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ABSTRACT
The agents community has produced a wide variety of compelling
solutions for many real-world problems, and yet there is still a sig-
nificant disconnect between the behaviors that an agent can learn
and those that exemplify the rich behaviors exhibited by humans.
This problem exists both with agents interacting solely with an en-
vironment, as well as agents interacting with other agents. The so-
lutions created to date are typically good at solving a single, well-
defined problem with a particular objective, but lack in generaliz-
ability.

In this work, we discuss the possibility of using an awareness
framework, coupled with the optimization of multiple dynamic ob-
jectives, in tandem with the cooperation and coordination concerns
intrinsic to multiagent systems, to create a richer set of agent behav-
iors. We propose future directions of research that may lead toward
more-human capabilities in general agent behaviors.

1. INTRODUCTION
Agents don’t act like humans. To a certain extent, this is a desir-

able trait. Humans can be seen as irrational, moody, and on occa-
sion downright unpleasant.

The agent-based research community has developed compelling
solutions for a wide variety of problems, ranging from systems to
catch poachers [50] to robotic soccer [3] to stock trading [4] to air
traffic management [46, 51], space exploration [33, 52], and many
others. However, the solutions produced by the agent research com-
munity don’t tend to resemble the human decision making process.

Research in this matter in the artificial intelligence community
has existed for many decades, with a number of different forms.
Common sense [27, 28, 29], context and awareness [5, 13, 14, 39]
and lifelong learning [8, 45], are all different instantiations of this
concept, which at its core is trying to capture the incredible flexibil-
ity and often (apparent) unpredictability of human decision making.

This is not to say that the human way of thinking is somehow
superior to agent-based reasoning, but instead is to ask why we
cannot achieve this in addition to the advantages that agents have
in solving complex problems.

In this work we posit that there may be two prongs which form
a very simple answer: first, that the solutions simply do not exist
within the paradigm that we, as a community, have been using to
solve these problems; and second, that rich decision making re-
quires a broader sense of awareness of one’s environment and its
meaning, which has not yet received research attention.

At their most basic, most papers in the field produce some form
of agent to solve some problem. Over the years, we’ve created
more-and-more impressive agents to solve increasingly difficult prob-
lems. This is the tried and true framework for agent-based research.
Find a problem, and specifically tailor an agent-based algorithm to

solve this problem.
Despite, or possibly because of these successes, the community

has not made significant steps toward the richer set of behaviors that
humans exhibit on an everyday basis. Perhaps it is not the pursuit of
a particularly impressive agent to solve a particularly difficult task
which will lead us toward agents which exhibit these rich behav-
iors we seek, but instead these behaviors may require a paradigm
change.

This type of creative barrier is one that is mirrored in another
field: optimization. Many optimization techniques have been de-
veloped for a wide variety of optimization problems, but when op-
timizing a single value, there are only so many behaviors that can
be described this way, and thereby discovered by a single-objective
optimization. In recent years, complex optimization problems are
not solved by an excessively impressive optimizer solving a dif-
ficult problem, but instead, through a different paradigm. Multi-
objective optimization offers a much richer set of behaviors that
describes a more complete set of desirable behaviors a system may
exhibit [30, 34].

To a certain extent, this is a leap that the agent-based research
community is and has been making. We’ve discovered that some
of our techniques from single-objective problems are applicable to
multi-objective problems [53, 56], and even that creating a multi-
objective problem can make the single-objective problems easier to
solve [6, 7].

However, in this work we argue that the crux of the issue does not
lie in considering agent-based problems as multi-objective prob-
lems, as this only addresses a portion of the larger issue. We posit
that human decision making can be reasonably modeled by a multi-
objective process, with constantly-shifting, dynamic, non-linear pri-
orities. We pose a series of human experiences that illustrate this
point, and use these experiences to form a paradigm through which
each of these issues can be addressed by the agent-based research
community.

The remainder of this work is organized as follows: we begin
in Section 2 by offering some background on multi-objective op-
timization, since this is a central tenet of our outlook. We then
identify a series of human experiences in Section 3 that support the
dynamic multi-objective model of a human. In Section 4 we be-
gin building an agent-based framework that can reflect this process
and identify some portions of the work that are being done. Finally,
in Section 5, we conclude this work with a challenge to the agent
community to reach this vision.

2. BACKGROUND: OPTIMIZATION
Within the context of this work, it is important to understand

the beginnings of multi-objective optimization (Section 2.1), its
modern presence (Section 2.2), and how the form of the reward



can change the behavior (Section 2.3). However, we begin by dis-
cussing the general concept of optimization.

The core concept of single objective optimization is to choose a
set of parameters which you have control over, ~x, such that you can
either minimize or maximize a value you can’t directly control, y,
through some form of functional mapping y = f(~x). f(~x) can be
nonlinear, discontinuous, stochastic, and difficult or expensive to
sample, which form some of the core issues that has kept the field
of optimization vibrant and active for many years.

2.1 History of Multi-Objective Optimization
Though many concepts in the field of multi-objective problem

solving are named after Vilfredo Pareto, we traced the origins of
the field beyond Pareto, to Edgeworth [11].

Edgeworth establishes that, given the choice between a large
quantity of good A and a small quantity of good B, or a small
quantity of good A and a large quantity of good B, an individual
might be indifferent to which set of goods he receives. This estab-
lishes the concept of an indifference curve (a curve along which
one combination of goods is not preferred to another combination
also located on the curve), and also to the concept of a preference
curve, which lies perpendicular to the indifference curve.

Pareto solidified the study of the field. He discusses a concept
that he calls ophelimity, which can be roughly associated with eco-
nomic use or utility, which he defines as follows [31, 32]:

For an individual, the ophelimity of a certain quantity
of a thing, added to another known quantity (it can
be equal to zero) which he already possesses, is the
pleasure which this quanitity affords him

Pareto makes a strong case that the goal of an individual is to
constantly increase their personal ophelimity as far as is feasible.
Combining the works of Edgeworth and Pareto, this involves the
individual moving along their personal preference curve, which sits
perpendicular from his indifference curve, and may be nonlinear.

2.2 Multi-Objective Optimization
Multi-objective optimization is an extension to the single-objective

optimization process, where the formulation instead is to maximize
or minimize (or some mixture of the two) a vector of solutions
~y = f(~x). Each individual element of ~y can be optimized simulta-
neously in the formulation discussed in the previous section, but the

Objective 1 (maximize)

O
b

je
c

ti
ve

 2
 (

m
a

x
im

iz
e

)

A

B

C

X

Y

Z

feasible 

boundary

Figure 1: Curve ABC forms an indifference curve, as does XYZ.
Curve XYZ represents an increase in ophelimity from ABC. Since
Y is the feasible solution with the highest ophelimity, it will be
preferred by the decision maker.
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Figure 2: A curve of indifference (solid) can change shape with
time. These changes may be easy to parameterize, or nonlinear and
difficult to describe, especially with higher numbers of objectives.

primary challenge in multi-objective optimization is the optimiza-
tion of all of these quantities simultaneously. This leads to an entire
set of solutions which form the Pareto optimal set on the border
between the feasible and infeasible portions of the objective space.
These Pareto optimal solutions describe the optimal tradeoffs be-
tween the objectives.

This expansion of the problem has led to many advances in opti-
mization, and has allowed solution of extremely complex optimiza-
tion problems, which would be very difficult to pose in a single-
objective sense [16, 21, 49].

Methods in multi-objective optimization vary widely. The sim-
plest and possibly widest-used is the linear combination, in which
the (often weighted) objectives are simply added together. This
is very computationally efficient, but has well-documented draw-
backs, and does not provide the richer behavior space we seek [2,
9, 25]. The linear combination can provide these richer behavior
spaces if combined with the concept of indifference, and if the ob-
jective space is transformed to guarantee specific types of convex-
ity [54, 55].

Other concepts include nonlinear schemes [18, 26], partition-
ing the search space [36, 37], and population-based methods in
which each population member is compared (pairwise) to each of
the other population members, to develop some fitness metric [10,
57].

2.3 Rewards Change Behaviors
Imbuing an adaptive agent with a richer set of possible behaviors

poses a difficult problem from the reward design standpoint. While
we can typically describe in common language what we would like
an agent to do, the act of translating this into a reward or evaluation
that leads to this behavior is a difficult process, especially when
what you want the agent to do changes over time, or uses on a con-
textual dependence of events that the agent might not have direct
awareness of or the capability to sense.

The design of such a framework, in which agents are able to
switch between different contexts and weigh different priorities or
objectives with different nonlinear weights, which are simultane-
ously time-varying, is an extremely difficult design problem with
the tools that exist to date.

However, in order to develop this richer set of behaviors that cap-
tures the flexibility and emergence that are characteristics of human
behaviors, we need to develop techniques for designing such time-
varying multiple simultaneous rewards, as well as the algorithms
that can use these.



3. SOME HUMAN EXPERIENCES
In this section we pose a series of cases which identify ways in

which the use of contextual clues can promote awareness and a shift
of mindset in human behaviors. We also present relatively simple
cases which are still best described by a combination of multiple
objectives.

3.1 Class Begins
Consider a group of students who have shown up a few minutes

before a class is due to begin, so they begin interacting with each
other about whichever topics are on their mind. There is some sig-
nal given, whether by an external cue or by the instructor, that class
is about to begin, and the students quiet and begin to listen to the
instruction being delivered. If a small group of students continues
to speak after class has begun, they may be quieted by their class-
mates.

This case serves to show that human awareness can lead to swift
changes in priorities, and that communication as well as passive
observation can lead to a person changing contexts. While this dy-
namic and the exact mechanics may change on a classroom-to-
classroom basis, there is a nearly universally understood "time for
outside of class matters" and "time for instruction", each with very
different priorities. The shift between these is rapid and shared
among the people involved.

3.2 A Loud Noise
Imagine that you are outdoors in a city center, and suddenly, you

hear a loud sound. Not only you, but everyone around you, will
turn toward the direction of the noise, to determine whether it was
a signal of a context switch. In this situation, Shaw states "Unless
the danger is very obvious, people often require secondary or con-
firmatory data before they will begin to react" [40].

Was it simply a car backfiring? Was it a siren? An auto acci-
dent? By gathering additional information, you’re able to make an
intelligent and rational decision about what to do next. Depend-
ing on what the additional information shows, your priorities might
rapidly shift back to (i) whatever they were previously, especially
if there is no perceived change in context; (ii) flight away from the
danger; or (iii) to help those in harm’s way.

This case serves to show that human awareness detects changes
in the environment which signal broader changes in context, and
that a change in context can lead to drastically different priorities,
which may vary between individuals. It also serves to show that
humans use supporting first-hand observations to verify a possible
context switch.

3.3 Socially Appropriate Navigation
Consider the simple act of trying to navigate through a crowded

hallway in a way that does not disturb those around you. This So-
cially Aware Navigation is a problem which humans readily solve
on a regular basis [15]. In order to properly address this problem,
though, you have many competing objectives. As a sample of a set
of possible priorities,

i) you are trying to navigate to your goal as quickly as possible
ii) you are trying not to physically disturb any other person along

the way
iii) you are trying to avoid walking through groups of people

talking with each other
iv) you are trying to expend minimal energy
v) you are trying to stay with your group members

vi) you are preoccupied with your thoughts
vii) you are trying to have courteous interactions
Depending on the details of your situation, your priorities are

going to be very different.

• Efficiency: If you’re having a tough day, perhaps you’re much
more concerned with (i) and (iv) than the remainders.

• A hall of coworkers: If the hall is filled with your colleagues,
you may prioritize (vii), along with (iii).

• Late for an important meeting: (i) may take precedence over
(iii), and you might put no priority at all on (iv).

• Absentminded: If other events are occupying your thoughts
and attention, you may implicitly place a higher priority on
(vi), and allow the others to take lower precedence.

• A foreigner: If you are in a foreign place and do not speak the
language, you might be more inclined to avoid interactions
and therefore prioritize (ii), (iii), and (v).

• A parent with small children: (v) likely takes very high pri-
ority, with a possible side of (ii) and (iii); you might simply
acknowledge that (i) and (iv) are not useful priorities.

• Inconsiderate others: If the people crowding the hallway are
not being considerate of the people making their way through,
perhaps (ii) will take a lower priority in your mind.

• Combination: These situations are not mutually exclusive,
and if you have a combination of these situations, you may
have some combination of the priorities of each.

All of these different sets of priorities are completely rational,
though they lead to vastly different courses of action. It is an incred-
ibly human trait that we each can look at the same situation, and,
based on our previous experiences and current priorities, come to
a different conclusion about the actions that should be taken. This
is also why it is so easy to think that someone else is making the
wrong choice in a situation. If we are weighing their actions and the
likely outcomes with our own priorities, then it is extremely likely
that they may appear irrational. They could be using a different pri-
oritization of the same objectives that we are considering, but it is
possibly more likely that they are trying to optimize an objective
that we haven’t even considered in the first place.

To compound this problem, interacting within the human envi-
ronment is an extremely information-limited problem. It is difficult,
even with prolonged shared experiences, to completely understand
the motivations and past experiences of those around us, which in-
herently guide their priorities within a situation. Finally, very dif-
ferent mindsets can lead to the same behaviors: an absentminded
person could behave similarly to one concerned only with their
path efficiency. They have very different motivations, and different
priorities as expressed above, but could exhibit similar observable
behaviors.

This case serves to show that with different sets of priorities,
different action sets can be seen as equally rational and reasonable.
Additionally, without thoroughly understanding an individual’s pri-
orities, judging the rationality of their actions is extremely difficult.

3.4 Falsely Shouting "Fire" in a Theatre
Consider, for a moment, the concept of a person entering into a

crowded theatre and shouting "Fire!" when there is none. For a mo-
ment, the theatre goers may briefly be confused, as the exclamation
does not fit into the context that they were expecting. Is this a part
of the play? Then, after a short time to process, each individual may
rapidly change their priorities, from maximizing their enjoyment to
minimizing their time inside the theatre. This process can happen
rapidly in parallel, creating a mass panic.



In a decision from 1919, the U.S. Supreme court noted that this
is one of the (very few) exceptions to free speech under the U.S.
constitution. To quote the decision: "The most stringent protection
of free speech would not protect a man in falsely shouting fire in
a theatre and causing a panic. It does not even protect a man from
an injunction against uttering words that may have all the effect of
force" [20].

This decision cites that the use of words may have all the effect
of force, and the reason for this is the rapid and extreme context
switching that would happen for each person sitting in the theatre.
It immediately places every person in the theatre in danger from the
circumstances that may arise from the mass exodus from the the-
atre by (reasonably) self-concerned patrons. In fact, simply shout-
ing fire has led to a loss of life in the panic of some situations [35,
48], whereas in other highly dangerous situations that actually in-
volved a large fire, no loss of life occurred [40].

This case serves to show that a human’s sense of context can be
manipulated by the actions of others, and that the sense of context
has a high impact on the actions of others: “all the effect of force".

4. TOWARD RICHER AGENT BEHAVIORS
In order to achieve rich behaviors such as these, a possible route

is to create a framework which has the same characteristics, both
within sensing the context and when it changes, and in the decision
making process once a context has been identified.

These characteristics are:
Context sensing
• Independent detection of a context change
• Inter-agent communication to facilitate context switching
• Sensory verification of a communicated context switch

Decision-making
• Event-dependent multiple priorities
• Priorities with nonlinear preference curves
• Varying priorities based on past experiences
• A strong change in behavior corresponding with changes in

context
In this section, we identify areas in which the MAS and AI com-

munities have made some steps toward imbuing agents with these
characteristics, and some possible future directions of research. This
is linked to over 3 decades of work [23, 24] in awareness, long term
autonomy, and common sense for artificial intelligence, but in this
section we look at the research with an eye toward using multi-
objective optimization with dynamically-changing priorities.

4.1 The Detection of Context Changes
Giving an agent awareness of context, which is broader than a

simple state representation, is an extremely large research prob-
lem. It is possible that contributions to such a detection method this
could come from sources like transfer learning [38, 43, 44] anomaly
detection [1, 17, 22], the detection of opponent policy switching in
non-stationary problems [12, 19, 47] or shared autonomy [41, 42].

Each of these problem types are ones in which the MAS and AI
community have many collective years of experience solving. In
the particular application of identifying context changes, we pro-
pose one avenue: since many candidate priorities must exist for the
richer behavior space that we seek, why not constantly track the
evaluations of these objectives, and use the past history as a litmus
test? If an agent takes an action and can predict a vector of rewards,
but receives a vastly different vector, it is very possible that a con-
text change has happened.

4.2 The Use of Context
Once a shift in context has been detected, the agent can suddenly

find itself in a world of uncertainty, and there are many research
questions to be addressed: how does the agent select its new set of
objectives from among the entire set it may consider? How does the
agent prioritize these objectives, and with what form of a preference
scheme? How can policy information be maintained across changes
in context, and still used in a constructive manner?

Again, the MAS and AI community has many collective years
of solving these types of problems. The selection of a new set of
priorities without excessive regret is in many ways similar to han-
dling a new opponent strategy in a competitive game. The prefer-
ence scheme can be built up based on what can be achieved within
the constraints of the new context. Outside knowledge can be incor-
porated with reward shaping. Policy information can be maintained
through transfer.

The incorporation of any combination of these at once is a large
research problem, which requires concerted effort on a community-
wide, collaborative level. It requires publishing work that requires
the knowledge of multiple sub-fields to properly review and under-
stand. It requires a level of risk. However, it also provides a sub-
stantial reward: a future agent that can not only solve a particularly
difficult problem, but can use a sense of awareness to situate it-
self within its environment, such that it can potentially solve many
problems despite (or due to) many changes in context along the
way.

5. CONCLUSION
In this work we have identified a challenge for the MAS and AI

community: the development of agents with a richer set of behav-
iors, which may be able to mimic the human decision making pro-
cess. We have identified, through a series of vignettes, some desir-
able aspects of the human decision making process, and provided a
paradigm through which an autonomous agent-based system might
be able to mimic these human behaviors, through the incorporation
of a sense of awareness into the agents. Such agents will be capa-
ble of detecting when changes in their environment, their interac-
tion with the environment, or actions of others indicate a change in
context, and use this to quickly change the set of priorities which
they consider. These agents will then consider their priorities with
some form of non-linear preference (and indifference), and take
actions based on these priorities and preferences. In order to im-
bue artificial agents with the flexibility and emergence associated
with human behaviors, we, as a community, need to develop each
of these techniques, with an eye toward integration with each of the
others.
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