CAP 4630
Artificial Intelligence

Instructor: Sam Ganzfried
sganzfri@cis.fiu.edu



Schedule

A 11/16 Finish probability, focus on multiagent systems (game
theory)

A 11/21, 11/28, 11/30, 12/5: Machine learning (classification,
regression, clustering, deep learr)ing

A | will still discuss topics in Markov decision processes and
reinforcement learning as they relate to the above topics.

A 12/7: Project presentations and class project due
I Project code due Monday 12/4 at 2PM on Moodle.

A Final exam on 12/14



Announcements

A HW3 out 10/31 due 11/14 (2:05pm in lecture or
2:00pm on Moodle)
I https.//www.cs.cmu.edu/~sganzfri/HW3 Al.pdf
I Must be done individually (no partner)

A HW4 out this week



https://www.cs.cmu.edu/~sganzfri/HW3_AI.pdf

Class project

A For the class project students will implement an agerg-foayer
Kuhn poker This is a simple, yet interesting and nontrivial, varia
of poker that has appeared in the AAAI Annual Computer Poker
Competition. The grade will be partially based on performance
against the other agents in a clagde competition, as well as final
reports and presentations describing the approaches used. Stuc
can workalone or in groups of up to 3.

A Link to play against optimal strategy for eoard poker:
I http://www.cs.cmu.edu/~ggordon/poker

A Paperon Nash equilibrium strategies fompBayer Kuhn poker
I http:/ljpboker.cs.ualberta.ca/publications/AAMAS3Bkuhn.pdf

A https:/moodle.cis.fiu.edu/v3.1/mod/forum/discuss.php?d=21801
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http://www.computerpokercompetition.org/index.php/75-limit-games
http://poker.cs.ualberta.ca/publications/AAMAS13-3pkuhn.pdf
https://moodle.cis.fiu.edu/v3.1/mod/forum/discuss.php?d=21801

Bayeso rul e fo

Even if an individual tests positive, it is more likely that they do not use the
drug than that they do. Why? Even though the test appears to be highly
accurate, the number of noisers is large compared to the number of users.
The number of false positives outweighs the number of true positives

To use concrete numbers, if 1000 individuals are tested, there are expecte
be 995 norusers and 5 users. From the 995-nears, 0.0k 995¢ 10 false
positives are expected. Fromthe5users,8899 a 5 true pos
expected. Out of 15 positive results, only 5, about 33%, are genuine

This illustrates the importance of base rates. Daniel Kahneman has arguec
that the formation of policy can be egregiously misguided if base rates are
neglected when using statistics as a basis for guiding public policy

The importance of specificity in this example can be seen by calculating th
even If sensitivity is raised to 100% and specificity remains at 99% then the
probability of the person being a drug user only rises from 33.2% to 33.4%
but if the sensitivity Is held at 99% and the specificity is increased to 99.5%
then the probability of the person being a drug user rises to about 49.9%.

5



Bayesian networks

A A Bayesian network is a directed graph in which eact
node Is annotated with quantitative probability
Information. The full specification Is:

1. Each node corresponds to a random variable, which may
discrete or continuous

2. A set of directed links or arrows connects pairs of nodes.
there Is an arrofrom node X to node Y, X is said to be a
parentof Y. The graph has no directed cycles (and hence
a directed acyclic graph), or DAG.

3. Each node Xhas a conditional probability distribution
P(X [Parents(X) that quantifies the effect of the parents o
the node.



Bayesian networks

A The topology of the netwodthe set of nodes and liriks
specifies the conditional independence relationships that hold
the domain, in a way that will be made precise shortly. The
Intuitive meaning of an arrow is typically that X hadieect
Influenceon Y, which suggests that causes should be parents ¢
effects. It Is usually easy for a domain expert to decide what
direct influences exist in the domaiimmuch easier, in fact, than
actually specifying the probabilities themselves. Once the
topology of the Bayesian network is laid out, we need only
specify a conditional probabllity distribution for each variable,
given its parents. We will see that the combination of the
topology and the conditional distributions suffices to specify
(implicitly) the full joint distribution for all the variables.
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Bayesian networks

Figure 14.1 A simple Bayesian network in which Weather is independent of the other
are conditionally independent, given Cavity.

three variables and Toothache and Clatch
vl R L A i




Bayesian networks

A Recall the simple world consisting of the variables
ToothacheCavity, CatchandWeather We argued
that Weather is independent of the other variables;
furthermore, we argued that Toothache and Catch ar
conditionally independent, given Cavity. These
relationships are represented by the Bayesian netwo
structure shown above. Formally, the conditional
Independence of Toothache and Catch, given Cavity
Indicated by the@bsencef a link between Toothache
and Catch, whereas no direct causal relationship exis
between Toothache and Catch.



Bayesian network

A Now consider the following example. You have a nev
burglar alarm installed at home. It is fairly reliable at
detecting a burglary, but also responds on occasion t
minor earthquakes. You also have two neighbors, Jo
and Mary, who have promised to call you at work
when they hear the alarm. John nearly always calls
when he hears the alarm, but sometimes confuses th
telephone ringing with the alarm and calls then, too.
Mary, on the other hand, likes rather loud music and
often misses the alarm altogether. Given the evidenc
of who has or has not called, we would like to estima
the probability of a burglary. i



Bayesian network

P(J) A [P(V)
90 MaryCalls ) 2170
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Figure 14.2 A typical Bayesian network. showing both llu topology and the u‘“d““’”"
pTOb‘iblhty tables (CPTs). In the CPTs, the letters i O A. and M stand for bur

Earthquake, Alarm, JohnCalls. and MaryCalls, uxpumd\
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Bayesian network

A The network structure shows that burglary and
earthquakes directly affect the probability of the
alarmos going off, but v
depends only on the alarm. The network thus
represents our assumptions that they do not perceive
burglaries directly, they do not notice minor
earthquakes, and they do not confer before calling.
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Bayesian network

A The conditional distributions are shown asoaditional
probabillity table, or CPT. Each row in a CPT contains the
conditional probability of each node value faranditioning
case A conditioning case is just a possible combination of
values for the parent nodes miniature possible world. Each
row must sum to 1, because the entries represent an exhaust
set of cases for the variable. For Boolean variables, once you
know that the probability of a true value is p, the probability of
false must be-p, so we often omit the second number. In
general, a table for a Boolean variable with k Boolean parents
contains 2independently specifiable probabilities. A node with
no parents ha sonly one row, representing the prior probabiliti
of each possible value of the variable.
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Bayesian network

A Notice that the network does not have nodes corresponding to
Maryos currently |1 stening t
ringing and confusing John. These factors are summarized in i
uncertainty associated with the links from Alarm to JohnCalls al
MaryCalls. This shows both laziness and ignorance in operatiol
It would be a lot of work to find out why those factors would be
more or less likely in any particularly case, and we have no
reasonable way to obtain the relevant information anyway. The
probabilities actually summarizepatentiallyinfinite set of
circumstances in which the alarm might fail to go off (high
humidity, power failure, dead battery, cut wires, a dead mouse
stuck inside the bell, etc.) or John or Mary might fail to call and
report it (out to lunch, on vacation, temporarily deaf, passing
helicopter, etc.). In this way, a small agent can cope with a very
large world, at least approximately. The degree of ap&roximatio
can be improved if introduce additional relevant information.



Bayesian network

A There are two ways in which one can understand the
semantics of Bayesian networks. The first is to see tf
network as a representation of the joint probability
distribution. The second is to view it as an encoding ¢
a collection of conditional independence statements.
The two views are equivalent, but the first turns out tc
be helpful in understanding how ¢onstructnetworks,
whereas the second is helpful in designing inference
procedures.
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Bayesian network

AVi ewed as a piece of fisy
directed acyclic graph with some numeric parameters
attached to each node. One way to define what the
network mean® its semantiod is to define the way in
which it represents a specific joint distribution over al
the variables. To do this, we first need to retract
(temporarily) what we said earlier about the paramete
associated with each node. We said that those
parameters correspond to conditional probabillities
P(X|Parents(X); this is a true statement, but until we
assign semantics to the network as a whole, we shot
think of them just as numbed§X;|Parents(X). .



Bayesian networks

A A generic entry in the joint distribution is the probability of a
conjunction of particular assignments to each variable, such as
PX;=x;AND e ANDR). We use the notatidA(x;, éXx,)
as an abbreviation for this. The value of this entry is given by th
formula:

P(X,...,X,) 2., d&|Parents(y),

A Whereparents(X) denotes the values of Parenfstiat appear in
X, € ,,. Thus, each entry in the joint distribution is representec
by the product of the appropriate elements of the conditional
probabillity tables (CPTs) in the Bayesian network.
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Bayesian networks

A From this definition, it is easy to prove that the parameters
d(x;|Parents(}), areexactly the conditional probabilities
P(x|Parents(}), impliedby the joint distribution (homework
exercise). Hence, we can rewrite the equation as

P(X,..., %) 2., Edx|Parents(y).

A In other words, the tables we have been calling conditional
probabllity tables reallyare conditional probability tables
according to the semantics defined in the equation.

18



Bayesian network

A To illustrate this, we can calculate the probability that the alarm
has sounded, but neither a burglary nor an earthquake has
occurred, and both John and Mary call. We multiply entries fron
the joint distribution (using singlietter names for the variables):

A P(j, m, a, b,le) = P(jla)P(m|a)P(a]lb AND !e)P(!b)P(le) = 0.90 *
0.70 * 0.001 * 0.999 * 0.998 = 0.000628.

A We explained earlier that the full joint distribution can be used tc
answer any guery about the domain. If a Bayesian network is a

representation of the joint distribution, then it too can be used ta
answer any guery, by summing all the relevant joint entries.
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Bayesian networks

A Recall the equation:

P(X,..., %) %, Edx|Parents(}).

A The next step is to explain howdonstructa Bayesian network in
such a way that the resulting joint distribution is a good
representation of a given domain. We will now show that the
equation implies certain conditional independence relationships
can be used to guide the knowledge engineer in constructing the
topology of the network. First, we rewrite the entries in the joint
distribution in terms of conditional probability, using product rule

A PG, %) = P0G I X0, € DPOGs, € ). X
A Then we repeat the process, reducing each conjunctive probabil
to a conditional probability and a smaller conjunction.
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Bayesian networks

A We end up with one big product:

A POy %) = PO Xy, € 0 ROG1 X2 €X), * €
POGIx)P(x) =@M, P(X[X.1, € 4)-X

A This identity is called thehain rule. It holds for any set of
random variables. Comparing it with the previous equation, we
see that the specification of the joint distribution is equivalent
the general assertion that, for every variahlenxhe network,

A P(X|X.;, €X,) =P(X|Parents(}),
A Provided thaParents(X is a subset diX . ,, € , ;}. This last

condition Is satisfied by numbering the nodes in a way that is
consistent with the partial order implicit in the graph structure.
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Bayesian networks

A This new equation says that the Bayesian network is a correc
representation of the domain only if each node is conditionally
Independent of its other predecessors in the node ordering, gi
Its parents. We can satisfy this condition with this methodolog

I Nodes: First determine the set of variables that are required to model t

domain. Now order therdX ;, € X.}. Any order will work, but the
resulting network will be more compact if the variables are ordered suc

that causes precede effects.
I Links: Fori=1tondo:
A Choose, fronX,, éX.,, a minimal set of parents for, Ysuch that the
equation is satisfied.
A For each parent insert a link from the parerXto
A CPTs: Write down the conditional probability tatfRéX.|Parents().
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Bayesian networks

A Intuitively, the parents of node, Xhould contain all those nodes ir
Xq,--, X1 thatdirectly influenceX;. For example, suppose we have
completed the network in the figure except for the choice of part
for MaryCalls. MaryCalls is certainly influenced by whether therg
IS a Burglary or an Earthquake, but datectly influenced.
Intuitively, our knowledge of the domain tells us that these even
Il nfl uence Maryos calling. F o
following conditional independence statement holds:

I P(MaryCalls|JohnCalls, Alarm, Earthquake, Burglary) =
P(MaryCalls|Alarm).

A Thus, Alarm will be the only parent node for MaryCalls.
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Bayesian network construction

A Because each node is connected only to earlier nodes, this
construction method guarantees that the network is acyclic.
Another important property of Bayesian networks is that they
contain no redundant probability values. If there is no
redundancy, then there is no chance for inconsisténesy:
Impossible for the knowledge engineer or domain expert to cre:
a Bayesian network that violates the axioms of probability
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Exact inference in Bayesian networks

A The basic task for any probabilistic inference system is to
compute the posterior probability distribution for a sequéry
variables, given some observexknd that is, some assignment
of values to a set @vidence variablesTo simplify the
presentation, we will consider only one guery variable at a time
the algorithms can easily be extended to queries with multiple
variables. We will use the notation: X denotes the query variabl
E denotes the set of evidence variablgs &E,, and e is a
particular observed event; Y will denote the nonevidence,
nonquery variables Y é . {alled thehidden variableg. Thus,

a complete set of variablesXs= {X} Union E Union Y. A
typical query asks for the posterior probability distribution P(X|e

25



Inference In Bayesian networks

A In the burglary network, we might observe the event in which
JohnCalls = true, and MaryCalls = true. We could then ask for
say, the probability that a burglary has occurred:

I P(Burglary | JohnCalls = true, MaryCalls = true)
=<0.284, 0.716> (for <true,false>).

A Now we will see exact algorithms for computing posterior
probabilities and will consider the complexity of this task. It
turns out that the general case Is intractable, so will have to s
for approximate inference for the general case.
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Bayesian network

A We saw that any conditional probability can be computed by
summing terms from the full joint distribution. More
specifically, a query P(X|e) can be answered using the equati
which we repeat here:

A P(X|e) =UP(x|e) =U x P(x.e.y).

A Now a Bayesian network gives a complete representation of t
full joint distribution. More specifically, we showed that the
terms P(x,e,y) in the joint distribution can be written as produc
of conditional probabilities from the network. Therefaauery

can be answered using a Bayesian network by computing sur
of products of conditional probabilities from the network
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Bayesian network
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Figure 14.2 A typical Bayesian network. showing both llu topology and the u‘“d““’”"
pTOb‘iblhty tables (CPTs). In the CPTs, the letters i O A. and M stand for bur

Earthquake, Alarm, JohnCalls. and MaryCalls, uxpumd\




Bayesian network

A Consider the query P(Burglary | JohnCalls = true, MaryCalls =
true). The hidden variables for this query are Earthquake and
Alarm. We now see that:

A P(B|j,m) =UP(B,j,m) =Ux _ x_P(B,j,m,e,a).
A The semantics of Bayesian networks then gives us an expressi

In terms of CPT entries. For simplicity, we do this just for
Burglary = true:

A P(blj,m) =Ux x , P(b)P(e)P(alb,e)P(jla)P(m|a).
A To compute this expression, we have to add four terms, each
computed by multiplying five numbers. In the worst case, where

we have to sum out almost all the variables, the complexity of t
algorithm for a network with n Boolean variables is Onh 2

PAS



Bayesian network

A An improvement can be made from the following simple
observation: the P(b) term is a constant and can be moved
outside the summations over a and e, and the P(e) term can &
moved outside the summation over a. Hence, we have

A P(blj,m) =UP(b)x . P(e)x , P(alb,e)P(jla)P(m)a

A This expression can be evaluated by looping through the
variables in order, multiplying CPT entries as we go. For each
summati on, we also need to |
values. The structure of this computation is shown in the figur

Using the numbers, we obtaf{blj,m) =U<0.00059224,
0.0014919> ~=<0.284,0.716>.

A That is, the chance of a burglary, given calls from both

neighbors, is about 28%.
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Bayesian networks

A The evaluation process is shown as an expression tree. The
ENUMERATION-ASK algorithm evaluates such trees using
depthfirst recursion. The algorithm is very similar in structure
to the backtracking algorithm for solving CSPs and the DPLL
algorithm for satisfiability.

A The space complexity of ENUMERATIOKNSK is only linear
In the number of variables: the algorithm sums over the full joi
distribution without ever constructing it explicitly.
Unfortunately, its time complexity for a network with n Booleat
variables is always O(2i)better than the O(n 2”*n) for the
simple approach described earlier, but still rather grim.
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Bayesian network

P(_’alb,e) P((Ilb."(’) P( _'(l,/),_’(")
05 94 06

| P(jla) P( jl=a) P( jla) P( jl=a)
.90 05 90 05

P(mla) P(ml—a) I;((i)nlu) P(ml=a)
0l -

n > sxpression shown in Equation (14.4). The evaluation
k ~ture of the expression § . o %
pllflll‘edlétl.S d v Strlltli;flyino values along each path and summing at the “+" nodes. Notice

‘oceeds top down, mu g '
the repetition of the paths for j and m.




Bayesian network

function ENUMERATION-ASK(X . e. bn ) returns a distribution over X
inputs: X, the query variable
e, observed values for variables E
bn, a Bayes net with variables {(X}UEUY /+Y

= hidden variables % /
Q(X') < a distribution over X, initially empty
for each value z; of X do
Q(x;) <~ ENUMERATE-ALL(bn.VARS, €;,)
where e, . is e extended with X = z;
return NORMALIZE(Q(X))

function ENUMERATE-ALL(vars, e) returns a real number
if EMPTY?(vars) then return 1.0
Y «— FIRST(vars)
if Y has value y in e
then return P(y | parents(Y)) :
else return Zu Py | 1)(17'(»‘1{!.9({ )2
where e, is e extended with ¥=1

w ENUMERATE-ALL(REST(vars),e)
% ENUMERATE-ALL(REST(vars),e,)

‘or answering queries on Bayesian networks.
« . &

. e . 1
Figure 14.9 The enumeration al‘gorllhm




Bayesian network

A Note that the tree makes explicit tfepeated
expressiongvaluated by the algorithm. The products
P(jla)P(m|a) and P(j|~a)P(m|~a) are computed twice,
once for each value of e. We now describe a general
method that avoids such wasted computation.
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Variable elimination algorithm

A The enumeration algorithm can be improved
substantially by eliminating repeated calculations of
the kind illustrated above. The idea is simple: do the
calculation once and save the results for later use. Tl
IS a form of dynamic programming. There are severa
versions of this approach; we presentwarable
elimination algorithm, which is the simplest. Variable
elimination works by evaluating expressionsight-
to-left order (that isbottom up. Intermediate results
are stores, and summations over each variable are d
only for those portions of the expression that depend

on the variable. o



Variable elimination algorithm

A Let us illustrate this process for the burglary network.
We evaluate the expression

A P(BJj,m = UP(B)x. P(e)x, P(alB,e)P(jla)P(m)a
I Denote P(B) by f1(B)
I Denote P(e) by f2(e)
I DenoteP(a|B,¢ by f3(A,B,E)
I DenoteP(j|g by f4(A)
I Denote P(ml|a) by f5(A)
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Variable elimination

A Note that éhave annotated each part of the expression with the
name of the correspondifigctor; each factor is a matrix
Indexed by the values of its argument variables. For example,
f4(A) and f5(A) depend just on A because J and M are fixed b
the query. They are therefore t@ement vectors:

i f4(A) = (P(la), P(j|~a)) = (0.90, 0.05)
i f5(A) = (P(m|a),P(m|~a)) = (0.70,0.01)
I f3(A,B,E) will be a 2x2x2 matrix.

A Query can be rewritten as

A P(Blj,m) = Uf1(B)xx . f2(e)xx . f3(A,B,E) xf4(A) x f5(A),

AWhere the fixo0 operator is n
Instead theointwise produceoperation, to be described

shortly.
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Variable elimination

A The process of evaluation is a process of summing o
variables (right to left) from pointwise products of
factors to produce new factors, eventually yielding a
factor that Is the solution, I.e., the posterior distributio
over the query variable. The steps are as follows:

I First we sum out A from the product of f3, f4, and 5. This
gives us a new 2x2 factor f6(B,E) whose indices range ove
just B and E:

A F6(B,E) =x ,f3(A,B,E) xf4(A) x f5(A)
A = (f3(a,B,E) x f4(a) x f5(a)) + (f3(~a,B,E) x f4(~a) x f5(!a)).
ANext we are left with the expression:
AP(BJj,m) =Uf1(B)xx . f2(e)xf6(B,E)
38



Variable elimination

A Next, we sum out E from the product of f2 and f6: f7(B) =
f2(e)x f6(B,e)

A =f2(e) x 16(B,e) x f2(~e) x f6(B,~e).

A This leaves the expression P(Blj,myf (B)xf7(B),

A Which can be evaluated by taking the pointwise product and
normalizing the result. Examining this sequence, we see that 1
basic computational operations are required: pointwise produc
of a pair of factors, and summing out a variable from a produc
of factors.

I Textbook covers details for factor operations, variable ordering, and
variable relevance. You will have homework question on these.
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function ELIMINATION-ASK(X . e. bn) returns a distribution over X
inputs: X, the query variable
e, observed values for variables E
b, a Bayesian network specifying joint distribution P(X,

factors — |
for each var in ORDER( bn.VARS) do
factors — [MAKE-FACTOR (var. e)|factors]

if var is a hidden variable then Jactors «— SUM-OUT(var, factors)
return NORMALIZE(POINT WISE-PRODUCT(factors))

———
The variable elimination g

‘igure 14.11

Igorithm for inference in Bayesian networks




B

| Figure 14.10 Illustrating pointwise multi

B
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Multiagent systems (game theory)

A Strategic multiagent interactions occur in all fields

I Economics and business: bidding in auctions, offers in
negotiations

I Political science/law: fair division of resources, e.g., divorce
settlements

I Biology/medicine: robust diabetes management (robustnes
against nadversarial o sel e

I Computer science: theory, Al, PL, systems; national securi
(e.g., deploying officers to protect ports), cybersecurity (e.c
determining optimal thresholds against phishing attacks),
Internet phenomena (e.g., ad auctions)
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A Theorem (von Neumann): In chess, one and only one
of the following must be true:
I.  White has a winning strategy

Ii. Black has a winning strategy
lii. Each of the two players has a strategy guaranteeing at le
a draw.

A Applies to ALL chess matches, not a particular match

A Theorem is significant because a priori it might have
been the case that none of the alternatives was
possible; one could have postulated that no player
could ever have a strategy always guaranteeing a

victory, or at least a draw.
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Checkers 1 s Sol

A The game of checkers has roughly 500 billion
possiblepositions (5< 10%Y). The task of
solving the game, determining the final result |
a game with no mistakes made by either playe
IS daunting. Since 1989, almost continuously,
dozens of computers have been working on
solving checkers, applying stabé-the-art
artificial intelligence techniques to the proving
process. This paper announces that checkers

now sol ved: Perfect r
44



A The game of checkers has roughly 500 bill@ssiblepositions
(5 x 10?9). The task of solving the game, determining the final
result in a game with no mistakes made by either player, is
daunting. Since 1989, almost continuously, dozens of comput
have been working on solving checkers, applying sifthe-
art artificial intelligence techniques to the proving process. Thi
paper announces that checkers is now solved: Perfect play by
both sides leads to a draw. This is the most challenging popul
game to be solved to date, roughly one million times as compl
as Connect Four. Artificial intelligence technology has been
used to generate strong heuridissed gamelaying programs,
such as Deep Blue for chess. Solving a game takes this to the
next level by replacing the heuristics with perfection.
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Connect Four
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Connect Four

A The solved conclusion for Connect Four is first player
win. With perfect play, the first player can force a win,
on or before the 41st mobg starting in the middle
column. The game Iis a theoretical draw when the first
player starts in the columns adjacent to the center. Fc
the edges of the game board, column 1 and 2 on left
column 7 and 6 on right), the exact mexsdue score
for first player start is loss on the 40th moaad loss
on the 42nd moveespectively. In other words, by
starting with the four outer columns, the first player
allows the second player to force a win.
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2pl ayer | 1 mit H
solved (Science 2015)

Heads-up Limit Hold’em Poker 1s Solved

Michael Bowling,'* Neil Burch,! Michael Johanson,' Oskari Tammelin?
'Department of Computing Science, University of Alberta,
Edmonton, Alberta, T6G2ES, Canada
Unaffiliated, http://jeskola.net

*To whom correspondence should be addressed; E-mail: bowling @cs.ualberta.ca

Poker is a family of games that exhibit imperfect information, where players
do not have full knowledge of past events. Whereas many perfect informa-
tion games have been solved (e.g., Connect Four and checkers), no nontrivial
imperfect information game played competitively by humans has previously
been solved. Here, we announce that heads-up limit Texas hold’em is now es-
sentially weakly solved. Furthermore, this computation formally proves the
common wisdom that the dealer in the game holds a substantial advantage.
This result was enabled by a new algorithm, CFR™, which is capable of solv-
ing extensive-form games orders of magnitude larger than previously possible.




Headsup LI mit Hol d oOe

A Play against Cepheus hériép://poker
play.srv.ualberta.ca/
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Strategic-form games

A A game instrategic form (or in normal form)
IS an ordered triple G = (N, S Iin N, (u) 1'In
N), in which:
IN = {1,2,é,n} 1s a fini
I Sl Is the set of strategies of player I, for every play
| IN N. Denote the set of all vectors of strategies by

=S5 XSx é .. x S

I U : SA R s afunction associating each vector of
strategies s = {51 in N, with thepayoff (utility)
u(s) to player I, for every playeriin N.
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Strategic-form games

A Set of strategies available to the players are ni
required to be finite

A A game in which strategy set of each player is
finite Is called &inite game

A We will see examples afifinite games

A Important: the outcome for each player depent
on the strategies chosen by ALL players, not
just on his strategy alone
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A Games in strategic form are sometimes called
matrix games

AWhen n = 2, we call the gambgnatrix
games as they are given by two matrices, one
for the payoff of each player.
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Chicken

A The game of chicken models two drivers, both headed for a
singlelane bridge from opposite directions. The first to swerve
away Yields the bridge to the other. If neither player swerves,
result is a costly deadlock in the middle of the bridge, or a
potentially fatal heaan collision. It is presumed that the best
thing for each driver is to stay straight while the other swerves
(since the other is the "chicken" while a crash is avoided).
Additionally, a crash is presumed to be the worst outcome for
both players. This yields a situation where each player, in
attempting to secure his best outcome, risks the worst.
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Chicken

Straight

Straight Crash, Crash

Fig. 1: A payoff matrix of Chicken
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Chicken

Swerve Straight

Swerve

Straight

Fig. 2: Chicken with numerical
payoffs
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Security game

e Random strategy:

Adversary

» /ncrease cost/uncertainty to attackers

Target #1

Target #2




Rock-paper-scissors

rock paper SCISSOrs
Rock 0,0 -1,1 1,-1

Paper 1,-1 0,0 -1,1
ScIssors -1.1 1-1 0,0
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Pri1 soner 0s d

Prisoner B stays silent (cooperates) Prisoner B betrays (defects)

) ) Prisoner A: 3 years
Prisoner A stays silent (cooperates) Each serves 1 year

Prisoner B: goes free

) Prisoner A: goes free
Prisoner A betrays (defects) Each serves 2 years

Prisoner B: 3 years

Canonical PD payoff matrix
Cooperate Defect

Cooperate | R, R S, T
Defect |T,S P, P

T>R>P>S

A payoff matrix of the standard
dilemma of cooperation and defection 58



Battle of the sexes

A Imagine a couple that agreed to meet this evening, b
cannot recall if they will be attending the opera or a
football match (and the fact that they forgot iIs commc
knowledge). The husband would prefer to go to the
football game. The wife would rather go to the opera.
Both would prefer to go to the same place rather thar
different ones. If they cannot communicate, where
should they go?
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Opera Football Opera Football

Opera Opera

Football _ Football

Battle of the Sexes 1 Baftle of the Sexes 2
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Strategic-form game examples

A Chicken

A Security game

A Rockpaperscissors

APri soner s dil emma
A Battle of the sexes
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AWe saw von Neumanndos t he
two players and three possible outcomes: victory for
White, a draw, or victory for Black.

ACentr al guestion of game
a given game?
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Central guestion of game theory

1. An empirical, descriptive interpretation: How
do players, In fact, play in a given game?
2.A normative |1 nterpre

players play in a given game?
3. A theoretical interpretation: What can we
predict will happen in a game given certain

assumptions regardin
Nrational o behavior
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Descriptive game theory

A Observations of the actual behavior of players
ooth in reallife situations and in artificial
aboratory conditions where they are asked to
nlay games and their behavior Is recorded.

I Behavioral economics, psychology
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Normative interpretation

A Appropriate for a judge, legislator, or arbitrator called
upon to determine the outcome of a game based on
several agreedpon principles, such as justice,
efficiency, nondiscrimination, and fairness.

A Best suited for the study of cooperative games, in
which binding agreements are possible, enable
outcomes to be der i vuponm f
principles, or determined by an arbitrator who bases
decisions on those principles.
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Theoretical interpretation

A After we have described a game, what can we
expect to happen?

A What outcomes, or set of outcomes, will
reasonably ensue, given certain assumptions
regarding the behavior of the players?
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A For each of the five example games we discussed:
I How will real players act?
i How nshoul do players act?
I How would theoretically perfectly rational players act?

A Golden Balls: Split or Steal?
https://www.youtube.com/watch?v=S0qK3TWZES
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Game theory background

rock paper SCISSors
Rock 0,0 -1,1 1,-1

Paper 1,-1 0,0 -1,1
ScCISSsors -1.1 1-1 0,0

A Players

A Actions (aka pure strategies)

A Strategy profile: e.g., (R,p)

A Utility function: e.g., y(R,p) =-1, u(R,p) = 1

68



Zero-sum game

rock paper SCISSOrs
Rock 0,0 -1,1 1,-1

Paper 1,-1 0,0 -1,1
ScCISSsors -1.1 1-1 0,0

A Sum of payoffs is zero at each strategy profile
e.g., Y(R,p) + 4(R,p) =0
A Models purely adversarial settings
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Mixed strategies

A Probability distributions over pure strategies

A E.g., R with prob. 0.6, P with prob. 0.3, S with
prob. 0.1
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Best response (aka nemesis)

A Any strategy that maximizes payoff against
opponent o0os strategy

A If P2 plays (0.6, 0.3, 0.1) for r,p,s, then a best
response for P1 is to play P with probability 1
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Nash equilibrium

A Strategy profile where all players
simultaneously play a best response

A Standard solution concept in game theory

I Guaranteed to always exist In finite games [Nash
1950]
A In RockPaperScissors, the unique equilibrium
IS for both players to select each pure strategy
with probability 1/3
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Minimax Theorem

A Minimax theorem: For every twplayer zeresum

game, there exists a value v* and a mixed strategy
profile U* such that:

a. P1 guarantees a payoff of at least v* in the worst case by
playing u*

b. P2 guarantees a payoff of at leagtin the worst case by
playing 0%,

A v* (= v,) is thevalueof the game

A All equilibrium strategies for player i guarantee at
least vin the worst case

A For RPS, v* =0
73



Exploitability

A Exploitability of a strategy is difference
between value of the game and performance
against a best response

I Every equilibrium has zero exploitability
A Always playing rock has exploitability 1
| Best response is to play paper with probability 1
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Nash equilibria in two-player zero
sum games

A Zero exploitabilityi iunbeat abl eo

A Exchangeable
I If (a,b) and (c,d) are NE, then (a,d) and (c,b) are to

A Can be computed in polynomial time by a linee
programming (LP) formulation
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Nash equilibria in multiplayer and
non-zero-sum games

A None of the tweplayer zeresum results hold

A There can exist multiple equilibria, each with differen
payoffs to the players

A If one player follows one equilibrium while other
nlayers follow a different equilibrium, overall profile Is
not guaranteed to be an equilibrium

A If one player plays an equilibrium, he could do worse
the opponents deviate from that equilibrium

A Computing an equilibrium is PPADBard
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Imperfect information

A In many important games, there is information

that Is private to only some agents and not
available to other agents

I In auctions, each bidder may know his own
valuation and only know the distribution from whict
ot her agentso valwuati ol

I In poker, players may not know private cards held
by other players

77



Extensiveform representation




Extensiveform games

A Two-player zeresum EFGs can be solved in
polynomial time by linear programming
I Scales to games with up to®Hiates

A lterative algorithms (CFR and EGT) have been
developed for computing dsequilibrium that scale to
games with 19 states

I CFR also applies to multiplayer and general sum games,
though no significant guarantees in those classes

I (MC)CFR is selplay algorithm that samples actions down
tree and updates regrets and average strategies stored at
every information set
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Extensiveform game

A A game inextensive formis given by ayame treewhich
consists of a directed graph in which the set of vertices
represents positions in the game, and a distinguished vertex,
called theroot, represents the starting position of the game. A
vertex with no outgoing edges represents a terminal position |
which play ends. To each terminal vertex corresponds an
outcome that is realized when the play terminates at that verte
Any nonterminal vertex represents either a chance move (e.g.
toss of a die or a shuffle of a deck of cards) or a move of one
the players. To any chanosove vertex corresponds a
probability distribution over edges emanating from that vertex,
which correspond to the possible outcomes of the chance mo
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Perfect vs. imperfect information

A To describe games with imperfect information, in
which players do not necessarily know the full board
position (like poker), we introduce the notion of
Information setsAn information set of a player is a sef
of decision vertices of the player that are
Indistinguishable by him given his information at that
stage of the game. A gamepsrfect informations a
game in which all information sets consist of a single
vertex. In such a game whenever a player is called tc
take an action, he knows the exact history of actions
and chance moves that led to that position.
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A A strategyof a player is a function that assigns to eac
of his information sets an action available to him at tF
Information set. A path from the root to a terminal
vertex Is called alay of the game. When the game ha:
no chance moves, any vector of strategies (one for e
player) determines the play of the game, and hence t
outcome. In a game with chance moves, any vector
strategies determines a probability distribution over tt
possible outcomes of the game.
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White moves

e

PG

Bila
0 o

85



A Every description of a game must include:
I Set of players
I The possible actions available to each player

I Rules determining the order in which players make
their moves.

I A rule determining when the game ends.

I A rule determining the outcome of every possible
game ending.
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Homework for next class

A Chapter21 from Russel/Norvig
A HW3 dueTuesday 11/14
A HW4 out this week

A Next lectureMachine learning (classification)
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