
1

CAP 5993/CAP 4993

Game Theory

Instructor: Sam Ganzfried

sganzfri@cis.fiu.edu
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Announcements

• HW1

• HW2

• midterm
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Extensive-form game

• A game in extensive form is given by a game tree, which 

consists of a directed graph in which the set of vertices 

represents positions in the game, and a distinguished vertex, 

called the root, represents the starting position of the game. A 

vertex with no outgoing edges represents a terminal position in 

which play ends. To each terminal vertex corresponds an 

outcome that is realized when the play terminates at that vertex. 

Any nonterminal vertex represents either a chance move (e.g., a 

toss of a die or a shuffle of a deck of cards) or a move of one of 

the players. To any chance-move vertex corresponds a 

probability distribution over edges emanating from that vertex, 

which correspond to the possible outcomes of the chance move.



4



5

Perfect vs. imperfect information

• To describe games with imperfect information, in 

which players do not necessarily know the full board 

position (like poker), we introduce the notion of 

information sets. An information set of a player is a set 

of decision vertices of the player that are 

indistinguishable by him given his information at that 

stage of the game. A game of perfect information is a 

game in which all information sets consist of a single 

vertex. In such a game whenever a player is called to 

take an action, he knows the exact history of actions 

and chance moves that led to that position.
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• A strategy of a player is a function that assigns to each 

of his information sets an action available to him at that 

information set.  A path from the root to a terminal 

vertex is called a play of the game. When the game has 

no chance moves, any vector of strategies (one for each 

player) determines the play of the game, and hence the 

outcome. In a game with chance moves, any vector of 

strategies determines a probability distribution over the 

possible outcomes of the game.



7



8

• Theorem (von Neumann [1928]) In every two-

player game (with perfect information) in which 

the set of outcomes is O = {Player 1 wins, 

Player 2 wins, Draw}, one and only one of the 

following three alternatives holds:

1. Player 1 has a winning strategy.

2. Player 2 has a winning strategy.

3. Each of the two players has a strategy 

guaranteeing at least a draw.
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Chance moves

• In the games we have seen so far, the transition from one state to another is 

always accomplished by actions undertaken by the players. Such a model is 

appropriate for games such as chess and checkers, but not for card games or 

dice games (such as poker or backgammon) in which the transition from one 

state to another may depend on a chance process: in card games, the shuffle 

of the deck, and in backgammon, the toss of the dice. It is possible to come 

up with situations in which transitions from state to state depend on other 

chance factors, such as the weather, earthquakes, or the stock market. These 

sorts of state transitions are called chance moves. To accommodate this 

feature, our model is expanded by labeling some of the vertices in the game 

tree (V, E, x0) as chance moves. The edges emanating from vertices 

corresponding to chance moves represent the possible outcomes of a lottery, 

and next to each such edge is listed the probability that the outcome it 

represents will be the result of the lottery.
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Rock-paper-scissors

0,0 -1,1 0,0 0,0-1,1 -1,11,-1 1,-1 1,-1



11

Strategies in imperfect-information games

• A strategy of player i is a function from each of 

his information sets to the set of actions 

available at that information set.

• Just as in games with chance moves and perfect 

information, a strategy vector determines a 

distribution over the outcomes of a game.
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• Theorem (Kuhn) Every finite game with perfect 

information has at least one pure strategy Nash 

equilibrium.

• Corollary of Nash’s Theorem: Every extensive-form 

game (of perfect or imperfect information) has an 

equilibrium in mixed strategies.
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• Let’s solve some games!!

• Gambit -- http://www.gambit-project.org/
– Strategic-form and extensive-form games

– Dominance, equilibrium, quantal response equilibrium

– Remove iteratively weakly/strictly dominated strategies

– Remove iteratively weakly/strictly “dominated actions” in 

extensive-form games

http://www.gambit-project.org/
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Quantal response equilibrium

• Quantal response equilibrium (QRE) provides an equilibrium 

notion with bounded rationality. QRE is not an equilibrium 

refinement, and it can give significantly different results from 

Nash equilibrium. 

• In a quantal response equilibrium, players are assumed to make 

errors in choosing which pure strategy to play. The probability 

of any particular strategy being chosen is positively related to 

the payoff from that strategy. In other words, very costly errors 

are unlikely.

• The equilibrium arises from the realization of beliefs. A player's 

payoffs are computed based on beliefs about other players' 

probability distribution over strategies. In equilibrium, a player's 

beliefs are correct.



15

• By far the most common specification for QRE is logit 

equilibrium (LQRE). 

• Pij is probability of player i choosing strategy j.

• The parameter λ is non-negative (sometimes written as 1/μ).

• λ can be thought of as the rationality parameter. As λ→0, players 

become "completely non-rational", and play each strategy with 

equal probability. As λ→∞, players become "perfectly rational," 

and play approaches a Nash equilibrium.
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Dominance

– Remove iteratively weakly/strictly dominated 

strategies

– Remove iteratively weakly/strictly “dominated 

actions” in extensive-form games
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• Compute one Nash equilibrium

– Solving Linear program

– Simplicial subdivision

– Tracing logit equilibria
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• Compute as many Nash equilibria as possible

– By solving a linear complementarity program

– By looking for pure strategy equilibria

– By minimizing the Lyapunov function

– By global Newton tracing

– By iterated polymatrix approximation

– By solving a system of polynomial equations
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• Compute all Nash equilibria

– By enumerating extreme points
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Extensive-form games

• Compute one Nash equilibrium

– Using the extensive-form game

– Using the strategic-form game

• Some of the algorithms appropriate for just extensive 

vs. strategic form
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Prisoner’s dilemma

C D

C 4, 4 0, 5

D 5, 0 1, 1
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Battle of the sexes
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Rock-paper-scissors

rock paper scissors

Rock 0,0 -1, 1 1, -1

Paper 1,-1 0, 0 -1,1

Scissors -1,1 1,-1 0,0
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Security game
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Chicken
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Rock-paper-scissors

0,0 -1,1 0,0 0,0-1,1 -1,11,-1 1,-1 1,-1
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WL/12 CC CF FC FF

00 0 0 0 0

01 -0.5 -0.5 1 1

02 -1 1 -1 1

10 …

11

12

20

21

22
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• “Because of the field’s widespread applicability and the variety of 

mathematical and computational issues it encompasses, it is hard to place 

game theory within any single discipline (although it has traditionally been 

viewed as a branch of economics). While the field is clearly benefitting from 

being analyzed from many different perspectives, it is also important to make 

sure that it doesn’t become disorganized as a result. When I started doing 

research for my thesis, I was surprised at how difficult it was to find a basic 

introduction to the fundamental mathematical and computational results. I 

had to turn to game theory textbooks for proofs of classical results, operations 

research and optimization books for results in linear programming and linear 

complementarity, and more recent computer science and economics papers 

for algorithms and complexity results. Thus, the major contribution of this 

paper is to present the basic mathematical and computational results related 

to computing Nash equilibria in a coherent form that can benefit people from 

all fields.”

• http://www.cs.cmu.edu/~sganzfri/SeniorThesis.pdf



30

Computing Nash equilibria of two-

player zero-sum games

• Consider the game G = ({1,2}, A1 x A2, (u1, u2)).

• Let U*i be the expected utility for player i in equilibrium (the 

value of the game); since the game is zero-sum, U*1 = - U*2.

• Recall that the Minmax Theorem tells us that U*1 holds constant 

in all equilibria and that it is the same as the value that player 1 

achieves under a minmax strategy by player 2.

• Using this result, we can formulate the problem of computing a 

Nash equilibrium as the following optimization:

Minimize U*1

Subject to Σk in A2 u1,(a
j
1, a

k
2) * sk

2  <= U*1 for all j in A1

Σk in A2 s
k

2  = 1

sk
2  >= 0 for all k in A2
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Minimize U*1

Subject to Σk in A2 u1(a
j
1, a

k
2) * sk

2  <= U*1 for all j in A1

Σk in A2 s
k

2  = 1

sk
2  >= 0 for all k in A2

• Note that all of the utility terms u1(*) are constants while the 

mixed strategy terms sk
2 and U*1 are variables. 
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Minimize U*1

Subject to Σk in A2 u1(a
j
1, a

k
2) * sk

2  <= U*1 for all j in A1

Σk in A2 s
k

2  = 1

sk
2  >= 0 for all k in A2

• First constraint states that for every pure strategy j of player 1, his expected 

utility for playing any action j in A1 given player 2’s mixed strategy s1 is at 

most U*1. Those pure strategies for which the expected utility is exactly U*1

will be in player 1’s best response set, while those pure strategies leading to 

lower expected utility will not.

• As mentioned earlier, U*1 is a variable; we are selecting player 2’s mixed 

strategy in order to minimize U*1 subject to the first constraint. Thus, player 

2 plays the mixed strategy that minimizes the utility player 1 can gain by 

playing his best response.  
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Minimize U*1

Subject to Σk in A2 u1(a
j
1, a

k
2) * sk

2  <= U*1 for all j in A1

Σk in A2 s
k

2  = 1

sk
2  >= 0 for all k in A2

• The final two constraints ensure that the variables sk
2 are 

consistent with their interpretation as probabilities. Thus, we 

ensure that they sum to 1 and are nonnegative. 
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• v_ = 1 and v^ = 1. Player 1 can guarantee that he will 

get a payoff of a least 1 (using the maxmin strategy M), 

while player 2 can guarantee that he will pay at most 1 

(by way of minmax strategy R).

• So the value v=1.

L C R

T 3, -3 -5, 5 -2, 2

M 1, -1 4, -4 1, -1

B 6, -6 -3, 3 -5, 5



35

Minimize U*1

Subject to Σk in A2 u1(a
j
1, a

k
2) * sk

2  <= U*1 for all j in A1

Σk in A2 s
k

2  = 1

sk
2  >= 0 for all k in A2

Minimize U*1

Subject to  3 * s1
2 + (-5) * s2

2 + (-2) * s3
2 <= U*1

1 * s1
2 + 4 * s2

2 + 1 * s3
2 <= U*1

6 * s1
2 + (-3) * s2

2 + (-5) * s3
2 <= U*1

s1
2 + s2

2 + s3
2 = 1

s1
2  >= 0, s2

2  >= 0, s3
2  >= 0
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Linear programs

• A linear program is defined by:

– a set of real-valued variables

– a linear objective function (i.e., a weighted sum of the 

variables)

– a set of linear constraints (i.e., the requirement that a 

weighted sum of the variables must be less than or equal to 

some constant).

• Let the set of variables be {x1, x2, …, xn}, which each 

xi in R. The objective function of a linear program, 

given a set of constraints w1, w2, …, wn, is

Maximize Σn
i=1 wixi
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• Linear programs can also express minimization 

problems: these are just maximization problems with 

all weights in the objective function negated.

• Constraints express the requirement that a weighted 

sum of the variables must be greater or equal to some 

constant. Specifically, given a set of constants a1j,…, 

anj, and a constant bj, a constraint is an expression  

Σn
i=1 aijxi <= bj
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Σn
i=1 aijxi <= bj

• By negating all constraints we can express greater-

than-or-equal constraints.

• By providing both less-than-or-equal and greater-than-

or-equal constraints with the same constants, we can 

express equality constraints.

• By setting some constants to zero, we can express 

constraints that do not involve all of the variables.

• We cannot always write strict inequality constraints, 

though sometimes such constraints can be enforced 

through changes to the objective function.
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Minimize U*1

Subject to Σk in A2 u1(a
j
1, a

k
2) * sk

2  <= U*1 for all j in A1

Σk in A2 s
k

2  = 1

sk
2  >= 0 for all k in A2

Minimize U*1

Subject to  3 * s1
2 + (-5) * s2

2 + (-2) * s3
2 <= U*1

1 * s1
2 + 4 * s2

2 + 1 * s3
2 <= U*1

6 * s1
2 + (-3) * s2

2 + (-5) * s3
2 <= U*1

s1
2 + s2

2 + s3
2 = 1

s1
2  >= 0, s2

2  >= 0, s3
2  >= 0
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• We can solve the dual linear program to obtain a Nash 

equilibrium strategy for player 1.

Maximize U*1

Subject to Σj in A1 u1(a
j
1, a

k
2) * sj

1 >= U*1 for all k in A2

Σj in A1 s
j
1 = 1

sj
1 >= 0 for all j in A1
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• Duality theorem: If both a LP and its dual are 

feasible, then both have optimal vectors and the 

values of the two programs are the same.
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Why does this matter?

• Linear programs can be solved “efficiently.”

– Ellipsoid method runs in polynomial time.

– Simplex algorithm runs in worst-case exponential 

time, but runs efficiently in practice.
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• Note the following equivalent formulation of the original LP:

Minimize U*1

Subject to Σk in A2 u1(a
j
1, a

k
2) * sk

2  + rj
1 =  U*1 for all j in A1

Σk in A2 s
k

2  = 1

sk
2  >= 0 for all k in A2

rj
1 >= 0 for all j in A1

Minimize U*1

Subject to Σk in A2 u1(a
j
1, a

k
2) * sk

2  <= U*1 for all j in A1

Σk in A2 s
k

2  = 1

sk
2  >= 0 for all k in A2
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Two-player general sum games
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• Minmax Theorem does not apply, so we cannot 

formulate as a linear program. We can instead 

formulate as a Linear Complemetarity Problem (LCP).

Minimize ….. (No objective!) 

Subject to Σk in A2 u1(a
j
1, a

k
2) * sk

2  + rj
1 =  U*1 for all j in A1

Σj in A1 u2(a
j
1, a

k
2) * sk

2  + rk
2 =  U*2 for all k in A2

Σj in A1 s
j
1 = 1, Σk in A2 s

k
2  = 1

sj
1, s

k
2  >= 0 for all j in A1, k in A2

rj
1, r

k
2  >= 0 for all j in A1, k in A2

rj
1 * sj

1 = 0, rj
2 * sj

2 = 0 for all j in A1, k in A2
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• B. von Stengel (2002), Computing equilibria for two-

person games. Chapter 45, Handbook of Game Theory, 

Vol. 3, eds. R. J. Aumann and S. Hart, North-Holland, 

Amsterdam, 1723-1759. 
– http://www.maths.lse.ac.uk/personal/stengel/TEXTE/nashsurvey.pdf

• Longer earlier version (with more details on equivalent 

definitions of degeneracy, among other aspects): 

B. von Stengel (1996), Computing Equilibria for Two-

Person Games. Technical Report 253, Department of 

Computer Science, ETH Zürich. 

http://www.maths.lse.ac.uk/personal/stengel/TEXTE/nashsurvey.pdf
http://www.maths.lse.ac.uk/personal/stengel/TEXTE/tr-new.pdf
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• Define E = [1,…,1], e = 1, F = [1,…,1], f = 1

• Given a fixed y in Y, a best response of player 1 to y is 

a vector x in X that maximizes the expression xT(Ay). 

That is, x is a solution to the LP:

Maximize xT(Ay) 

Subject to Ex = e, x >= 0

• The dual of this LP with variables u:

Minimize eTu

Subject to ETu >= Ay
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• So a minmax strategy y of player 2 (minimizing the maximum 

amount she has to pay) is a solution to the LP

Minimize eTu

Subject to Fy = f

ETu – Ay >= 0

y >= 0

• Dual LP:

Maximize fTv

Subject to Ex = e

FTv – BTx <= 0

x >= 0
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• Theorem: The game (A,B) has the Nash 

equilibrium (x,y) if and only if for suitable u,v

Ex = e

Fy = f

ETu – Ay >= 0

FTv – BTx >= 0

x, y >= 0
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• This is called a linear complementarity program. 

• Best algorithm is Lemke Howson Algorithm.

– Does NOT run in polynomial time. Worst-case exponential.

• Computing a Nash equilibrium in these games is 

PPAD-complete, unlike for two-player zero-sum 

games where it can be done in polynomial time.
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• Assume disjoint strategy sets M and N for both players. Any 

mixed strategy x in X and y in Y is labeled with certain elements 

if M union N. These labels denote the unplayed pure strategies 

of the player and the pure best responses of his or her opponent. 

For i in M and j in N, let

– X(i) = {x in X| xi = 0},

– X(j) = {x in X| bjx >= bkx for all k in N}

– Y(i) = {y in Y | aiy >= aky for all k in M}

– Y(j) = {y in Y | yj = 0}

• Then x has label k if x in X(k) (i.e., x is a best response to 

strategy k for player 2), and y has label k if y in Y(k), for k in M 

Union N. 
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• Clearly, the best-response regions X(j) for j in N are polytopes 

whose union is X. Similarly, Y is the union of the sets Y(i) for i 

in M. Then a Nash equilibrium is a completely labeled pair (x,y) 

since then by Theorem 2.1, any pure strategy k of a player is 

either a best response or played with probability zero, so it 

appears as a label of x or y.

• Theorem: A mixed strategy pair (x,y) in X x Y is a Nash 

equilibrium of (A,B) if and only if for all k in M Union N either 

x in X(k) or y in Y(k) (or both).
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• For the following game, the labels of X and Y are:

L R

T 0, 1 6, 0

M 2, 0 5, 2

B 3, 4 3, 3
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• The equilibria are:

– (x1,y1) = ((0,0,1),(1,0)), where x1 has the labels 1, 2, 

4 (and y1 has the remaining labels 3 and 5),

– (x2,y2) = ((0,1/3,2/3),(2/3,1/3)), with labels 1, 4, 5 

for x2

– (x3,y3) = ((2/3,1/3,0),(1/3,2/3)), with labels 3, 4, 5 

for x3
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• This “inspection” is effective at finding equilibria of games of 

size up to 3x3. It works by inspecting any point x for P1 with m 

labels and checking if there is a point y having the remaining n 

labels. A game is “nondegenerate” if any x has at most m labels 

and every y has at most n labels.

• “Most” games are nondegenerate, since having an additional 

label imposes an additional equation that will usually reduce the 

dimension of the set of points having these labels by one. Since 

the complete set X has dimension m-1, we expect no points to 

have more than m labels. This will fail only in exceptional 

cirtcumstances if there is a special relationship between the 

elements of A and B.
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n-player general-sum games

• For n-player games with n >= 3, the problem of computing an 

NE can no longer be expressed as an LCP. While it can be 

expressed as a nonlinear complementarity problem, such 

problems are often hopelessly impractical to solve exactly. 

• Can solve sequence of LCPs (generalization of Newton’s 

method). 

– Not globally convergent

• Formulate as constrained optimization (minimization of a 

function), but also not globally convergent (e.g., hill climbing, 

simulated annealing can get stuck in local optimum)

• Simplicial subdivision algorithm (Scarf)

– Divide space into small regions and search separately over the regions.

• Homotopy method (Govindan and Wilson)
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Coming up

• Algorithms for computing solution concepts in 

strategic-form and extensive-form games, Gambit and 

Game Theory Explorer software packages.

• Go through more specific examples of solving linear 

programs and linear complementarity programs.

• Solving games with >= 3 players.

• Computing maxmin and minmax for two-player 

general-sum games.

• Identifying dominated strategies

– Domination by pure strategies, domination by mixed 

strategies, iterated dominance
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Assignment

• Reading for next class: Game Theory Explorer document and 

slides, http://www.cs.cmu.edu/~sganzfri/SeniorThesis.pdf

https://arxiv.org/pdf/1403.3969v1.pdf
http://gambit.sourceforge.net/games2016/gte-talk.pdf

