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CAP 4630

Artificial Intelligence

Instructor: Sam Ganzfried

sganzfri@cis.fiu.edu
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Schedule

Å11/16: Finish probability, focus on multiagent systems (game 

theory)

Å11/21, 11/28, 11/30, 12/5: Machine learning (classification, 

regression, clustering, deep learning)

ÅI will still discuss topics in Markov decision processes and 

reinforcement learning as they relate to the above topics.

Å12/7: Project presentations and class project due

ïProject code due Monday 12/4 at 2PM on Moodle.

ÅFinal exam on 12/14
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Announcements

ÅHW3 out 10/31 due 11/14 (2:05pm in lecture or 

2:00pm on Moodle)

ïhttps://www.cs.cmu.edu/~sganzfri/HW3_AI.pdf

ïMust be done individually (no partner)

ÅHW4 out this week

https://www.cs.cmu.edu/~sganzfri/HW3_AI.pdf
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Class project

ÅFor the class project students will implement an agent for 3-player 

Kuhn poker. This is a simple, yet interesting and nontrivial, variant 

of poker that has appeared in the AAAI Annual Computer Poker 

Competition. The grade will be partially based on performance 

against the other agents in a class-wide competition, as well as final 

reports and presentations describing the approaches used. Students 

can work alone or in groups of up to 3.

ÅLink to play against optimal strategy for one-card poker:

ïhttp://www.cs.cmu.edu/~ggordon/poker/

ÅPaper on Nash equilibrium strategies for 3-player Kuhn poker

ïhttp://poker.cs.ualberta.ca/publications/AAMAS13-3pkuhn.pdf

Åhttps://moodle.cis.fiu.edu/v3.1/mod/forum/discuss.php?d=21801

http://www.computerpokercompetition.org/index.php/75-limit-games
http://poker.cs.ualberta.ca/publications/AAMAS13-3pkuhn.pdf
https://moodle.cis.fiu.edu/v3.1/mod/forum/discuss.php?d=21801
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Bayesô rule for drug testing

Å Even if an individual tests positive, it is more likely that they do not use the 

drug than that they do. Why? Even though the test appears to be highly 

accurate, the number of non-users is large compared to the number of users. 

The number of false positives outweighs the number of true positives.

Å To use concrete numbers, if 1000 individuals are tested, there are expected to 

be 995 non-users and 5 users. From the 995 non-users, 0.01 × 995 ḗ10 false 

positives are expected. From the 5 users, 0.99 × 5 å 5 true positives are 

expected. Out of 15 positive results, only 5, about 33%, are genuine.

Å This illustrates the importance of base rates. Daniel Kahneman has argued 

that the formation of policy can be egregiously misguided if base rates are 

neglected when using statistics as a basis for guiding public policy.

Å The importance of specificity in this example can be seen by calculating that 

even if sensitivity is raised to 100% and specificity remains at 99% then the 

probability of the person being a drug user only rises from 33.2% to 33.4%, 

but if the sensitivity is held at 99% and the specificity is increased to 99.5% 

then the probability of the person being a drug user rises to about 49.9%.
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Bayesian networks

ÅA Bayesian network is a directed graph in which each 

node is annotated with quantitative probability 

information. The full specification is:

1. Each node corresponds to a random variable, which may be 

discrete or continuous

2. A set of directed links or arrows connects pairs of nodes. If 

there is an arrow from node X to node Y, X is said to be a 

parentof Y. The graph has no directed cycles (and hence is 

a directed acyclic graph), or DAG. 

3. Each node Xi has a conditional probability distribution 

P(Xi |Parents(Xi)) that quantifies the effect of the parents on 

the node.
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Bayesian networks

ÅThe topology of the networkðthe set of nodes and linksï

specifies the conditional independence relationships that hold in 

the domain, in a way that will be made precise shortly. The 

intuitive meaning of an arrow is typically that X has a direct 

influenceonY, which suggests that causes should be parents of 

effects. It is usually easy for a domain expert to decide what 

direct influences exist in the domainðmuch easier, in fact, than 

actually specifying the probabilities themselves. Once the 

topology of the Bayesian network is laid out, we need only 

specify a conditional probability distribution for each variable, 

given its parents. We will see that the combination of the 

topology and the conditional distributions suffices to specify 

(implicitly) the full joint distribution for all the variables.
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Bayesian networks
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Bayesian networks

ÅRecall the simple world consisting of the variables 

Toothache, Cavity, Catch, and Weather. We argued 

that Weather is independent of the other variables; 

furthermore, we argued that Toothache and Catch are 

conditionally independent, given Cavity. These 

relationships are represented by the Bayesian network 

structure shown above. Formally, the conditional 

independence of Toothache and Catch, given Cavity, is 

indicated by the absenceof a link between Toothache 

and Catch, whereas no direct causal relationship exists 

between Toothache and Catch.
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Bayesian network

ÅNow consider the following example. You have a new 

burglar alarm installed at home. It is fairly reliable at 

detecting a burglary, but also responds on occasion to 

minor earthquakes. You also have two neighbors, John 

and Mary, who have promised to call you at work 

when they hear the alarm. John nearly always calls 

when he hears the alarm, but sometimes confuses the 

telephone ringing with the alarm and calls then, too. 

Mary, on the other hand, likes rather loud music and 

often misses the alarm altogether. Given the evidence 

of who has or has not called, we would like to estimate 

the probability of a burglary. 
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Bayesian network



12

Bayesian network

ÅThe network structure shows that burglary and 

earthquakes directly affect the probability of the 

alarmôs going off, but whether John and Mary call 

depends only on the alarm. The network thus 

represents our assumptions that they do not perceive 

burglaries directly, they do not notice minor 

earthquakes, and they do not confer before calling.
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Bayesian network

ÅThe conditional distributions are shown as a conditional 

probability table , or CPT. Each row in a CPT contains the 

conditional probability of each node value for a conditioning 

case. A conditioning case is just a possible combination of 

values for the parent nodesða miniature possible world. Each 

row must sum to 1, because the entries represent an exhaustive 

set of cases for the variable. For Boolean variables, once you 

know that the probability of a true value is p, the probability of 

false must be 1-p, so we often omit the second number. In 

general, a table for a Boolean variable with k Boolean parents 

contains 2k independently specifiable probabilities. A node with 

no parents ha sonly one row, representing the prior probabilities 

of each possible value of the variable.
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Bayesian network
ÅNotice that the network does not have nodes corresponding to 

Maryôs currently listening to loud music or to the telephone 

ringing and confusing John. These factors are summarized in the 

uncertainty associated with the links from Alarm to JohnCalls and 

MaryCalls. This shows both laziness and ignorance in operation: 

it would be a lot of work to find out why those factors would be 

more or less likely in any particularly case, and we have no 

reasonable way to obtain the relevant information anyway. The 

probabilities actually summarize a potentiallyinfinite set of 

circumstances in which the alarm might fail to go off (high 

humidity, power failure, dead battery, cut wires, a dead mouse 

stuck inside the bell, etc.) or John or Mary might fail to call and 

report it (out to lunch, on vacation, temporarily deaf, passing 

helicopter, etc.). In this way, a small agent can cope with a very 

large world, at least approximately. The degree of approximation 

can be improved if introduce additional relevant information.
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Bayesian network

ÅThere are two ways in which one can understand the 

semantics of Bayesian networks. The first is to see the 

network as a representation of the joint probability 

distribution. The second is to view it as an encoding of 

a collection of conditional independence statements. 

The two views are equivalent, but the first turns out to 

be helpful in understanding how to constructnetworks, 

whereas the second is helpful in designing inference 

procedures.
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Bayesian network

ÅViewed as a piece of ñsyntax,ò a Bayesian network is a 

directed acyclic graph with some numeric parameters 

attached to each node. One way to define what the 

network meansðits semanticsðis to define the way in 

which it represents a specific joint distribution over all 

the variables. To do this, we first need to retract 

(temporarily) what we said earlier about the parameters 

associated with each node. We said that those 

parameters correspond to conditional probabilities 

P(Xi|Parents(Xi)); this is a true statement, but until we 

assign semantics to the network as a whole, we should 

think of them just as numbers ɗ(X i|Parents(Xi)). 
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Bayesian networks

ÅA generic entry in the joint distribution is the probability of a 

conjunction of particular assignments to each variable, such as 

P(X1 = x1AND é AND Xn = xn). We use the notation P(x1,é, xn) 

as an abbreviation for this. The value of this entry is given by the 

formula:

P(x1,..., xn) = Ø
n
i=1ɗ(xi|Parents(xi)),

ÅWhere parents(Xi) denotes the values of Parents(xi) that appear in 

x1,é, xn. Thus, each entry in the joint distribution is represented 

by the product of the appropriate elements of the conditional 

probability tables (CPTs) in the Bayesian network. 
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Bayesian networks

ÅFrom this definition, it is easy to prove that the parameters 

ɗ(xi|Parents(xi)), are exactly the conditional probabilities 

P(xi|Parents(xi)), implied by the joint distribution (homework 

exercise). Hence, we can rewrite the equation as

P(x1,..., xn) = Ø
n
i=1 P(xi|Parents(xi)).

ÅIn other words, the tables we have been calling conditional 

probability tables really areconditional probability tables 

according to the semantics defined in the equation.
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Bayesian network

ÅTo illustrate this, we can calculate the probability that the alarm 

has sounded, but neither a burglary nor an earthquake has 

occurred, and both John and Mary call. We multiply entries from 

the joint distribution (using single-letter names for the variables):

ÅP(j, m, a, !b,!e) = P(j|a)P(m|a)P(a|!b AND !e)P(!b)P(!e) = 0.90 * 

0.70 * 0.001 * 0.999 * 0.998 = 0.000628.

ÅWe explained earlier that the full joint distribution can be used to 

answer any query about the domain. If a Bayesian network is a 

representation of the joint distribution, then it too can be used to 

answer any query, by summing all the relevant joint entries. 
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Bayesian networks

ÅRecall the equation: 

P(x1,..., xn) = Ø
n
i=1 P(xi|Parents(xi)).

ÅThe next step is to explain how to constructa Bayesian network in 

such a way that the resulting joint distribution is a good 

representation of a given domain. We will now show that the 

equation implies certain conditional independence relationships that 

can be used to guide the knowledge engineer in constructing the 

topology of the network. First, we rewrite the entries in the joint 

distribution in terms of conditional probability, using product rule:

ÅP(x1,..., xn) = P(xn | xn-1,é,x1)P(xn-1,é, x1).

ÅThen we repeat the process, reducing each conjunctive probability 

to a conditional probability and a smaller conjunction. 
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Bayesian networks

ÅWe end up with one big product:

ÅP(x1,..., xn) = P(xn | xn-1,é,x1) P(xn-1 | xn-2,é,x1),*é* 

P(x2|x1)P(x1) = Øn
i=1 P(xi|xi-1,é,x1).

ÅThis identity is called the chain rule. It holds for any set of 

random variables. Comparing it with the previous equation, we 

see that the specification of the joint distribution is equivalent to 

the general assertion that, for every variable Xi in the network,

ÅP(Xi|Xi-1,é, X1) = P(Xi|Parents(Xi)),

ÅProvided that Parents(Xi) is a subset of {X i-1,é, X1}. This last 

condition is satisfied by numbering the nodes in a way that is 

consistent with the partial order implicit in the graph structure.
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Bayesian networks

ÅThis new equation says that the Bayesian network is a correct 

representation of the domain only if each node is conditionally 

independent of its other predecessors in the node ordering, given 

its parents. We can satisfy this condition with this methodology: 

ïNodes: First determine the set of variables that are required to model the 

domain. Now order them, {X 1,é, Xn}. Any order will work, but the 

resulting network will be more compact if the variables are ordered such 

that causes precede effects. 

ïLinks: For i = 1 to n do:

ÅChoose, from X1,é, X i-1, a minimal set of parents for Xi, such that the 

equation is satisfied. 

ÅFor each parent insert a link from the parent to X i.

ÅCPTs: Write down the conditional probability table, P(Xi|Parents(Xi)).
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Bayesian networks

ÅIntuitively, the parents of node Xi should contain all those nodes in 

X1,.., X i-1 that directly influenceX i. For example, suppose we have 

completed the network in the figure except for the choice of parents 

for MaryCalls. MaryCalls is certainly influenced by whether there 

is a Burglary or an Earthquake, but not directly influenced. 

Intuitively, our knowledge of the domain tells us that these events 

influence Maryôs calling. Formally speaking, we believe that the 

following conditional independence statement holds:

ïP(MaryCalls|JohnCalls, Alarm, Earthquake, Burglary) = 

P(MaryCalls|Alarm).

ÅThus, Alarm will be the only parent node for MaryCalls.
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Bayesian network construction

ÅBecause each node is connected only to earlier nodes, this 

construction method guarantees that the network is acyclic. 

Another important property of Bayesian networks is that they 

contain no redundant probability values. If there is no 

redundancy, then there is no chance for inconsistency: it is 

impossible for the knowledge engineer or domain expert to create 

a Bayesian network that violates the axioms of probability.
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Exact inference in Bayesian networks

ÅThe basic task for any probabilistic inference system is to 

compute the posterior probability distribution for a set of query

variables, given some observed eventðthat is, some assignment 

of values to a set of evidence variables. To simplify the 

presentation, we will consider only one query variable at a time; 

the algorithms can easily be extended to queries with multiple 

variables. We will use the notation: X denotes the query variable, 

E denotes the set of evidence variables E1,é, Em, and e is a 

particular observed event; Y will denote the nonevidence, 

nonquery variables Y1,é,Ym (called the hidden variables). Thus, 

a complete set of variables is X = {X} Union E Union Y. A 

typical query asks for the posterior probability distribution P(X|e).
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Inference in Bayesian networks

ÅIn the burglary network, we might observe the event in which 

JohnCalls = true, and MaryCalls = true. We could then ask for, 

say, the probability that a burglary has occurred:

ïP(Burglary | JohnCalls = true, MaryCalls = true) 

= <0.284, 0.716> (for <true,false>).

ÅNow we will see exact algorithms for computing posterior 

probabilities and will consider the complexity of this task. It 

turns out that the general case is intractable, so will have to settle 

for approximate inference for the general case.
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Bayesian network

ÅWe saw that any conditional probability can be computed by 

summing terms from the full joint distribution. More 

specifically, a query P(X|e) can be answered using the equation, 

which we repeat here:

ÅP(X|e) = ŬP(x|e) = Ŭ×y P(x,e,y).

ÅNow a Bayesian network gives a complete representation of the 

full joint distribution. More specifically, we showed that the 

terms P(x,e,y) in the joint distribution can be written as products 

of conditional probabilities from the network. Therefore, a query 

can be answered using a Bayesian network by computing sums 

of products of conditional probabilities from the network. 
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Bayesian network
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Bayesian network

ÅConsider the query P(Burglary | JohnCalls = true, MaryCalls = 

true). The hidden variables for this query are Earthquake and 

Alarm. We now see that:

ÅP(B|j,m) = ŬP(B,j,m) = Ŭ×e×a P(B,j,m,e,a).

ÅThe semantics of Bayesian networks then gives us an expression 

in terms of CPT entries. For simplicity, we do this just for 

Burglary = true:

ÅP(b|j,m) = Ŭ×e×a P(b)P(e)P(a|b,e)P(j|a)P(m|a). 

ÅTo compute this expression, we have to add four terms, each 

computed by multiplying five numbers. In the worst case, where 

we have to sum out almost all the variables, the complexity of the 

algorithm for a network with n Boolean variables is O(n 2n).
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Bayesian network

ÅAn improvement can be made from the following simple 

observation: the P(b) term is a constant and can be moved 

outside the summations over a and e, and the P(e) term can be 

moved outside the summation over a. Hence, we have

ÅP(b|j,m) = ŬP(b)×e P(e) ×a P(a|b,e)P(j|a)P(m|a). 

ÅThis expression can be evaluated by looping through the 

variables in order, multiplying CPT entries as we go. For each 

summation, we also need to loop over the variableôs possible 

values. The structure of this computation is shown in the figure. 

Using the numbers, we obtain P(b|j,m) = Ŭ<0.00059224, 

0.0014919> ~= <0.284,0.716>.

ÅThat is, the chance of a burglary, given calls from both 

neighbors, is about 28%.
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Bayesian networks

ÅThe evaluation process is shown as an expression tree. The 

ENUMERATION-ASK algorithm evaluates such trees using 

depth-first recursion. The algorithm is very similar in structure 

to the backtracking algorithm for solving CSPs and the DPLL 

algorithm for satisfiability. 

ÅThe space complexity of ENUMERATION-ASK is only linear 

in the number of variables: the algorithm sums over the full joint 

distribution without ever constructing it explicitly. 

Unfortunately, its time complexity for a network with n Boolean 

variables is always O(2^n) ïbetter than the O(n 2^n) for the 

simple approach described earlier, but still rather grim.
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Bayesian network
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Bayesian network
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Bayesian network

ÅNote that the tree makes explicit the repeated 

expressionsevaluated by the algorithm. The products 

P(j|a)P(m|a) and P(j|~a)P(m|~a) are computed twice, 

once for each value of e. We now describe a general 

method that avoids such wasted computation.
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Variable elimination algorithm

ÅThe enumeration algorithm can be improved 

substantially by eliminating repeated calculations of 

the kind illustrated above. The idea is simple: do the 

calculation once and save the results for later use. This 

is a form of dynamic programming. There are several 

versions of this approach; we present the variable 

elimination algorithm, which is the simplest. Variable 

elimination works by evaluating expressions in right-

to-left order (that is, bottom up). Intermediate results 

are stores, and summations over each variable are done 

only for those portions of the expression that depend 

on the variable.
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Variable elimination algorithm

ÅLet us illustrate this process for the burglary network. 

We evaluate the expression

ÅP(B|j,m) = ŬP(B)×e P(e) ×a P(a|B,e)P(j|a)P(m|a). 

ïDenote P(B) by f1(B)

ïDenote P(e) by f2(e)

ïDenote P(a|B,e) by f3(A,B,E)

ïDenote P(j|a) by f4(A) 

ïDenote P(m|a) by f5(A)
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Variable elimination

ÅNote that e have annotated each part of the expression with the 

name of the corresponding factor; each factor is a matrix 

indexed by the values of its argument variables. For example, 

f4(A) and f5(A) depend just on A because J and M are fixed by 

the query. They are therefore two-element vectors:

ïf4(A) = (P(j|a), P(j|~a)) = (0.90, 0.05)

ïf5(A) = (P(m|a),P(m|~a)) = (0.70,0.01)

ïf3(A,B,E) will be a 2x2x2 matrix.

ÅQuery can be rewritten as

ÅP(B|j,m) = Ŭf1(B)x×e f2(e)x×a f3(A,B,E) xf4(A) x f5(A),

ÅWhere the ñxò operator is not ordinary matrix multiplication but 

instead the pointwise produceoperation, to be described 

shortly.
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Variable elimination

ÅThe process of evaluation is a process of summing out 

variables (right to left) from pointwise products of 

factors to produce new factors, eventually yielding a 

factor that is the solution, i.e., the posterior distribution 

over the query variable. The steps are as follows:

ïFirst we sum out A from the product of f3, f4, and f5. This 

gives us a new 2x2 factor f6(B,E) whose indices range over 

just B and E:

ÅF6(B,E) = ×a f3(A,B,E) xf4(A) x f5(A)

Å= (f3(a,B,E) x f4(a) x f5(a)) + (f3(~a,B,E) x f4(~a) x f5(!a)).

ÅNext we are left with the expression:

ÅP(B|j,m) = Ŭf1(B)x×e f2(e)xf6(B,E)
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Variable elimination

ÅNext, we sum out E from the product of f2 and f6: f7(B) = ×e

f2(e)x f6(B,e)

Å= f2(e) x f6(B,e) x f2(~e) x f6(B,~e).

ÅThis leaves the expression P(B|j,m) = Ŭf1(B)xf7(B),

ÅWhich can be evaluated by taking the pointwise product and 

normalizing the result. Examining this sequence, we see that two 

basic computational operations are required: pointwise product 

of a pair of factors, and summing out a variable from a product 

of factors. 

ïTextbook covers details for factor operations, variable ordering, and 

variable relevance. You will have homework question on these.
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Multiagent systems (game theory)

ÅStrategic multiagent interactions occur in all fields

ïEconomics and business: bidding in auctions, offers in 

negotiations

ïPolitical science/law: fair division of resources, e.g., divorce 

settlements

ïBiology/medicine: robust diabetes management (robustness 

against ñadversarialò selection of parameters in MDP)

ïComputer science: theory, AI, PL, systems; national security 

(e.g., deploying officers to protect ports), cybersecurity (e.g., 

determining optimal thresholds against phishing attacks), 

internet phenomena (e.g., ad auctions)
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ÅTheorem (von Neumann): In chess, one and only one 

of the following must be true:

i. White has a winning strategy

ii. Black has a winning strategy

iii. Each of the two players has a strategy guaranteeing at least 

a draw.

ÅApplies to ALL chess matches, not a particular match

ÅTheorem is significant because a priori it might have 

been the case that none of the alternatives was 

possible; one could have postulated that no player 

could ever have a strategy always guaranteeing a 

victory, or at least a draw.
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Checkers is Solved (Science ô07)

ÅThe game of checkers has roughly 500 billion 

possible positions (5 × 1020). The task of 

solving the game, determining the final result in 

a game with no mistakes made by either player, 

is daunting. Since 1989, almost continuously, 

dozens of computers have been working on 

solving checkers, applying state-of-the-art 

artificial intelligence techniques to the proving 

process. This paper announces that checkers is 

now solved: Perfect play éé
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ÅThe game of checkers has roughly 500 billion possible positions 

(5 × 1020). The task of solving the game, determining the final 

result in a game with no mistakes made by either player, is 

daunting. Since 1989, almost continuously, dozens of computers 

have been working on solving checkers, applying state-of-the-

art artificial intelligence techniques to the proving process. This 

paper announces that checkers is now solved: Perfect play by 

both sides leads to a draw. This is the most challenging popular 

game to be solved to date, roughly one million times as complex 

as Connect Four. Artificial intelligence technology has been 

used to generate strong heuristic-based game-playing programs, 

such as Deep Blue for chess. Solving a game takes this to the 

next level by replacing the heuristics with perfection.
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Connect Four
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Connect Four

ÅThe solved conclusion for Connect Four is first player 

win. With perfect play, the first player can force a win, 

on or before the 41st moveby starting in the middle 

column. The game is a theoretical draw when the first 

player starts in the columns adjacent to the center. For 

the edges of the game board, column 1 and 2 on left (or 

column 7 and 6 on right), the exact move-value score 

for first player start is loss on the 40th move,and loss 

on the 42nd move,respectively. In other words, by 

starting with the four outer columns, the first player 

allows the second player to force a win.



48

2-player limit Holdôem poker is 

solved (Science 2015)
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Heads-up Limit Hold óem Poker is Solved

ÅPlay against Cepheus here http://poker-

play.srv.ualberta.ca/

http://poker-play.srv.ualberta.ca/


50

Strategic-form games

ÅA game in strategic form (or in normal form ) 

is an ordered triple G = (N, (Si) i in N, (ui) i in 

N), in which:

ïN = {1,2,é,n} is a finite set of players.

ïSi is the set of strategies of player i, for every player 

i in N. Denote the set of all vectors of strategies by S 

= S1 x S2x é x Sn.

ïui : S Ą R is a function associating each vector of 

strategies s = (si), i in N, with the payoff (utility)

ui(s) to player i, for every player i in N.
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Strategic-form games

ÅSet of strategies available to the players are not 

required to be finite

ÅA game in which strategy set of each player is 

finite is called a finite game

ÅWe will see examples of infinite games

ÅImportant: the outcome for each player depends 

on the strategies chosen by ALL players, not 

just on his strategy alone
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ÅGames in strategic form are sometimes called 

matrix games

ÅWhen n = 2, we call the games bimatrix 

games, as they are given by two matrices, one 

for the payoff of each player.
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Chicken

ÅThe game of chicken models two drivers, both headed for a 

single-lane bridge from opposite directions. The first to swerve 

away yields the bridge to the other. If neither player swerves, the 

result is a costly deadlock in the middle of the bridge, or a 

potentially fatal head-on collision. It is presumed that the best 

thing for each driver is to stay straight while the other swerves 

(since the other is the "chicken" while a crash is avoided). 

Additionally, a crash is presumed to be the worst outcome for 

both players. This yields a situation where each player, in 

attempting to secure his best outcome, risks the worst.
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Chicken
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Chicken
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Security game
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Rock-paper-scissors

rock paper scissors

Rock 0,0 -1, 1 1, -1

Paper 1,-1 0, 0 -1,1

Scissors -1,1 1,-1 0,0
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Prisonerôs dilemma

T > R > P > S 
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Battle of the sexes

ÅImagine a couple that agreed to meet this evening, but 

cannot recall if they will be attending the opera or a 

football match (and the fact that they forgot is common 

knowledge). The husband would prefer to go to the 

football game. The wife would rather go to the opera. 

Both would prefer to go to the same place rather than 

different ones. If they cannot communicate, where 

should they go?
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Strategic-form game examples

ÅChicken

ÅSecurity game

ÅRock-paper-scissors

ÅPrisonerôs dilemma

ÅBattle of the sexes
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ÅWe saw von Neumannôs theorem in the special case of 

two players and three possible outcomes: victory for 

White, a draw, or victory for Black. 

ÅCentral question of game theory: what ñwill happenò in 

a given game?
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Central question of game theory

1. An empirical, descriptive interpretation: How 

do players, in fact, play in a given game?

2. A normative interpretation: How ñshouldò 

players play in a given game?

3. A theoretical interpretation: What can we 

predict will happen in a game given certain 

assumptions regarding ñreasonableò or 

ñrationalò behavior on the part of the players?
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Descriptive game theory

ÅObservations of the actual behavior of players, 

both in real-life situations and in artificial 

laboratory conditions where they are asked to 

play games and their behavior is recorded.

ïBehavioral economics, psychology
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Normative interpretation

ÅAppropriate for a judge, legislator, or arbitrator called 

upon to determine the outcome of a game based on 

several agreed-upon principles, such as justice, 

efficiency, nondiscrimination, and fairness.

ÅBest suited for the study of cooperative games, in 

which binding agreements are possible, enable 

outcomes to be derived from ñnormsò or agreed-upon 

principles, or determined by an arbitrator who bases his 

decisions on those principles.
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Theoretical interpretation

ÅAfter we have described a game, what can we 

expect to happen?

ÅWhat outcomes, or set of outcomes, will 

reasonably ensue, given certain assumptions 

regarding the behavior of the players?
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ÅFor each of the five example games we discussed:

ïHow will real players act?

ïHow ñshouldò players act?

ïHow would theoretically perfectly rational players act?

ÅGolden Balls: Split or Steal? 

https://www.youtube.com/watch?v=S0qjK3TWZE8
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Game theory background

ÅPlayers

ÅActions (aka pure strategies)

ÅStrategy profile: e.g., (R,p)

ÅUtility function: e.g., u1(R,p) = -1, u2(R,p) = 1

rock paper scissors

Rock 0,0 -1, 1 1, -1

Paper 1,-1 0, 0 -1,1

Scissors -1,1 1,-1 0,0
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Zero-sum game

ÅSum of payoffs is zero at each strategy profile: 

e.g., u1(R,p) + u2(R,p) = 0

ÅModels purely adversarial settings

rock paper scissors

Rock 0,0 -1, 1 1, -1

Paper 1,-1 0, 0 -1,1

Scissors -1,1 1,-1 0,0
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Mixed strategies

ÅProbability distributions over pure strategies

ÅE.g., R with prob. 0.6, P with prob. 0.3, S with 

prob. 0.1
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Best response (aka nemesis)

ÅAny strategy that maximizes payoff against 

opponentôs strategy

ÅIf P2 plays (0.6, 0.3, 0.1) for r,p,s, then a best 

response for P1 is to play P with probability 1
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Nash equilibrium

ÅStrategy profile where all players 

simultaneously play a best response

ÅStandard solution concept in game theory

ïGuaranteed to always exist in finite games [Nash 

1950]

ÅIn Rock-Paper-Scissors, the unique equilibrium 

is for both players to select each pure strategy 

with probability 1/3 
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Minimax Theorem

ÅMinimax theorem: For every two-player zero-sum 

game, there exists a value v* and a mixed strategy 

profile ů* such that:

a. P1 guarantees a payoff of at least v* in the worst case by 

playing ů* 1 

b. P2 guarantees a payoff of at least -v* in the worst case by 

playing ů* 2 

Å v* (= v1) is the valueof the game 

Å All equilibrium strategies for player i guarantee at 

least vi in the worst case

Å For RPS, v* = 0
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Exploitability

ÅExploitability of a strategy is difference 

between value of the game and performance 

against a best response

ïEvery equilibrium has zero exploitability

ÅAlways playing rock has exploitability 1

ïBest response is to play paper with probability 1
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Nash equilibria in two-player zero-

sum games

ÅZero exploitability ïñunbeatableò

ÅExchangeable

ïIf (a,b) and (c,d) are NE, then (a,d) and (c,b) are too

ÅCan be computed in polynomial time by a linear 

programming (LP) formulation
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Nash equilibria in multiplayer and 

non-zero-sum games
ÅNone of the two-player zero-sum results hold

ÅThere can exist multiple equilibria, each with different 

payoffs to the players

ÅIf one player follows one equilibrium while other 

players follow a different equilibrium, overall profile is 

not guaranteed to be an equilibrium

ÅIf one player plays an equilibrium, he could do worse if 

the opponents deviate from that equilibrium

ÅComputing an equilibrium is PPAD-hard
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Imperfect information

ÅIn many important games, there is information 

that is private to only some agents and not 

available to other agents

ïIn auctions, each bidder may know his own 

valuation and only know the distribution from which 

other agentsô valuations are drawn

ïIn poker, players may not know private cards held 

by other players
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Extensive-form representation
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Extensive-form games

ÅTwo-player zero-sum EFGs can be solved in 

polynomial time by linear programming

ïScales to games with up to 108 states

ÅIterative algorithms (CFR and EGT) have been 

developed for computing an Ů-equilibrium that scale to 

games with 1017 states

ïCFR also applies to multiplayer and general sum games, 

though no significant guarantees in those classes

ï(MC)CFR is self-play algorithm that samples actions down 

tree and updates regrets and average strategies stored at 

every information set 
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WL/12 CC CF FC FF

00 0 0 0 0

01 -0.5 -0.5 1 1

02 -1 1 -1 1

10

11

12

20

21

22
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Extensive-form game

ÅA game in extensive formis given by a game tree, which 

consists of a directed graph in which the set of vertices 

represents positions in the game, and a distinguished vertex, 

called the root, represents the starting position of the game. A 

vertex with no outgoing edges represents a terminal position in 

which play ends. To each terminal vertex corresponds an 

outcome that is realized when the play terminates at that vertex. 

Any nonterminal vertex represents either a chance move (e.g., a 

toss of a die or a shuffle of a deck of cards) or a move of one of 

the players. To any chance-move vertex corresponds a 

probability distribution over edges emanating from that vertex, 

which correspond to the possible outcomes of the chance move.
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Perfect vs. imperfect information

ÅTo describe games with imperfect information, in 

which players do not necessarily know the full board 

position (like poker), we introduce the notion of 

information sets. An information set of a player is a set 

of decision vertices of the player that are 

indistinguishable by him given his information at that 

stage of the game. A game of perfect informationis a 

game in which all information sets consist of a single 

vertex. In such a game whenever a player is called to 

take an action, he knows the exact history of actions 

and chance moves that led to that position.
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ÅA strategyof a player is a function that assigns to each 

of his information sets an action available to him at that 

information set.  A path from the root to a terminal 

vertex is called a playof the game. When the game has 

no chance moves, any vector of strategies (one for each 

player) determines the play of the game, and hence the 

outcome. In a game with chance moves, any vector of 

strategies determines a probability distribution over the 

possible outcomes of the game.
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ÅEvery description of a game must include:

ïSet of players

ïThe possible actions available to each player

ïRules determining the order in which players make 

their moves.

ïA rule determining when the game ends.

ïA rule determining the outcome of every possible 

game ending.
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Homework for next class

ÅChapter 21 from Russel/Norvig

ÅHW3 due Tuesday 11/14

ÅHW4 out this week

ÅNext lecture: Machine learning (classification)


