

Traditional and Novel Thermoelectric Materials

Anthony Powell Department of Chemistry University of Reading Reading RG6 6AD

a.v.powell@reading.ac.uk

Energy from Waste Heat

New car emission standards 160 g CO₂/km (2007) 130 g CO₂/km (2012) 95 g CO₂/km (2020) Regulation (EC) No 443/2009 (2009)

80% reduction in greenhouse gas emissions(from 1990 levels) by 2050 UK Climate Change Act (2008)

Recent programs: GM BMW VW

200 - 600W TEG ca. 5% Fuel Economy

University of Limitations of Current Materials Reading $ZT = \frac{S^2 \sigma T}{(\kappa_L + \kappa_e)}$ Figure of Merit: 2.0 Z=0.005 $\textbf{AgPb}_{\textbf{m}}\textbf{SbTe}_{2+\textbf{m}} / \textbf{Yb}_{0,19}\textbf{Co}_{4}\textbf{Sb}_{12}$ 40 1.6 Z=0.004 CeFe_{4-x}Co_xSb₁₂ Z=0.003 30 Efficiency/% 1.2 Z=0.002 ΖŢ Bi_,Te_, Si_{1-x}Ge_x 20-0.8 PbTe Z=0.001 10 0.4 0.0 800 1000 1200 400 600 1400 1600 200 400 600 800 1000 1200 1400 0 Hot-side temperature/K

Temperature/K

Materials Parameters

Electrical conductivity (s), Seebeck (S) and electronic thermal conductivity (k_e) all inter-dependent

Materials Design 1: Phonon Glass Electron Crystal

Filled Skutterudites

Rattling vibrations reduce κ_{ph} CoSb₃: 9 Wm⁻¹K⁻¹ R(Fe₃CoSb₁₂): 1.2 Wm⁻¹K⁻¹

J Garcia-Cañadas et al. J. ELectron Mater. **42**, 1369, (2013)

<u>HWU-Cardiff Skutterudite Module</u> Yb_xCo₄Sb₁₂ (*n*-type) Ce_xFe₃CoSb₁₂ (*p*-type)

Materials Design 2: Reduced Dimensionality

Thin-Film Superlattices

Ordered Defect Phases as TEs

Cdl₂ Structure

Network of vacant octahedral sites

Partial occupancy of octahedral sites between MS₂ slabs leads to ordering of vacancies and formation of superstructures

Compositional Dependence of Superstructure: Co_xTiS₂

University of

💎 Reading

University of **Reading**

TE Properties of Co_xTiS₂

Resistivity and Seebeck coefficient decrease with increasing x

G. Guelou poster at lunchtime

ZT=0.45 @300°C

Materials Design 3: Fermi LevelTuningMott Relation:

Mott Relation: $S \propto dlnN(E)/dE @ E=E_F$

Shandite: Co₃Sn₂S₂

Yu et al. J. Phys. Conf. Ser. 100 (2008) 072011

Co₃Sn_{2-x}In_xS₂: Tune $E_F - 2 e^-$ change

Compositional Dependence of S and ρ

Electrical properties at 360 K Image: Second straig of the sec

University of

😵 Reading

J. Corps et al, J. Mater. Chem. A, 1, 6553, (2013)

TE Performance of $Co_3Sn_{2-x}In_xS_2 \xrightarrow{\text{University of Reading}}$

ZT ≈ 0.2 at temperatures close to ambient.
 Max ZT = 0.32 at 400 °C

Lattice contribution to thermal conductivity effectively independent of composition

Materials Design 4: Separation of S² σ and κ terms

P. Vaqueiro et al: *J. Mater. Chem. A*, **1**, 520-523 (2013).

Materials Design 5: Nanostructuring

 Interface scattering: decreases κ_L
 Interface scattering when mean-free-path > interface spacing

Ball-Milled Thermoelectrics

Bulk

Nano

200

250

Poudel et al, Science, 320, 634, (2008)

	Bulk		Nanostructured	
Material	ZT _{max}	Temperature at	ZT _{max}	Temperature at
		which ZT _{max} is		which ZT _{max} is
		observed		observed
Si	0.2	1200	0.7	1200
$Si_{80}Ge_{20}$ (n-type)	1.0	1200	1.3	1173
Si ₈₀ Ge ₂₀ (p-type)	0.7	1200	0.95	1073
(Bi,Sb) ₂ Te ₃	0.9	293	1.4	373
CoSb ₃	0.45	700	0.71	700

P. Vaqueiro and A.V. Powell, J. Mater. Chem., **20**, 9577, (2010)

Nanocomposite TEs by Arrested Reading Precipitation

Matrix Encapsulation

Sootsman et al, Chem. Mater., 18, 4994, (2006)

Electrical Properties: A = TI, B = Bi Phases

TI_{1-x}Pb₁₀BiTe₂₀

Tl_{1-x}Pb₁₈BiTe₂₀

A.V. Powell et al, MRS Proc. 1044, U08-04, (2008)

TE Properties: $TI_{1-x}Pb_mBiTe_{m+2}$ $TI_{1-x}Pb_{18}BiTe_{20}$ 1.8 PbTe x=0.0 x = 0.1[−]¥^{1.6} [−]E^{1.4} ×1.2 x = 0.2x=0.3 -■ 0.> 1.0 373K 0.6 -18 0.5 0.8⁺ 350 0_{.4} AST 400 450 500 550 600 650 0 0_{.3} T/K 7 0.2 0.1 * in 71 0.3 * in 71 0.3 * Birco. * 0.0 12/18 11:10 Sam Sam Sam

Nanocasting

	Shances
87	
8°.90	550°

Template	Porosity	Average Pore Size/nm	Channel System
MCM-41	Mesoporous	2.2	1-D
MCM-48	Mesoporous	2.5	3-D
SBA-15	Mesoporous	7	1-D
SBA-16	Mesoporous	5.6	3-D
Zeolite VFI	Microporous	1.3	1-D
Zeolite LTL	Microporous	0.7	1-D

MCM-41

Soft Templating: Lipid self-

assembly

Deposition

Wash away template

S. Akbar et al, Adv. Mater. 2013, 25, 1160.

Bicontinuous double diamond nanostructred Pt

Current Materials Challenges

Understanding: New insights required into materials properties (especially at the nanoscale) Design of new materials – portfolio of materials? Performance vs cost: What performance is acceptable at what price? To what extent does this vary with application? Sustainability: **Te-free thermoelectrics** Manufacture: Scaleability of synthesis Consolidation – SPS, Hot Pressing, Microwave Module design and fabrication, solders, barrier layers etc Compatible n- and p-type materials Integration: System-wide holistic approach

Acknowledgements

Dr P. Vaqueiro Dr A Kaltzoglou G. Guelou Dr V. Izard Dr J. Corps S. Luu

Prof. R.K. Stobart (Loughborough) Dr G. Min (Cardiff) Dr S. Hull (ISIS) Dr R. Smith (ISIS) Dr K. Knight (ISIS) Mr K. Simpson (ETL) Dr E. Guillmeau (CNRS)

Materials Design: Phonon Glass Electron Crystal

Filled Skutterudites

Rattling vibrations reduce κ_{ph} CoSb₃: 9 Wm⁻¹K⁻¹ R(Fe₃CoSb₁₂): 1.2 Wm⁻¹K⁻¹

Organic-Inorganic Hybrids as Thermoelectrics

The "single diamond" nanostruct reading

50 nm

"The diamond structure... possesses the champion [photonic and phononic] band gap" Gorishnyy et al, Physics World 2005

S.Akbar, J. Elliott*, M. Rittman & A. Squires*, Advanced Materials 2013,

Figures of Merit

Solvothermal Growth of Nanoparticulat

Metal Salts, Reducing agent <u>T></u> Solvent, P≤200 bar 'Template Molecule'

Ji et al. J. Electron Mater., **36**, 271, (2007)

Mi et al. JALCOM, **399**, 260, (2005)

Thermoelectric Energy Recovery

Thermoelectric Couple

Power

Lightweight and small Very reliable

Energy Conversion Technologies

Zebarjadi et al, Energy Env. Sci., 5, 5147, (2012)

Materials Design 4: Separation of S² σ and κ terms

BiOCuSe

Independent optimisation of $S^2\sigma$ (covalent) and κ_L (ionic)