBMS-

free portrayal is various orders of size speedier than a DBMS-

particular technique. 

 

“Automated testing for SQL injection vulnerabilities: an input 

mutation approach”, Web administrations are progressively 

embraced in different spaces, from fund and e-government to 

online networking. As they are based over the web 
advancements, they endure likewise a phenomenal measure of 

assaults and abuses like the Web. Testing to recognize such 

vulnerabilities previously making web administrations open is 

pivotal. Introduce in this paper a mechanized testing approach, 

to be specific μ4SQLi, and its supporting arrangement of 

change administrators. μ4SQLi can create viable data sources 

that prompt executable and destructive SQL proclamations. 

Executability is key as generally no infusion helplessness can 

be abused. 

 

“Generating Test Data to Distinguish Conjunctive Queries 

with Equalities”, the utilization of databases in software 
systems has expanded the significance of unit testing the 

queries that frame the interface to these databases. 

Transformation investigation is an intense testing system that 

has been adjusted to test database queries. In this paper we 

address each of the three of these difficulties by adjusting 

comes about because of the rich writing on query modifying. 

We confine regard for the class of conjunctive queries with 

equities. As an end-result of this confinement, we give a 

calculation that perceives equal mutants, creates a test 

database that recognizes each nonequivalent mutant, and 

applies to subjective transformations, as long at the change is 
additionally a conjunctive query with equities. The paper 

introduces the test database age calculation and demonstrates 

that it is sound and finish for conjunctive queries with 

uniformities. 

 

“Guided test generation for database applications via 

synthesized database interactions”, Testing database 
applications regularly requires the age of tests comprising of 

both program sources of info and database states. As of late, a 

testing procedure called Dynamic Symbolic Execution (DSE) 

has been proposed to decrease manual exertion in test age for 

software applications. In any case, applying DSE to produce 

tests for database applications faces different specialized 

difficulties. For instance, the database application under test 

needs to physically interface with the related database, which 

may not be accessible for different reasons. The program 

inputs whose qualities are utilized to frame the executed 

queries are not treated emblematically, posturing challenges 

for creating valid database states or suitable database states for 
accomplishing high coverage of query-result-rule code. To 

address these difficulties, in this article, we propose an 

approach called SynDB that combines new database 

associations to supplant the first ones from the database 

application under test. 

 

Problem Definition:- The system is to begin from an empty 

database. The tester is allowed to make a content to populate a 

test database containing just the rows that satisfy the test 

necessities. The correlation of the real outcomes is simpler as 

fewer rows at the yield must be checked and the reset of the 
database is speedier. Be that as it may, the tester needs to 

indicate each line and its qualities (counting all sections in the 

tables included, which are improved in the case) and to 

populate extra tables to guarantee referential respectability. 

 

The Relational Model:- The relational model was first 

created by Codd [15] and characterizes the establishments of 

information stockpiling and querying that is actualized in the 

present business relational database management systems. The 

documentation utilized as a part of this paper is that displayed 

by the creator in the second form of the relational model [16], 

alluded to as RM/V2, with a few adjustments required for 
resulting segments. 

 

Relations and Attributes:- Given a set An of attributes A1;. . 

.;Am, a relation R is a subset of the Cartesian result of their 

domain, meant as R(A1; . . .Am) or just R(A) or R. At the end 

of the day, a relation R(A) is a set of tuples of the attributes in 

A. In SQL a relation is a table or view, attributes are segments 

and tuples are rows. For every relation one or more attributes 

are primary keys which interestingly identify each tuple in this 

relation. The space of attributes incorporates exceptional 

imprints to reference absent or inapplicable attributes which 



IJRECE VOL. 6 ISSUE 2 APR-JUNE 2018  ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE) 

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING 

 A UNIT OF I2OR 711 | P a g e  
 

are demonstrated as NULL in business relational DBMS. This 

prompts a three-esteemed logic of predicates. 

Reduction Rules and Procedures:- This section points of 

interest how the coverage rules are transformed into the 

reduction guidelines and how tuples coming about because of 

the assessment of the reduction govern are chosen to acquire 
the diminished database. 

 
Join and Select Operators: The instance of a RVE (query) 

that performs joins and a further determination of joined tuples 

is the least difficult one and permit the introduction of the 

establishments of the reduction approach. We initially show it 

with a case. Case one Consider an underlying database D 
=fR;Sg which contains two relations R(A0,A1) and 

S(B0,B1,B2), being A0 and B0 primary keys and a RVE D 

which speaks to a coverage manage characterized as: 

D: = R[A0 = B1]S [A1 < 14](A1;B2) 

In SQL: SELECT A1; B2 FROM R INNER JOIN S 

ON R: A0 =S.B1 WHERE R:A1 < 14 

Reduction Transformation and Reduction Rule: A 

reduction transformation (ϕ) transforms a RVE (coverage rule) 

into a reduction administer (d) such that relation Z' got 

subsequent to assessing d over D permits identifying all source 

tuples of D. In the case, this is expert by incorporating the 
primary keys in the projection. The outcome is another RVE 

called reduction rule. 

d :=R[A0 = B1]S [A1 < 14] (A0,B0,A1,B2) 

In SQL: SELECT A0; B0; A1; B2 FROM R INNER JOIN S 

ON R.A0=S.B1 WHERE R.A1 < 14 

Reduction Procedure: A reduction technique chooses a little 

subset of tuples of Z' d and finds the source tuples in D to get 

the diminished database D0 = {R', S'} The reduction system 

must utilize some sort of methodology such that the lessened 

database is as little as would be prudent. This depends on the 

cost of including each tuple of Z' to D' estimated as far as the 

quantity of new tuples that must be added to the lessened 
database. Essentially here Z' contains two tuples. Both of them 

will create tuples in R' and S' with cost 2. Every one of them 

might be chosen (for instance, the primary tuple of Z' in the 

figure). The reduction strategy is incremental, being executed 

for every coverage govern, with the goal that it considers 

tuples that are as of now in the diminished database. For 

instance, if a tuple with A0 = 3 as of now exists in D', the cost 

of the second tuple in Z' will be 1 (a lower cost) as just a 

single new tuple with B0 = 2 would should be added to the 
diminished database. 

Coverage Gain and Loss: As the reduction method just adds 

tuples to the diminished database at each progression, when a 

query has just determination and join operators, there are no 

coverage decides that are secured at some progression and 

wind up revealed at a later advance (coverage loss). In any 

case, the inverse isn't valid: a decide that isn't shrouded in the 

underlying database may wind up canvassed in the lessened 

database (coverage given). This is the situation of principles 

with external joins: Initially, ace relations may have no less 

than one related line in their detail; along these lines, decides 

that require an ace with no detail are not secured by the 
underlying database. Notwithstanding, as the reduction 

procedure chooses just a couple of rows from the underlying 

database, the lessened database may contain circumstances in 

which there is a column in an ace table with no related line in 

the detail, prompting a coverage given. 

Framed Relations: As the encircling hides the tuples and 

primary keys that are gathered in each casing, the initial step is 

to ungroup the casing by joining the relation Z acquired by 

assessing the coverage administer with the original relation R 

utilizing the gathering attributes (A1) as the joining attributes, 

and after that ordering by the gathering attributes of Z. The 
resulting relation (Z’) reveals the frames. 

Reduction of Frames: Hunt based algorithms have been 

already utilized for various software building issues and 

specifically, software testing. A principal issue is the meaning 

of a wellness work that is limited in order to locate the best 

arrangement among various candidate arrangements. 

 



IJRECE VOL. 6 ISSUE 2 APR-JUNE 2018  ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE) 

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING 

 A UNIT OF I2OR 712 | P a g e  
 

The wellness work incorporates an idea of separation or cost 

that measures how far a candidate arrangement is (i.e., a set of 

contributions) from fulfilling some paradigm (e.g., make 

genuine or false a given condition or decision). The separation 

for relational articulations is assessed utilizing fetched 

capacities. Wellness works for the most part incorporate the 
cost and an extra term called approach level. 

Distances for base predicates: Give X<Z' a chance to be a 

single original frame that is being decreased and X' the 

lessened edge (at first vacant). Give pi a chance to be a base 

predicate, which may contain references to attributes or total 

capacities over attributes however not logical articulations. 

The separation d(pi, X0) over the relation X' is figured 

utilizing the Tracey capacities.  

Consider, for instance, a predicate p:= sum(a)>=8 assessed 

over a relation with three tuples {(1), (2), (3)}. The assessment 

of the separation figures the term sum(a) which gives 6. At 

that point the separation is 8– 6 = 2. 
Efficiency Optimizations: Coverage rules for a query are 

intended to acquire a subset of rows that fulfill a given test 

prerequisite for a query. This produces fewer rows than the 

original query and in that capacity a quicker handling. In any 

case, the transformations that acquire the reduction rules 

acquaint an overhead due with the extra joins used to decide 

the base keys. Various improvements are made after the 

reduction rules have been produced: 

Frame removal: In the event that a rule does not have any 

select after an edge, the edges are evacuated as the reduction 

method just needs a solitary tuple from the casing to cover the 
rule. 

Using SQL windowing functions2 for frames: It is material 

just if the DBMS supports such capacities. At the point when 

this improvement is connected the condition PARTITION BY 

. . . OVER is utilized as opposed to joining the source and 

gathering relations. 

Move sub queries to join clauses: On the off chance that an 

uncorrelated scalar sub query shows up at a conjunctive choice 

predicate, the condition containing the sub query is utilized for 

joining the source and base relations. This causes the DBMS 

to recover the information faster. 

Convert non-scalar to scalar sub queries: In the above case, 
if the total capacity is avg, max or min and the relational 

operator is < or <=, an extra condition is added to the join 

predicate to force the sub query to come back to the most 

extreme esteem (on the other hand if operator is > or >=). This 

reductions the quantity of tuples that are recovered from the 

database and also avoids potential coverage losses. 

Simplification of sub query rules: Some coverage rules for 

uncorrelated sub queries incorporate a principle query and a 

where condition with the sub query inside of an exists logical 

predicate. As no less than one line that fulfills the principle 

query has been acquired when handling the past rules, the 

present rule is streamlined by expelling the fundamental 

query. 

Limiting the Size of the Reduction Relation: 

A littler size of the reduction relation is accomplished by 

changing the reduction rule to indicate a point of confinement 

in the quantity of tuples of various casings. Four distinct cases 
can be determined for: 

Queries without frames: To limit the tuples retrieved by the 

reduction rule. 

Queries with frames: To limit the tuples retrieved by the group 

relation. 

Frames: To limit the tuples retrieved by the source relation. 

Sub queries: To limit the tuples retrieved by the source 

relation. 

 
Fig.1:  Parallelizing the reduction procedures. 

 

This is expert by encasing the SQL of the reduction rule under 

the provision PARTITION BY . . . OVER. This permits 

ruleling the span of each edge by determining its most extreme 

number of tuples. Note that this streamlining must be utilized 

on the off chance that it is supported by the DBMS. The 

specific sentence structure relies upon the specific DBMS 

vendor particular. For example, in SQL server the TOP 
keyword is utilized after SELECT. In Oracle, the ROWNUM 

exceptional section is included a condition of the WHERE 

statement. Restricting the outcome measure is a trade-off 

amongst cost and quality. When restricting the outcome set 

size the proficiency enhances as less information is perused 

from the dataset. In any case, this suggests less information 

might be reused when performing the reductions thus a bigger 

diminished database might be created. 

 

III. CONCLUSION 

We have displayed an approach for the reduction of test 
databases that takes a set of SQL queries and an underlying 

database, and produces a lessened test database that preserves 

the SQLFpc coverage. The approach can deal with complex 

queries covering a substantial set of SQL builds and their 

blends. The outcomes demonstrated that a high level of 

reduction can be accomplished with few coverage misfortunes 

and some coverage picks up. Also, it is versatile in relation to 

the extent of the underlying database and the reduction time. 

Moreover, the entire way to deal with the reduction of a 

database is completely mechanized and a few improvements 

are incorporated. The regular target situation is created by 



IJRECE VOL. 6 ISSUE 2 APR-JUNE 2018  ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE) 

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING 

 A UNIT OF I2OR 713 | P a g e  
 

applications that depend on SQL queries for handling complex 

business rules. A decreased test database might be made for 

testing or creating particular queries, prompting a beginning 

stage of the test database to finish the tests. While considering 

the entire application, an extensive set of queries might be 

extricated from the database sign in order to make a lessened 
database covering these queries, which thus might be utilized 

as a beginning stage for finishing tests or performing other 

support tasks. This is the primary potential advantage of the 

approach that adds to a reduction of the time spent on the 

assignment of making test databases. A second potential 

advantage is to permit a lessening of the seasons of stacking 

test databases, while keeping an agent set of information to 

practice the queries of the applications, prompting speedier 

test execution. Furthermore, having little test databases adds to 

make the undertaking of checking the real outcomes less 

demanding when creating and testing queries, adding to a 

speedier and more dependable test comes about examination. 
 

IV. FUTURE ENHANCEMENT 

Our future work will focus on two territories. To begin with, 

to finish the assessment and down to earth use at the 

application level to incorporate the capacity to decrease test 

databases into the engineer and tester workflows. This will 

infer testing how the reduction performs utilizing different 

DBMS. Second, to utilize the reduction standards to address 

NoSQL databases in order to provide support for testing with 

regards to the improvement of uses that control information 

utilizing these innovations. 
 

V. REFERENCES 
[1]. A. B. M. Moniruzzaman and S. A. Hossain, “NoSQL 

Database:New era of databases for big data analytics - 

classification, characteristics and comparison,” Int. J. Database 
Theory Appl., vol. 6,no. 4, pp. 1–14, Aug. 2013. 

[2]. Information Technology - Database Languages – SQL, Int. 
Standards Organisation ISO/IEC 9075, 1999. 

[3]. Software and Systems Engineering - Software Testing - Part 1: 
Concepts and Definitions, Int. Standards Organisation 
ISO/IEC/IEEE 29119–1:2013, 2013. 

[4]. J. Tuya, M. J. Su_arez-Cabal, and C. de la Riva, “Full predicate 

coverage for testing SQL database queries,” Softw. Testing, 
Verification Rel., vol. 20, no. 3, pp. 237–288, Sep. 2010. 

[5]. RTCA Inc., DO-178-B: Software Considerations in Airborne 
Systems and Equipment Certification, Radio Technical 
Commission for Aeronautics (RTCA), 1992. 

[6]. J. J. Chilenski, “An investigation of three forms of the modified 
condition decision coverage (MCDC) criterion,” U.S. Dept. 
Transp., Federal Aviation Administration, Washington, DC, 
USA, Tech. Rep. DOT/FAA/AR-01/18, Apr. 2001. 

[7]. J. Tuya, M. J. Suarez-Cabal, and C. de la Riva, “Query-aware 
shrinking test databases,” in Proc. 2nd Int. Workshop Testing 
Database Syst., Jun. 2009, pp. 6:1–6:6.  

[8]. S. Yo and M. Harman, “Regression testing minimization, 
selection and prioritization: A survey,” Softw. Testing, 
Verification Rel., vol. 22, no. 2, pp. 67–120, Mar. 2012. 

[9]. G. Rothermel, M. J. Harrold, J. Ronne, and C. Hong, “Empirical 
studies of test suite reduction,” Softw. Testing, Verification Rel., 
vol. 4, no. 2, pp. 219–249, Dec. 2002. 

[10]. E. Engstr€om, M. Skoglund, and P. Runeson, “Empirical 
evaluations of regression test selection techniques: A systematic 

review,” in Proc. 2nd ACM-IEEE Int. Symp. Empirical Softw. 
Eng.Meas., 2008, pp. 22–31. 

[11]. W. E. Wong, J. R. Horgan, S. London, and A. P. Mathur, 
“Effect of test set minimization on fault detection effectiveness,” 
Softw. Practice Experience, vol. 28, no. 4, pp. 347–369, Apr. 
1998. 

[12]. W. E. Wong, J. R. Horgan, A. P. Mathur, and A. Pasquini, “Test 
set size minimization and fault detection effectiveness: A case 

study in a space application,” J. Syst. Softw., vol. 48, no. 2, pp. 
79–89, Oct. 1999. 

[13]. G. Rothermel, M. J. Harrold, J. Ostrin, and C. Hong, “An 
empirical study of the effects of minimization on the fault 
detection capabilities of test suites,” in Proc. Int. Conf. Softw. 
Maintenance,1998, pp. 34–43. 

[14]. G. Rothermel, M. J. Harrold, J. Ronne, and C. Hong, “Empirical 
studies of test suite reduction,” Softw. Testing, Verification Rel., 

vol. 4, no. 2, pp. 219–249, Dec. 2002. 
[15]. E. F. Codd, “A relational model of data for large shared data 

banks,” Commun. ACM, vol. 13, no. 6, pp. 377–387, Jun. 1970. 
[16]. E. F. Codd, The Relational Model for Database Management – 

Version 2. Reading, MA, USA: Addison-Wesley, 1990. 
[17]. J. Tuya, M. J. Su_arez-Cabal, and C. de la Riva, “Mutating 

database queries,” Inf. Softw. Technol., vol. 49, no. 4, pp. 398–
417,Apr. 2007. 

[18]. G. Kaminski, U. Praphamontripong, P. Ammann, and J. Offutt, 
“A logic mutation approach to selective mutation for programs 
and queries,” Inf. Softw. Technol., vol. 53, no. 10, pp. 1137–
1152,Oct. 2011. 

[19]. W. K. Chan, S. C. Cheung, and T. H. Tse, “Fault-based testing 
of database application programs with conceptual data model,” 
in Proc. 5th Int. Conf. Quality Softw., 2005, pp. 187–196. 

[20]. C. J. Wright, G. M. Kapfhammer, and P. McMinn, “Efficient 
mutation analysis of relational database structure using mutant 

schemata and parallelisation,” in Proc. 8th Int. Workshop 
Mutation Anal., 2013, pp. 63–72. 

[21]. C. J. Wright, G. M. Kapfhammer, and P. McMinn, “The impact 
of equivalent, redundant and quasi mutants on database schema 
mutation analysis,” in Proc. 14th Int. Conf. Quality Softw., 
Oct.2014, pp. 57–66. 

[22]. J. Tuya, M. J. Su_arez-Cabal, and C. de la Riva, “SQLMutation: 
A tool to generate mutants of SQL database queries,” in Proc. 

2nd Workshop Mutation Analy., 2006, p. 1. 
[23]. C. Zhou and P. G. Frankl, “Mutation testing for java database 

applications,” in Proc. 2nd Int. Conf. Softw. Testing Verification 
Validation,2009, pp. 396–405. 

[24]. C. Zhou and P. G. Frankl, “JDAMA: Java database application 
mutation analyser,” Softw. Testing, Verification Rel., vol. 21, 
no. 3,pp. 241–263, Sep. 2011. 

[25]. C. Zhou and P. G. Frankl, “Inferential checking for mutants 

modifying database states,” in Proc. 4th Int. Conf. Softw. 
Testing Verification Validation, 2011, pp. 259–268. 

 


