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To understand the biogeochemical roles of microorganisms in the
environment, it is important to determine when and under which
conditions they are metabolically active. Bioorthogonal nonca-
nonical amino acid tagging (BONCAT) can reveal active cells by
tracking the incorporation of synthetic amino acids into newly
synthesized proteins. The phylogenetic identity of translationally
active cells can be determined by combining BONCAT with rRNA-
targeted fluorescence in situ hybridization (BONCAT-FISH). In
theory, BONCAT-labeled cells could be isolated with fluorescence-
activated cell sorting (BONCAT-FACS) for subsequent genetic anal-
yses. Here, in the first application, to our knowledge, of BONCAT-
FISH and BONCAT-FACS within an environmental context, we probe
the translational activity of microbial consortia catalyzing the
anaerobic oxidation of methane (AOM), a dominant sink of
methane in the ocean. These consortia, which typically are com-
posed of anaerobic methane-oxidizing archaea (ANME) and sulfate-
reducing bacteria, have been difficult to study due to their slow in
situ growth rates, and fundamental questions remain about their
ecology and diversity of interactions occurring between ANME and
associated partners. Our activity-correlated analyses of >16,400 mi-
crobial aggregates provide the first evidence, to our knowledge,
that AOM consortia affiliated with all five major ANME clades are
concurrently active under controlled conditions. Surprisingly, sorting
of individual BONCAT-labeled consortia followed by whole-genome
amplification and 16S rRNA gene sequencing revealed previously
unrecognized interactions of ANME with members of the poorly
understood phylum Verrucomicrobia. This finding, together with
our observation that ANME-associated Verrucomicrobia are found
in a variety of geographically distinct methane seep environments,
suggests a broader range of symbiotic relationships within AOM
consortia than previously thought.
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Some of the most important goals of environmental microbi-
ology are to understand the physiology, niche differentiation,

and activities of microorganisms in the context of their habitat.
Studies focusing on the mere presence of a cell or gene in a
sample can only provide limited information about the metabolic
capabilities of an organism. Coupling the identification of an
uncultured microbe with its in situ activity thus has been referred
to as the “Holy Grail” of microbial ecology (1). Although bulk
techniques, such as metatranscriptomics and metaproteomics or
stable isotope probing targeted at DNA, RNA, or proteins, have
provided us with exciting new insights into microbial ecophysi-
ology (1–3), they cannot resolve cellular activities on the micro-
meter scale. The combination of rRNA-targeted fluorescence in
situ hybridization (FISH) with single-cell resolving stable isotope
analysis offers a direct, targeted approach for detailed investiga-
tions of microbial structure−function relationships (4, 5).
Currently, three broadly applicable approaches for studying

the in situ anabolic activity of individual cells are available:
microautoradiography (MAR) (6), secondary ion mass spectros-
copy (SIMS and nanoSIMS) (7), and Raman microspectroscopy

(Raman) (8). Each of these techniques has technical challenges or
limited instrument availability that have slowed their wide adop-
tion in the field (1, 5, 9). MAR and SIMS are also destructive
methods that cannot be combined with downstream analysis such
as cell sorting, subculturing, or genomic sequencing. Another
problem is that many biomolecules are prohibitively expensive or
even unavailable in their isotopically labeled form. A universally
applicable approach that circumvents these limitations was re-
cently established by combining the general labeling of active cells
via heavy water with their subsequent identification via FISH and
sorting via Raman-coupled optical tweezers (10). Complementary
to detecting anabolic activity via isotope labeling, a fluorescence
technique based on the visualization of bacterial reductase activity
via redox sensing (Redox sensor green) has been described (11,
12). The general applicability and exact mechanism of this pro-
prietary staining method are, however, unknown.
An alternative approach for studying microbial ecophysiology

that does not depend on isotopes is labeling active cells via
chemically modifiable analogs of biomolecules (9, 13, 14). Bio-
orthogonal noncanonical amino acid tagging (BONCAT) is a
nondestructive technique first applied in neurobiology (15, 16).
Last year, BONCAT was adapted for the study of uncultured
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archaea and bacteria within environmental samples (9, 14).
BONCAT depends on the addition of a bioorthogonal (non-
interacting with cellular functionalities) synthetic (noncanonical)
amino acid to a sample. After its uptake (the exact process is cur-
rently unknown), the amino acid is able to exploit the substrate
promiscuity of specific amino acyl tRNA synthetases, the enzymes
catalyzing the esterification of amino acids with their respective
cognate tRNAs, to get incorporated into de novo peptides (17).
Protein synthesis-active cells can, in the following, be visualized via a
highly selective click chemistry-mediated labeling reaction that
conjugates a modified fluorescence dye to a chemical reporter
group (an azide or alkyne) of the bioorthogonal amino acid (Fig.
1A). Although a wide range of synthetic amino acids exists, only a
small number are able to exploit the natural translational machinery
without the need for genetic modification of the cell (18). To date,
the L-methionine (Met) surrogates L-azidohomoalanine (AHA)
and L-homopropargylglycine (HPG) (17) have found the widest
application (e.g., refs. 16 and 19–24). In a proof-of-principle
investigation, BONCAT was applied to environmental samples
and found to be generally applicable to uncultured archaea and
bacteria (9, 14). BONCAT has been demonstrated to correlate
well with other, independent proxies of cellular growth, i.e., the
incorporation of isotopically labeled compounds as detected by
nanoscale SIMS, 15NH4

+ (9), and MAR, [35S]Met (14). In ad-
dition, a protocol for the concomitant taxonomic identification
of translationally active cells via rRNA-targeted FISH (i.e.,
BONCAT-FISH) was recently developed (9) (Fig. 1 A and B).
In this study, we applied HPG to deep-sea methane seep

sediments in which the sulfate-coupled anaerobic oxidation of

methane (AOM) is occurring. AOM accounts for the removal of
∼80% of the methane released from ocean sediments (>400 Gt·y−1)
and is a key process in the biogeochemical cycling of this highly
potent greenhouse gas (25). In marine seeps, AOM is predom-
inantly catalyzed by a symbiosis of anaerobic methane-oxidizing
euryarchaeotes (ANME) with sulfate-reducing bacteria (SRB),
which form consortia of varying cell numbers (∼10 to ∼105 cells)
and morphology (7, 26). Their syntrophic partnership is hy-
pothesized to be mediated by direct electron transfer (27–29)
and/or diffusible intermediates (30, 31).
Several different ANME clades (referred to as ANME-1a, -1b,

-2a, -2b, -2c, and -3) have been observed to aggregate with dif-
ferent representatives of SRB (particularly members of the
Desulfosarcina, Desulfococcus, and Desulfobulbus genera), with
multiple ANME−SRB consortia of different taxonomies com-
monly coexisting in seep sediments without apparent competitive
exclusion of one another. The potential for ecological niche
partitioning within these highly diverse yet seemingly function-
ally redundant associations is not well understood. Previously, it
was demonstrated that temperature (32), methane partial pres-
sure (32), concentrations of sulfate (33, 34) and sulfide (34), and
the availability of nitrogen (35, 36) may influence distribution
and activity of AOM consortia. In addition, ANME-community
structure can vary dramatically between geographically proxi-
mate sites as well as distinct sediment layers (37, 38). Whether
different ANME subgroups in a given sample show variable ac-
tivities depending on specific physicochemical or ecological
conditions or are all metabolically active at a given time is un-
known. In addition to sulfate reducers, other bacterial lineages,

Fig. 1. Concept for the visualization, identification, and sorting of translationally active cells. (A) The bioorthogonal amino acid HPG is added to an envi-
ronmental sample, which is then incubated under in situ conditions. After HPG has entered the cell, the exact process of which is currently unknown, it
competes with Met for incorporation into newly made peptides. HPG-containing proteins are then fluorescently labeled via a Cu(I)-catalyzed azide−alkyne
click reaction, thus marking cells that have undergone protein synthesis during time of incubation. (B) Next, rRNA-targeted FISH is performed to taxo-
nomically identify anabolically active cells. In this example, the yellow cell is detected via both BONCAT and FISH, whereas the other two were either not
translationally active (red cell) or are taxonomically unidentified but active (green cell). (C) Individual labeled cells or consortia can be separated using FACS.
Cells are lysed and their genomes amplified using MDA. The resulting amplified genomes are taxonomically screened via amplification and sequencing of the
V4 region of the 16S rRNA gene. This information may then guide the selection of cells or consortia for genomic sequencing.
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including members of the alpha-, beta-, gamma-, and epsilon-
proteobacteria, have been observed to form physical associations
with ANME (39, 40). The metabolic interactions underlying these
relationships are, however, yet to be determined.
Our study represents, to our knowledge, the first research ap-

plication of BONCAT-FISH in environmental microbiology. We
tested the influence of methane on the metabolic activity (protein
synthesis) of diverse AOM consortia in three sediment samples
from two geographically and geochemically distinct locations. We
further developed a novel approach for isolating protein-synthesizing
cells identified using BONCAT via fluorescence-activated cell
sorting (FACS). Subsequent 16S rRNA gene-based identifica-
tion of individual AOM-consortia provided detailed aggregate-
specific information into specific archaeal−bacterial partnerships.
This approach revealed previously unrecognized metabolically
active associations between ANME and new bacterial groups
outside the deltaproteobacteria.

Results and Discussion
Establishment of HPG Incubation Experiments with Methane Seep
Sediment. Samples were obtained from a methane seep from
Hydrate Ridge, Oregon, (sample #3730), and a seep site in the
Santa Monica Basin, California, (samples #7135, #7136-37, and
#7142). Anoxic sediment microcosms were set up in the pres-
ence or absence of HPG (5 μM or 50 μM) and over-pressurized
(2 bars) with either N2 or methane followed by incubation in the
dark at 4 °C for 114 d (#3730), 171 d (#7135), 31 d (#7136-37),
and 25 d (#7142). These long incubation times were necessary
due to the slow growth of ANME−SRB consortia (3−7 mo; e.g.,
refs. 41–43), which is attributed to the very low free energy yield
of sulfate-coupled AOM (42, 44). Subsampling for molecular
and geochemical analyses as well as exchange of gaseous head-
space and seawater were conducted at regular intervals. Details
on incubation setup and sampling is provided in Dataset S1.

HPG Amendment Had No Detectable Effect on Microbial Community
Composition or Activity. Adding a compound to an environmental
sample always bears the risk of altering the structure or function
of the microbial community. Three independent lines of evidence
suggest that, at the concentrations used in this study (≤50 μM),
the methionine analog HPG did not affect the geochemical ac-
tivity or community structure of microbes within methane seep
sediment for up to 171 d of incubation. First, HPG addition had no
effect on sulfide production, a reliable proxy for sulfate-dependent
AOM activity (45) in time course experiments (up to 6 mo). In
contrast, the removal of methane led to a notable and expected
decrease (Fig. S1A) in sulfide production as previously reported
(45). Second, seep sediment from Santa Monica Basin (sediment
#7142) incubated with and without HPG over a period of 25 d
showed equivalent rates of AOM, as measured by 13C dissolved
inorganic carbon (DIC) production following 13CH4 amend-
ment (Fig. S1B). Third, Illumina tag sequencing (iTAG) of the
16S rRNA V4 region of archaea and bacteria revealed that
HPG additions had no statistically significant effect on sediment
#3730 and #7135 community compositions (Figs. S2–S4). More
specifically, control incubations of #3730 are indistinguishable
from samples containing 50 μM HPG after 114 d of incubation
(effect of HPG, P = 0.20), with an average Bray Curtis similarity
of the communities of 94.4% between all samples (Figs. S2 and
S3). Sequences related to ANME-2c archaea make up a slightly
higher proportion in HPG-containing samples compared with
incubations without HPG; however, this observation was not
statistically supported (Figs. S3 and S5). Similarly, for #7135, no
differences in the composition of the microbial community in
general or ANME- and SRB-related lineages in particular be-
tween samples incubated in the presence (5 μM or 50 μM) or
absence of HPG were observed (Figs. S2, S4, and S5). After 41 d,
communities in incubations with or without HPGwere, on average,

92.1% similar (Bray Curtis; effect of HPG, P = 0.56). This
similarity decreased to 87.9–89.3% after an additional 130 d of
incubation, but without a detectable effect from HPG (P = 0.25;
Fig. S4A). The absence of methane in the headspace, however,
did result in a statistically significant change in the microbial
community (P = 0.042; Fig. S2B).
These independent activity and community composition analyses

all indicate that the addition of the bioorthogonal amino acid HPG
at concentrations up to 50 μM did not result in any detectable
changes in the seep microbial diversity or activity up to 171 d.

Fluorescence Detection of Translationally Active Cells. To fluo-
rescently label microbes undergoing active protein synthesis
during the incubation, a recently established BONCAT protocol
based on the Cu(I)-catalyzed conjugation of HPG with an azide
dye (9, 14, 46) was used. In initial tests, no difference in fluo-
rescence intensity or signal-to-noise ratio was observed between
ethanol-fixed, paraformaldehyde-fixed, or nonfixed AOM con-
sortia. All further experiments were thus performed on ethanol-
fixed biomass, unless stated otherwise. Although several factors
prohibit the absolute quantification of new proteins from fluo-
rescence data (discussed in SI Text), semiquantitative compari-
sons between different cells of the same taxonomic group may
offer information on the functional (translational) activity of
uncultured cells in the environment. Throughout the text, we
refer to DAPI-stained cell clusters that bound an ANME-specific
(CARD) FISH probe as “microbial (AOM) consortia.” When
cells within a DAPI-stained cluster could not be unambiguously
identified, we use the term “microbial aggregate” instead.

BONCAT as a Novel Approach to Study Anabolic Activity of AOM
Consortia. To establish whether BONCAT can be used as a
proxy for methane-dependent translational activity of AOM
consortia, we used sample #7136-37, representing the 9- to
15-cm depth horizon immediately underlying sediment horizon
#7135 (6−9 cm). After preincubation of the sediment in the
absence of methane for 124 d, microcosm experiments were
established with 50 μM HPG in the presence or absence of
methane. After 31 d of incubation, microbial aggregates were
extracted and analyzed by microscopy (n = 1,554). Under
methane-replete conditions, 24.9% of all microbial aggregates
were BONCAT-stained, whereas only 2.3% exhibited detectable
translational activity when methane was absent from the head-
space (Fig. 2). This initial test demonstrated that BONCAT can
be used to study the methane-dependent anabolic activity of
AOM consortia.

Sensitivity of BONCAT. In all incubations, the relative abundance
of translationally active DAPI-stained microbial aggregates in-
creased with time, with 65.8% and 48.5% of aggregates in #3730
and #7135 showing a positive BONCAT signal at the end of
incubation (114 d and 171 d, respectively). It is interesting to
note that, already after 7 d of incubation, 5.6% of the microbial
aggregates in sediment #7135 were labeled by BONCAT (Fig.
2). Assuming that the AOM consortia studied here have growth
rates comparable to those previously reported [2−7 mo (41, 42,
43)], we estimate that BONCAT is able to detect the activities of
cells within ANME−SRB consortia after 3.3–7.7% of their
doubling time. Considering the differences in the physiology of
the organisms as well as the lower fluorescence signal-to-noise
ratios observed in environmental systems, this estimate is con-
sistent with our finding of a BONCAT detection limit of <2% of
generation time for slow-growing Escherichia coli (9).
At this time, it is unclear why up to half of the DAPI-stained

consortia were not BONCAT-stained during the AOM incubation
experiments. This may have been the result of storing these
deep-sea samples in the laboratory, variable amino acid uptake,
or low levels of protein synthesis that are below detection with
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BONCAT. The combined application of BONCAT and rRNA-
targeted FISH demonstrated that all ANME lineages present in
our samples are able to incorporate HPG into their biomass
(discussed in Multiple Cooccurring ANME Subgroups Were Active
Under Identical Incubation Conditions). This suggests that an
inability to take up HPG into cells is likely not a problem in our
AOM microcosms. This idea is further supported by the obser-
vation that AHA and HPG are taken up and incorporated by a
range of bacterial and archaeal cultures, including methanogens
and sulfate reducers (9, 46).

BONCAT-FISH as a Tool for Microbial in Situ Activity Studies. Al-
though the quantitative isotopic analysis provided by SIMS and
nanoSIMS is currently unparalleled by other single cell techniques,
the specialized instrumentation and cost along with comparatively
lower sample throughput have restricted its widespread application
in the field (10−100 consortia per study; e.g., refs. 7, 27, 35, and 36).
Many fundamental questions in microbial ecology regarding the
activity and metabolic potential of environmental microbes in situ,
however, can be addressed with lower-precision methods.
To demonstrate the utility of BONCAT as a comparatively

high-throughput method for tracking microbial biosynthetic ac-
tivity, we used epifluorescence microscopy combined with FISH-
BONCAT to investigate the translational activities of 14,884
individual microbial aggregates in the presence or absence of
methane in microcosms mimicking in situ conditions. In total,

12,652 aggregates from four #3730 microcosms incubated for
30 d and 114 d were analyzed. In addition, the activities of 2,232
aggregates from six incubations of sediment #7135 after 7 d,
41 d, and 171 d of incubation were determined. To assess
whether the activity of individual consortia is influenced by the
phylogenetic affiliation of their partners, we combined BONCAT
with rRNA-targeted FISH (Fig. 1B). Following our recently
established protocol (9, 46), we used 11 different 16S and 23S
rRNA-targeted oligonucleotide probes labeled with either a
fluorescence dye or horseradish peroxidase (for catalyzed re-
porter deposition FISH, CARD-FISH) to target the different
ANME populations and their associated bacteria present in our
samples. These were applied in 11 different combinations (see SI
Text and Datasets S2 and S3 for details) to study the activity of
AOM consortia in the presence or absence of methane. In total,
we visualized the translational activities of 1,346 taxonomically
identified AOM consortia (representative images in Fig. 3; re-
sults in Fig. 2, Table 1, and Dataset S2).

BONCAT-FISH Reveals the Cooccurrence of Diverse and Active AOM
Consortia.Domain-specific FISH probes (Arch915 and EUB338mix)
hybridized 37.6% (114 d) and 51.8% (41 d) of microbial aggregates
in methane-containing incubations of sediments #3730 and #7135,
respectively. In contrast, the combined application of five flu-
orescently labeled oligonucleotide probes specific for the main
ANME subpopulations present in our samples (ANME-1, -2a, -2b,
and -2c) yielded positive results for only 5.4% (#3730, 114 d) and
5.8% (#7135, 41 d) of microbial aggregates in methane-containing
samples. Two other groups of ANME archaea, nitrate-dependent
ANME-2d (47) as well as ANME-3, were absent from our methane
seep 16S rRNA iTAG datasets and thus were not probed by FISH.
Compared with FISH, CARD-FISH yielded slightly lower detection
rates for probe Arch915, specific for domain Archaea (55.7% in
FISH vs. 53.2% for CARD-FISH for #3730, 114 d of incubation).
Similar results were obtained for the combined application of
ANME-specific probes, which, together, hybridized 4.2% of mi-
crobial aggregates (5.4% with FISH; Fig. 2 and Table 1). Compa-
rable hybridization efficiencies were found for samples that had
been incubated in the absence of HPG. Independent CARD-FISH
experiments (Table 1 and SI Text) corroborated these findings.
The stark discrepancy between domain- and subpopulation-

specific probes might be explained by a combination of factors.
First, several available probes specific for different ANME
clades are predicted to have low accessibilities to their rRNA
target sites (48) and thus may exhibit low fluorescence signal-to-
noise ratios. In addition, although most published ANME probes
are predicted to comprehensively and specifically detect the di-
versity of sequences in rRNA databases, we do not know how
well these probes cover the full diversity of ANME in the envi-
ronment. For one subpopulation, ANME-2b, which was repre-
sented by 18–20% of all ANME-related tag sequences in our
sediments (Fig. S5), we tried to overcome this problem by de-
signing a new probe, ANME-2b-729. When tested in silico, this
probe binds to 93% of all ANME-2b 16S rRNA sequences and
has at least two mismatches to all non-ANME-2b-related rRNA
sequences in public and in-house databases. We successfully
applied this new probe to our sediment samples (Fig. 3 D and E),
and the results are described in Table 1 and Dataset S2. Alter-
natively, it is possible that a fraction of DAPI-stained aggregates
contained archaea unaffiliated to ANME. Similar to most other
marine sediments (38), seep sediment #7135 from Santa Monica
Basin hosts a variety of archaea unrelated to ANME (9–17% of
all iTAG sequences in our dataset). The archaeal population in
Hydrate Ridge sediment #3730, in contrast, is dominated by
ANME (93.2–97.7% of all archaeal sequences). Therefore, it is
unlikely that archaea unrelated to ANME constituted a substantial
number of microbial consortia in #3730. Furthermore, to our
knowledge, no other sediment-dwelling archaea have previously

Fig. 2. Temporal dynamics of translational activities of microbial consortia
as revealed by BONCAT-FISH. Three geographically distinct sediment sam-
ples, #3730, #7135, and #7136-37, were incubated in the presence of
methane or N2 for 114 d, 171 d, and 31 d, respectively; 2.3–30.4% of ag-
gregates were translationally active in absence of methane, suggesting ei-
ther the use of storage compounds, the presence of an endogenous
methane source, or a potential physiological flexibility of these microbial
partnerships. Green bars show the relative abundance of aggregates detect-
able via BONCAT. Red bars indicate the detection rate of DAPI-stained aggre-
gates by FISH and CARD-FISH. Yellow bars give the relative abundance of
aggregates that were both BONCAT-positive and FISH- or CARD-FISH-stained;
n, number of microbial aggregates analyzed per experiment. For a list of probes
and detailed results, see Dataset S2.
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been reported to occur in multicellular associations with bacteria.
Additional discussions on FISH using ANME-specific probes
can be found in the SI Text.
Of all consortia detectable with an ANME-specific FISH

probe, 91.4% (sample #3730) and 81.8% (sample #7135) were
also BONCAT-positive. In contrast, only 81.4% (#3730) and
58.3% (#7135) of all positively hybridized microbial aggregates
(using either domain- or ANME-specific FISH probes) could be
detected via BONCAT (Fig. 2 and Dataset S2). This result lends
support to the view that rRNA-targeted FISH is not always a
reliable proxy for cellular activity. Notably, there was no statis-
tically supported relationship between BONCAT and FISH
signal intensities of individual cells within AOM consortia (n = 5
consortia, each composed of 50–200 cells).

Multiple Cooccurring ANME Subgroups Were Active Under Identical
Incubation Conditions. Methane seeps commonly harbor a wide
range of taxonomically distinct ANME clades (e.g., refs. 26,
38, 49, and 50). The activity patterns and niche differentia-
tion of these apparently functionally redundant groups are,
however, not understood. So far, temperature (32), methane
partial pressure (32), concentration of sulfate (33, 34) and
sulfide (34), and nitrogen availability (35, 36) have directly or
indirectly been shown to drive the abundance and activity of
different ANME lineages. Using BONCAT, we were able to
demonstrate that representatives of all major ANME sub-

populations (ANME-1 and ANME-2a, -2b, and -2c) cooc-
curring in a sediment incubation were biosynthetically active
under controlled AOM incubation conditions in the labora-
tory (Table 1). This result raises questions about the ecology
underlying this apparent functional redundancy and factors
influencing niche specialization. A promising approach for
future studies of the functional capacities and niche adapta-
tions of different ANME lineages will be to use isotopically
labeled substrates in combination with BONCAT-based ac-
tivity screening in targeted physiological experiments (9).

Fig. 3. Single-cell–resolved visualization of the wide range in translational activity observed for morphologically and taxonomically distinct methane-oxi-
dizing consortia in sediment #3730. Protein synthesis-active cells were identified via BONCAT (green). The 16S rRNA-targeted oligonucleotide FISH probes,
specific for the domain Archaea (A and B), most delta-proteobacteria (C and F), and ANME-2b (D and E), were used to taxonomically identify the two mi-
crobial partners (red). DAPI staining of DNA is shown in blue. An overlay of the three fluorescence channels and a 10-μm scale bar are shown at lower right in
each panel. BONCAT-negative cells were either translationally inactive or have not taken up or incorporated HPG into new proteins.

Table 1. Comparison of 16S rRNA gene-based affiliations of
active ANME in sediment #3730 after 114 d of incubation in the
presence of methane

No. of aggregates FISH CARDFISH FACS

DAPI 2,946 1,130
BONCAT+ 1,922 678 34
(CARD) FISH+ 167 48
BONCAT+ and (CARD) FISH+ 163 42
% ANME-1 1 79 29
% ANME-2a 34 0 3
% ANME-2b 27 14 21
% ANME-2c 38 7 47
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Activity of ANME−SRB Consortia in the Absence of methane.To date,
members of ANME archaea have only been shown to conserve
energy through methane oxidation. Some studies, however, have
suggested that select ANME populations might be capable of
methanogenesis (34, 51–55). Anabolic activity of individual
ANME−SRB consortia in the absence of methane has not,
however, been directly demonstrated. In our BONCAT-FISH
studies, we found that, after 30 d of incubation without the ad-
dition of methane, 7.9% of DAPI-stained microbial aggregates
from sediment #3730 were BONCAT-stained, and, after 114 d,
this proportion nearly doubled to 14.6% [∼50–95% of doubling
time (41–43)]. A similar trend was observed for sample #7135
(14.5%, 30.4%, and 24.2% BONCAT-positive aggregates after 7 d,
41 d, and 171 d). This observation was in stark contrast to our #7136-
37 incubations in the absence of methane, in which only a very small
percentage (2.3%) of microbial aggregates were fluorescently la-
beled. Although #3730 and #7135 consortia were clearly
BONCAT-stained, their fluorescence intensity was roughly 10-fold
lower (n = 20) than consortia incubated in the presence of methane.
Consistent with samples incubated in the presence of methane, the
relative proportion of BONCAT-stained aggregates that could be
attributed to a specific ANME population via (CARD) FISH was
also very low in the absence of methane (0.3–9.8%; Fig. 2).
An explanation for activity of AOM consortia in the absence

of methane headspace could be that some consortia may have
the potential to consume previously accumulated energy storage
compounds. This hypothesis is supported by the observation that
some representatives of ANME-2b but not ANME-2c cells fea-
ture polyphosphate granules. Similarly, some ANME-associated
SRB might harbor carbon storage compounds (56). Our results
suggest that more AOM consortia than previously thought are able to
build up substantial amounts of energy storage during times of sub-
strate repletion. This is surprising, given the very low energy yield of
the AOM reaction (ΔG0 = −16 kJ·mol−1 at standard conditions)
(57). Our finding, however, is consistent with the observation that
some AOM consortia are able to invest substantial amounts of
metabolic energy in N2 fixation (35, 58), one of the most energy-in-
tensive reactions known (16 ATP per N2).
The observation of an increase in active consortia in sediment

#3730 over long periods of time (from 7.9% after 30 d to 14.7%
after 114 d; Fig. 2) is, however, inconsistent with the predicted
progressive depletion of storage compounds. Another possible
explanation for results from #3730 could be attributed to an
internal methane cycle, in which methanogens produced meth-
ane, which was then reoxidized by AOM consortia. Alternatively,
members of ANME−SRB consortia might themselves engage in
the production of methane rather than in sulfate-coupled AOM, as
previously suggested (51–55). Recent experiments on the meth-
anogenic potential of ANME-1 and ANME-2 enrichment cultures,
however, have not supported this idea (59). A minor amount of
methane was detected in our N2-containing #3730 and #7136-37
microcosms; however, these levels were similar to concentrations
measured as a trace contaminant in the N2 tank (∼1–10 ppm
methane). The reported methane partial pressure capable of
supporting AOM by methane seep consortia is 1 bar (i.e.,
1.4 mM in solution) (32, 45), five orders of magnitude higher
than concentrations in our incubations. Another intriguing pos-
sibility to explain the activity of BONCAT-stained ANME−SRB
consortia in the absence of methane is that we might not yet rec-
ognize the full extent of physiological capabilities of ANME−SRB
consortia and that they might be involved in energy conservation
pathways unrelated to the oxidation or generation of methane. A
first step toward formulating hypotheses about potential energy-
yielding substrates is to identify specific archaeal−bacterial part-
nerships that might differ in their substrate range for targeted
genomics.

Identification of Microbial Partners Within Activity-Sorted Consortia.
With a few notable exceptions (10, 11, 39, 60–62), single-cell
genome sequencing efforts so far have been “target-blind”; they
did not select for a specific taxon of interest or focus on meta-
bolically active cells that could be considered key species for
ecosystem functioning. The power of these techniques to in-
vestigate microbial partnerships involved in AOM was recently
demonstrated by the separation of FISH-identified ANME
consortia from methane seep sediments via immunomagnetic
capture [magneto-FISH (39, 63)] and fluorescent-activated cell
sorting [FISH-FACS (61, 64)]. Using sorting approaches, asso-
ciations between ANME and bacteria not known to be capable
of sulfate reduction, including members of the alpha-, beta-,
gamma- and epsilon-proteobacteria as well as Planctomyces,
have been revealed (39). In addition, the potential of targeted
sorting approaches for uncovering rare populations has been
demonstrated by the successful enrichment of an ANME-2d
population from ∼2% to ∼94% (61).
To demonstrate the potential of BONCAT to separate the

functionally active fraction of a microbial community from complex
samples, we sorted individual, translationally active consortia from
sediments #3730 and #7142 by FACS. We refer to this activity-
based cell-sorting approach as BONCAT-FACS (Fig. 1C). To test
the specificity of the chosen gates, 200 events per gate were sorted
into individual tubes and analyzed using fluorescence microscopy.
For the BONCAT++ gate, which was used for all downstream
analyses, 204 DAPI-stained microbial aggregates were identified, all
of which were BONCAT-stained (Fig. 4). The slightly higher
number of consortia (204 vs. the expected 200) may be due to
cosorting of physically attached aggregates or the partial disaggre-
gation of some aggregates after sorting.
Consortia sorted into individual wells of microtiter plates were

lysed and their genomes amplified via multiple displacement
amplification (MDA) following established protocols (65). For
ethanol-fixed biomass from sediment #3730, 76 out of 168 sorted
events resulted in an MDA product. This efficiency (45%) is
comparable with that of a recent study that reported a success
rate of 50% when DNA from cells stored in 70% ethanol was
used as PCR template (66). By avoiding any cell fixation before
sorting of individual consortia (Fig. 4), the efficiency of MDA re-
actions improved to 93% (78 out of 84 sorted events) for the same
sample. Together, these results suggest that BONCAT and click

Fig. 4. Flow cytometric analysis of unfixed microbial cells and consortia
extracted from sediment #3730 after incubation with (A) or without (B) HPG.
(C) Microbial consortia detected by fluorescence microscopy after sorting of
200 events per gate. Only BONCAT and BONCAT++ gates were used for
activity-based sorting. Microscopic images of representative tube-sorted
consortia are on the right. Note that the relative fluorescence intensity
differs between gates (for gate P1 events, exposure time had to be increased
10-fold compared with gate BONCAT to yield visually detectable BONCAT-
fluorescence). RFI 488 nm is relative fluorescence intensity at an excitation of
488 nm; BONCAT++, BONCAT, P1, P2, and P3 are gates using for counting
and sorting; gate P3 did only contain individual cells as well as sediment and
Percoll particles. Percent values indicate the relative abundance of events
within each gate.
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chemistry-mediated dye labeling have no detrimental effect on
DNA quality. Fixation of biomass was avoided for sediment #7142.
Diluted DNA from MDA reactions was used as the template

in PCR amplifications targeting the V4 region of archaeal and
bacterial 16S rRNA genes (67, 68). Amplicons from PCR reactions
that yielded a single band during gel electrophoresis examination
were barcoded, sequenced, and phylogenetically analyzed (Fig. 5
and Fig. S6). The majority of reactions contained both ANME- and
SRB-related sequences in high numbers. In several reactions,
however, only sequences from either the ANME or the SRB
partner were obtained (sequences from the other cell type were
<0.1%). Given the observed specificity for active microbial aggre-
gates of our sorting approach (Fig. 4B), preferential amplification of
a single sequence type for this subset may be indicative of bias
during cell lysis and/or the MDA reaction, a problem well discussed
in the literature (66, 69, 70). Reactions that only recovered SRB
sequences (n = 5) were not considered further in our analysis. For
each of the remaining 45 consortia, a single ANME operational
taxonomic unit (OTU; defined here as a unique sequence) repre-
sented 93–100% of all ANME-associated sequences. Similarly, in
each individual consortium from sediment #3730, a single OTU
always contributed 94–100% of all SRB-related sequences. Despite
the relatively low number of consortia analyzed (n = 34), repre-
sentatives of all ANME clades found in #3730 samples (according
to 16S rRNA iTAG data) were retrieved from a single incubation,
corroborating the findings of phylogenetic diversity from our
BONCAT-FISH studies (findings are summarized in Table 1).
Consistent with previous reports (26, 36, 39, 49, 71), ANME-1 and
ANME-2 were predominantly associated with putative sulfate re-
ducers within the delta-proteobacterial lineages Desulfobacterium,
Desulfobulbus, Desulfococcus, and Desulfosarcina (Fig. 5 and Fig.
S6). Analysis of single consortia further revealed that individual
ANME subpopulations (single OTU) are often associated with
different bacterial partners, and vice versa. For example, the seven

observed #3730 ANME-2b consortia (identical in their V4 region)
have partners within three different bacterial families. Similarly,
three consortia (A03Uf, C08Uf, and H01Uf) from sediment #7142
each harbored two SRB OTUs (94.9–98.8% identical in sequence).
In addition to sequences from SRB, five consortia from sedi-

ment #3730 also yielded low proportions of sequences from
bacteria related to Pseudomonas or other gamma-proteobacteria
(Fig. 5 and Fig. S6). These sequences were taxonomically dif-
ferent from commonly observed laboratory contaminants and
were distinct from sequences detected in overamplified negative
controls or control mock communities. This result, together with
(i) the finding of highly similar gamma-proteobacterial sequences in
a magneto-FISH study of AOM consortia (39), (ii) our demon-
stration that translationally active gamma-proteobacteria and ar-
chaea form consortia in sediment #3730 (Dataset S2), and (iii) the
observation that individual ANME OTUs in different consortia
were associated with diverse bacterial groups, lend strong sup-
port to the idea that AOM partnerships are dynamic, both in
terms of partner affiliation and possibly their ecophysiology (39).

Discovery of a New Interdomain Partnership. The rRNA gene se-
quences obtained from an ANME-1a consortium (#E06) from
#3730 did not contain sequences related to known sulfate re-
ducers, but instead recovered sequences associated with Verru-
comicrobia. Sequences retrieved from a second consortium
(#D05) also contained the same ANME-1a OTU, in addition to
both Desulfobulbaceae sequences and another Verrucomicrobia-
affiliated OTU (sequence 80% identical to the E06 OTU). Both
Verrucomicrobia-affiliated sequences had ≤81% identity to rRNA
genes from previously described species (Fig. 5 and Fig. S6).
To complement our sequence-based observations, we used

FISH to screen 27 samples from nine methane seep sediment
cores obtained from a variety of geographic locations as well
as two carbonates retrieved from a methane vent site for the

Fig. 5. Identification of microbial partners within
AOM consortia after activity-based sorting. Taxo-
nomic affiliation of the archaeal (left tree) and
bacterial (right tree) partners within 45 individually
sorted, translationally active consortia from sedi-
ments #3730 (black) after 114 d and #7142 (red) after
25 d of incubation with HPG. The potential to dis-
cover yet unrecognized microbial interactions with
this approach is evidenced by our finding of two
consortia containing Verrucomicrobia-derived sequences.
Using FISH, we independently confirmed the presence
and activity of microbial consortia composed of Ar-
chaea and Verrucomicrobia in several sediment and
carbonate samples. Trees represent maximum likeli-
hood reconstructions onto which bootstrap values are
projected. Green and white colored boxes on trees
show support ≥90% and ≥70%, respectively. Values
<70% are not given. Boxes on left and right trees in-
dicate maximum parsimony (100×) and neighbor join-
ing (1,000×) values, respectively. Tag sequences were
added after tree construction without changing overall
tree topology. Solid and dashed lines indicate individual
archaeal−bacterial partnerships. Scale bars equal 10%
estimated sequence divergence. Detailed trees and
additional FISH images are shown in Figs. S6 and S7.
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association of Verrucomicrobia with AOM consortia. We used
two 16S rRNA-targeted probes specific for the phylum Verru-
comicrobia (EUB338-III and Ver47) (72–74), in combination
with the general archaeal probe Arch915, to screen archaeal
aggregates from these samples. In four sediments (#3730 incubated
for 30 d and 114 d in the presence of HPG and methane; sediments
#5119, #5202, and #7142) as well as both carbonate samples
(#2450 and #3439), verrucomicrobial cells were associated with 10–
20% of AOM consortia (Dataset S3 and Fig. S7). Although the vast
majority (∼98%) of these aggregates contained only low numbers of
Verrucomicrobia (<20 per aggregate), a small number (n = 14) of
aggregates exhibited very high ratios of verrucomicrobial to
archaeal cells (Fig. 5, Fig. S7, and Dataset S3).
Despite the near-ubiquitous distribution of Verrucomicrobia in

marine sediments (75), including all 23 methane seeps recently
surveyed via 16S iTAG sequencing (38), archaeal−verrucomi-
crobial associations have not been described previously. Because
of the loss of structural information during DNA extraction and
the typically low abundance of consortia consisting of ANME
and nontraditional partner bacteria (refs. 39 and 40 and this
study), metagenomic sequencing has so far failed to provide
metabolic predictions on the whole diversity of these microbial
associations. Our results reinforce the imperative to combine
genomic sequencing with spatially resolved approaches, such as
microscopy and cell sorting (e.g., refs. 10, 69, and 76), to gain
access to the genetic potential of these important associations.
At this time, we can only speculate about the biological necessities

driving the physical association of Verrucomicrobia with ANME. The
low relative abundance of Verrucomicrobia associated with AOM
consortia, however, suggests that these cells might be heterotrophs,
consuming organic exudates or exopolymers of the archaeal cells. A
similar cross-feeding relationship has previously been hypothesized
for anammox bacteria cooccurring with ANME-2d archaea (47).
Genomic sequencing of individual ANME−Verrucomicrobia aggre-
gates sorted via BONCAT-FACS combined with additional micro-
cosm experiments may assist with expanding our understanding of
the nature of these ANME−verrucomicrobial interactions.

Conclusion and Outlook
The possibility of detecting anabolic activity of taxonomically
identified cells using fluorescence staining offers a valuable
complement to existing fluorescence microscopy methods for
microbial ecology. BONCAT-FISH allows the activity screening
of thousands of cells within a few hours, rather than a few dozen
per day as achieved by isotope labeling techniques. Both bio-
orthogonal (this study) and nondestructive isotope labeling (10,
60) approaches further allow the sorting of individual cells and
aggregates from complex samples, although sorting throughput for
BONCAT-FACS is much higher. Sorted cells can be subjected to
whole-genome amplification (WGA) and sequencing, thus allowing
direct access to the genetic potential of cells functionally important
under defined conditions. In contrast to isotope labeling approaches,
which test whether cells are able to assimilate a specific substrate of
interest (1, 5, 6, 77), BONCAT is an untargeted marker of trans-
lational activity. Hence, BONCAT cannot directly provide information
about specific substrate metabolism, as is possible with isotope probing.
However, the possibility of combining BONCAT-incubations with the
addition of any other compound allows for in situ metabolic screening
and comparative analysis of organisms stimulated by the compound
(9). Thus, we anticipate that BONCAT-FISH will be particularly at-
tractive if nonassimilatory pathways or substrates that are not (or only
very expensively) available as stable isotope-labeled derivatives are to
be studied. Growth-promoting substrates could, in the following, be
used for the targeted cultivation of translationally responsive cells. In
contrast to isotope labeling approaches, which require specialized in-
strumentation, BONCAT-FISH and BONCAT-FACS use standard
configuration microscopes and flow cytometers that are more readily
available to molecular biological laboratories.

Here, we established that HPG at concentrations up to 50 μM
can be applied to marine methane seep sediments without
detectable effects on the structure and function of the microbial
community. We demonstrate that the subsequent detection of
HPG-containing de novo synthesized proteins via click chemistry
is a powerful approach to visualizing and identifying translationally
active microbes in situ, separating them from complex samples via
activity-based cell sorting, and studying microbial interactions. We
demonstrate that representatives of all major subgroups of ANME are
functionally active in Hydrate Ridge seep sediments. In addition, we
show that, in two geographically distinct sediments, some consortia are
active in the absence of methane. It remains to be tested whether these
findings are entirely the result of the use of cellular storage materials
or a physiological flexibility of these archaea that is yet unaccounted
for. Furthermore, we provide the first evidence, to our knowledge, for
the existence of previously unrecognized interactions of archaea and
Verrucomicrobia in marine sediments. We anticipate that genomic
characterizations of these as well as other diverse ANME−SRB con-
sortia will soon provide hypotheses about potential growth-supporting
substrates, and that BONCAT-FISH and BONCAT-FACS will play
important roles in experimentally testing the ecophysiological prop-
erties of these globally relevant microbial partnerships.

Materials and Methods
Incubation of Methane Seep Sediment. Samples were obtained from three
sediment cores taken off the coasts of California (Santa Monica Basin) and
Oregon (Hydrate Ridge) and incubated in the presence of absence of HPG
and methane for up to 6 mo. Samples for geochemical characterization,
whole-community composition, and microscopic analyses were taken in
regular intervals. Details on these experimental procedures are described in
SI Text.

BONCAT. BONCAT was performed following our recently established protocol
without modifications (46). Succinctly, fixed biomass (whole sediment or
extracted consortia) was immobilized on Teflon-coated glass slides and dried
at 46 °C. An increasing ethanol series [50%, 80%, and 96% ethanol in
double-distilled water (ddH2O)] was performed, and the slides were air-
dried. Solutions were prepared as recently described (46), and the “click
cocktail” was always freshly mixed. This solution contained 5 mM sodium
ascorbate (Sigma-Aldrich), 5 mM amino-guanidine hydrochloride (Sigma-
Aldrich), 500 μM Tris[(1-hydroxypropyl-1H-1,2,3-triazol-4-yl)methyl]amine
(THPTA; Click Chemistry Tools), 100 μM CuSO4 (Sigma-Aldrich), and 2 μM of
azide-modified dye carboxyrhodamine 110 (CR-110; Click Chemistry Tools) or
azide-modified 5(6)-carboxytetramethylrhodamine (TAMRA; Click Chemistry
Tools) (used only in combination with CARD-FISH) in 0.2-μm-filtered 1× PBS,
pH 7.4; 20 μL of this solution was applied on top of biomass, and the glass
slides were incubated for 60 min at room temperature (RT) in a humid
chamber. Afterward, slides were washed repeatedly in 1× PBS and an in-
creasing ethanol series (50%, 80%, and 96%), before being air-dried. For
details on this protocol, see Hatzenpichler and Orphan (46) and Hatzenpichler
et al. (9). Nonfixed samples were processed following the same protocol with
the difference that all ethanol washing steps were omitted.

FISH and CARD FISH. Following BONCAT, ethanol-washed samples were hy-
bridized with oligonucleotide probes. For FISH experiments, double-labeled
(78) or monolabeled probes with either Cy3 or Cy5 fluorescence dyes were
used. FISH hybridizations were performed overnight (14−18 h) according to
standard protocols (9, 79). The quality of all probe solutions (except ANME-2-
932) was checked using other seep samples before they were applied to
#3730 and #7135-37 sediments. All tested probe solutions yielded a large
number of positive hybridizations to AOM consortia in these control samples.
Each probe or probe set was hybridized in a technical duplicate or triplicate.
No differences in fluorescence intensity or relative proportion of (CARD)
FISH-positive consortia could be observed between replicate hybridizations.

CARD-FISH was performed as recently described (80). Three different cell
wall digestion protocols were tested, but only one, a modified version of a
recently published protocol (36), was found to be successful. Permeabiliza-
tion was performed at RT as follows: incubation in 0.01 M HCl for 15 min;
two washing steps in ddH2O, 1 min each; incubation in 0.5% sodium dodecyl
sulfate for 5 min; three washing steps in ddH2O, 1 min each; incubation in
50% (vol/vol) ethanol in ddH2O for 1 min. After air-drying, samples were hy-
bridized for 14–18 h with horseradish peroxidase-conjugated oligonucleotides
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(purchased from Biomers) before signal amplification using self-synthesized
fluorescein-labeled tyramide was carried out.

Microscopy and Image Analysis. Samples were mounted with 1 mg·mL−1 4,6-
diamidino-2-phenylindole (DAPI; Sigma-Aldrich) in Citifluor AF-1 antifading
solution (Electron Microscopy Sciences) and analyzed using either an Olym-
pus BX51 epifluorescence microscope or a Zeiss LSM-510-Meta confocal la-
ser-scanning microscope. Images were analyzed using the ImageJ software
(NIH). In total, 12,652, 2,232, and 1,554 consortia were analyzed for sedi-
ments #3730, #7135, and #7136-37, respectively. The lower number of con-
sortia analyzed for the latter samples is explained by the much lower
concentration of AOM consortia in that sediment core. Each DAPI-stained
microbial aggregate was manually inspected for BONCAT and FISH signals,
and representative images were taken for each probe set. Consortia were
always identified via DAPI, before switching to the other fluorescent channels to
not preferentially select for BONCAT-positive or FISH-positive consortia. A de-
tailed list of BONCAT-FISH counts can be found in Datasets S2 and S3. In every
BONCAT-positive aggregate, either (i) (nearly) all cells within an aggregate were
stained or, in rare cases, (ii) (nearly) all cells of one (but not the other) cell type
(archaea or bacteria) were stained. Given the complex 3D structure of the ag-
gregates, which sometimes grow many thousands of cells large (Fig. 3A), we
cannot exclude that, in rare cases, individual cells (<5%) of a specific cell type
were not stained (hence the term “nearly all”).

After shipping and storage at 4 °C for 3 d, activity-sorted consortia were
resuspended in 1 mL 1× PBS before being harvested by centrifugation (5 min at
16,100 × g; RT), resuspended in 1:1 1× PBS:ethanol, and immobilized on a glass
slide. The slide was washed for 1 min in 50% ethanol (in ddH2O), air-dried, DAPI-
embedded, and microscopically analyzed. Consortia were counted following
the same procedure as outlined above, and representative images were taken.

Activity-Based Cell Sorting. Initial tests were performed using pure cultures
and mixtures of E. coli K-12, Methyloprofundus sedimenti WF-1 (81), and
Desulfovibrio alaskensis G20 that had been incubated in the absence or
presence (250 μM) of HPG for approximately one generation and stained
using an azide-modified version of dye CR110 as recently described (9, 46).
After successful tests, BONCAT-treated sediment-extracted consortia from
samples #3730 and #7142 were analyzed. A BD Influx cell sorter was steril-
ized, and sheath fluid was prepared using 1× PBS, as recently described (65).

After passing through a 70-μm nylon mesh filter, samples were sorted using
a 200-μm nozzle at 0.21 bar. The sort mode was “1.0 drop single”; 2× 84
single events were deposited into wells E4−L15 of two 384-well plates, with
rows D and L serving as negative control wells. BONCAT dye CR110 was
excited using a 488-nm laser, and fluorescence was captured with a 531-nm/
30-nm filter. Gates were defined using a forward scatter (FSC) vs. 531-nm
emission plot, and events with a BONCAT signal brighter than >90% of
aggregates in the negative control were captured (Fig. 4). For quantification
of sorted consortia, 200 events identified within each gate were sorted into
1.5-mL tubes that contained 10 μL 1× PBS. Tubes were stored at 4 °C until
further processing.

Sequence Access. Sequences have been deposited in the National Center for
Biotechnology Information GenBank database under accession nos. KT945170–
KT945234 and KU564217–KU564240 (16S rRNA iTAG sequences from activity-
sorted consortia in #3730 and #7142, respectively) and Sequence Read
Archive under accession no. SRP066109 (whole-community 16S rRNA iTAG
sequences).
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SI Results and Discussion
Factors Limiting the Absolute Quantification of Newly Synthesized
Proteins. BONCAT has the theoretical potential to detect all de
novo synthesized proteins that contain at least oneMet, i.e., ~99%of
proteins in an average archaeal and bacterial proteome. However,
in practice, several factors reduce this sensitivity and prohibit the
absolute quantification of the amount of new protein, and, in
consequence, of cell doubling times, from fluorescence data. (i) The
process(es) by which HPG enters the cell is currently unknown and
might depend on the physiological state of the cell or differ between
different taxonomic groups; (ii) the rate at which HPG substitutes
Met during protein synthesis has, so far, only been studied for
E. coli (17) and might deviate in other organisms; (iii) due to
varying contents of Met and contrasting copy numbers of proteins,
distinct peptides contribute differently to overall fluorescence; and
(iv) the extent by which protein recycling and posttranslational
modification affect the stability of HPG (in particular its alkyne
group) is currently unknown.

CARD-FISH vs. FISH. Our CARD-FISH experiments revealed marked
discrepancies in the efficiencies to permeabilize and fluorescently
detect different ANME subgroups. Most importantly, although
ANME-1 constituted only 0.6% of all taxonomically identified
consortia in our FISH experiments on sample #3730 (114 d sample;
n = 167 consortia), the same subgroup represented 81.3% of de-
tected ANME consortia in our CARD-FISH dataset (n = 48)
(Table 1). This result is mainly explained by the inability of the used
CARD-FISH protocol to detect ANME-2a and -2c consortia in our
samples. This finding is in contrast to two recent studies that used
near-identical permeabilization protocols for the successful visuali-
zation of these ANME groups in other methane seep sediments
(36, 63).

Comparing ANME Community Structure in Sediment #3730 to Previous
Studies. The very low proportion of aggregated ANME-1 in our
Hydrate Ridge sediment (#3730) is consistent with a previous study
on this methane seep, which found that ANME-1 occurred mostly
as planktonic cells rather than in multicellular associations (26, 37).
Because of our focus on syntrophic consortia in this study, we ini-
tially separated microbial aggregates of >3 μm from sediment
particles. Planktonic ANME-1 cells thus might have partly evaded
FISH detection. It should, however, be noted that our filtered
samples contained large numbers of individual cells and that in no
#3730 sample were individual cells found to bind the ANME-1-
specific probe.
ANME-2a and -2c probes used in this study have been successfully

used in previous mono-FISH studies of geographically distinct
Hydrate Ridge sediment samples with hybridization rates of 20–80%
of all DAPI-stained AOM consortia (37, 42). Because of the high
spatial variance in ANME community structure (37, 38), it is,
however, possible that our specific sediment samples hosted a
unique combination of ANME clades. Alternatively, ANME com-
munity structure might have diverged from its original composition
during the nearly 4 y of incubation in the laboratory before the
experiments described herein were conducted.

Considerations on the Environmental Application of BONCAT. In contrast
to the well-established stable isotope probing approach, the universal
applicability of BONCAT is currently untested, and several questions
demand rigorous investigation in future studies: (i) Themechanism(s)

by which bioorthogonal amino acids are taken up by cells is cur-
rently unknown. If active transporters are required for their uptake,
their absence would prohibit the application of BONCAT to that
particular cell. To that effect, the recent report of up to 100%
BONCAT labeling efficiency of planktonic microbes in sur-
face seawater is encouraging (14). (ii) HPG and AHA, the bio-
orthogonal amino acids that have been used in environmental
studies so far (refs. 9 and 14 and this study), have to compete with
intracellular Met for incorporation into newly being made proteins.
The preference of the translational machinery for Met over its
synthetic surrogates (17) might therefore restrict the use of BONCAT
in habitats featuring high concentrations of free Met.
(iii) Lastly, substituting proteins with synthetic amino acids bears a
high risk of interfering with the cellular machinery. We recently
demonstrated that the addition of up to 1 mM of HPG or AHA
had no detectable effect on the growth of several different, phys-
iologically distinct archaeal and bacterial pure cultures for at least
one cell generation. At longer incubation times, however, in-
hibition of growth could be observed at these high concentrations
(9, 46). For environmental applications, we thus recommend that
low concentrations of bioorthogonal amino acid should be used,
incubation times be kept to a minimum, and complementary ex-
periments testing for potential community shifts be performed (for
details, see ref. 46).

SI Materials and Methods
Environmental Sampling and Storage. Sediment sample #3730 was
obtained from Hydrate Ridge South methane seep field (R/V At-
lantis cruise AT-15-68, Alvin Dive 4635; push-core 16; 44°34.09 N,
125°9.14 W; 775 m water depth; sediment horizon 0–6 cm; 4 °C in
situ temperature) on 7 August 2010. Sediment was stored under
argon headspace in a Mylar bag for 5 wk before being transferred to
a 1-L glass bottle with a 1.38 bar 100% methane headspace, which
was stored at 4 °C for ~4 y. Seawater and headspace were ex-
changed at regular intervals to prevent the accumulation of in-
hibitory compounds.
Sediment samples #7135 and #7136-37/37 were collected

from Santa Monica Basin on 9 May 2013 (R/V Western Flyer
MBARI Cruise 2013; dive 463; push-core 43; 33°47.34 N,
118°40.10 W; 860 m water depth; horizons 6–9 cm (#7135) and
9–15/15–22 cm (#7136-37/37, pooled) below a pink and white
microbial mat; 4 °C). Sediment slurry was stored in a glass bottle
for ∼1 y under argon at 4 °C before BONCAT experiments were
carried out.
Sediment sample #7142 was collected from Santa Monica Basin

on 7 May 2013 (R/V Western Flyer MBARI Cruise 2013; dive 459;
push-core 74; 33°47.34 N, 118°40.09 W; 863 m depth; sediment
horizon 4–6 cm; 4 °C in situ temperature). The sediment was sealed
under argon and stored at 4 °C. After 40 d of storage, the sediment
was suspended in anaerobic natural bottom seawater from the site
in an anaerobic chamber (3% H2 in N2) and aliquots were over-
pressured with 1.5 bar methane. The sediment was kept for 12 mo
under 1.5 bar 100% methane in natural bottom seawater that was
exchanged every 3 mo.
Sediment sample #5119 was collected from the Hydrate Ridge

methane field during R/V Atlantis Cruise AT-18-10 on 1 September
2011 (44°40.02 N, 125°6.00 W; dive J2-593 E4A; push-core 36
through a yellow microbial mat; water depth 600 m; sediment ho-
rizon 9–12 cm). Sediment #5202 was collected during the same
cruise on 3 September 2011, dive J2-593 E6B (44°40.02 N, 125°7.51
W; push-core 18 through a pink and white microbial mat; water
depth 601 m; horizon 3–6 cm).
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Carbonate #3439 was collected from atop an active seep at the
Hydrate Ridge methane field during cruise AT-15-68 on 1 August
2010 (44°34.09 N, 125°9.14 W; dive AD4629; water depth 775 m).
Carbonate sample #2450 was retrieved from sediment sample
#2450 collected at Eel River Basin on 27 July 2005 (40°48.68 N,
124°36.73 W; dive T-864; push-core 49; horizon 0–2 cm; water
depth 516 m).
Information on the geochemical characteristics of the sampling

sites may be requested from the corresponding authors.

Setup of Incubations.All samples were kept in an ice bath at all times
during handling. Artificial seawater (ASW) consisted of 10.9 g of
MgCl2·6H2O, 0.2 g of NaHCO3, 0.76 g of KCl, 25.9 g of NaCl, 1.47 g
of CaCl2·2H2O, 3.98 g of Na2SO4, and 26.73 mg of NH4Cl per liter
of ddH2O at pH 7.4. One milliliter of vitamin solution (see medium
141, https://www.dsmz.de) and 1 mL of trace element solution SL-
10 (see https://www.dsmz.de) were also added. Before use, ASW
was filtered through a 0.2-μm filter and N2-bubbled for 10 min.
ASW was kept on ice during handling.
Approximately 50 mL of wet sediment #3730 was resuspended in

ASW, yielding a total volume of ∼130 mL; 20-mL aliquots of ho-
mogenized slurry were transferred into 160-mL serum bottles, and
30 mL of ASW was added. Bottles were sealed with rubber stop-
pers, and headspaces were flushed with either 100% methane or
100% N2 for 5 min before being pressurized with 2 bar 100%
methane or 100% N2. Sediment was allowed to equilibrate over-
night (∼18 h) at 4 °C in the dark; 0.2 μm-filtered HPG (Click
Chemistry Tools) in ddH2O was added to reach a final concen-
tration of 50 μM. Control incubations without HPG were supple-
mented with sterile ddH2O to reach equal volumes. All bottles were
then flushed for 5 min, pressurized with 2 bar methane or N2, and
incubated in the dark at 4° C. In total, six incubations were per-
formed: two times without HPG plus methane, two times with 50 μM
HPG plus methane, and two times with 50 μM HPG plus N2.
Approximately 100 mL of wet sediment #7135 was resuspended

in ASW, yielding a total volume of ∼300 mL, and incubated for 15 d
under 2 bar 100% methane. After this preincubation, 100 mL of
ASW was added, and the slurry was homogenized. Under constant
N2 flushing, 35-mL aliquots were transferred into 160-mL serum
bottles, bottles were sealed with rubber stoppers, and headspaces
were flushed for 5 min with either 100% methane or 100% N2,
depending on incubation setup. HPG was added to reach a final
concentration of either 5 μM or 50 μM. In addition, controls
without HPG were supplemented with sterile ddH2O to reach equal
incubation volumes. Then, all bottles were flushed for 5 min,
overpressurized with 2 bar methane or N2, and incubated in the
dark at 4 °C. In total, 12 incubations were performed: four times
without HPG plus methane, four times with 50 μM HPG plus
methane, two times with 50 μM HPG plus N2, and two times with
5 μM HPG plus methane.
Twenty milliliters of wet sediment #7136-37 was resuspended in

ASW, yielding a total volume of ∼50 mL. The slurry was bubbled
with N2 for 10 min (this was repeated after 5 d) before the bottle
was incubated for 124 d under 2 bar N2 (detectable but non-
quantifiable amount of methane, 1–10 ppm). After this prestarving,
10-mL aliquots were transferred into 75-mL bottles. HPG was
added to reach a final concentration of 50 μM, and 2 bar 100%
methane or 100% N2 (2 bar) was added to the headspace of two
aliquots each. In addition, a control mesocosm was incubated
without HPG under 100% methane (2 bar). All bottles were in-
cubated at 4 °C in the dark for 31 d.
One-milliliter aliquots of wet sediment #7142 in 5 mL ASW

containing 25 mM Hepes buffer (pH 7.5), 5 mM sulfide, and 5 mM
DIC were resuspended in serum vials, which were then sealed with
rubber stoppers (12.9 mL final volume). The headspace was flushed
with 12CH4 before 1.0 mL 13CH4 (99%

13C, containing 0.05 vol%
13CO2 as impurity; Cambridge Isotope Laboratories) was added.
After ∼5 d of preincubation, HPG was added to two of the four

bottles to reach a concentration of 50 μM. In addition, one incubation
was performed at 250 μM HPG for 25 d and later used for ac-
tivity-based cell sorting.

Sampling for Molecular and Geochemical Analyses. Sampling of sedi-
ment microcosms was undertaken at incubation start as well as after
30 d, 73 d, and 114 d and 7 d, 14 d, 41 d, 56 d, and 171 d for sediment
#3730 and #7135, respectively. Samples for molecular, cellular, and
geochemical analyses were removed using sterile syringes while the
incubation bottles were kept in an ice bath.
At each sampling point, 0.25 mL of sediment slurry was trans-

ferred into a sterile 1.5-mL tube and centrifuged at 16,100 g for 10 s
at RT. The supernatant (SN) was removed, mixed in a 1:1 ratio with
0.5 M Zn-acetate solution, and stored for later sulfide analysis. The
pellet was flash-frozen using liquid N2 and stored at−20 °C for DNA
extraction; 0.25 mL of sediment slurry was removed, centrifuged as
described above, the SN was wasted, and the pellet was resuspended
in a 1:1 mix of 1× PBS and absolute ethanol. Another 0.25 mL was
processed in the same way but resuspended in 3% paraformaldehyde
(PFA; ElectronMicroscopy Sciences) in 1×PBS and incubated for 1 h
at RT for chemical fixation of cells. Afterward, biomass was harvested
by centrifugation, the SN was wasted, and the pellet was washed with
1.5 mL of 1× PBS. Finally, sediment was centrifuged, the SN was
wasted, and the biomass was resuspended in a 1:1 mix of 1× PBS and
ethanol. All ethanol- or PFA-fixed samples were kept at −20 °C until
further processing. After sampling (30 d, 73 d, and 114 d and 7 d,
14 d, 41 d, 56 d, and 171 d for #3730 and #7135, respectively), the
headspace of bottles was flushed for 3 min with either methane
or N2 before the sediment was again incubated at 4 °C with 2 bar
of either 100% methane or 100% N2, depending on incubation
setup. In addition, after 73 d (#3730) and 41 d and 130 d (#7135),
∼90% of artificial seawater overlying sediment was exchanged.
The slurry volume and sediment-to-water ratio of all incubations
was identical at all times for each sediment type (#3730 or #7135,
respectively). When appropriate, newly added seawater was then
supplemented with 5 μM or 50 μM (final) HPG.

Geochemical Analyses. Sulfide (H2S plus HS−) concentrations were
determined via the cline assay (82). Samples were analyzed for
statistically relevant differences via Student’s t test. Differences were
considered to be significant at P ≤ 0.05. Methane oxidation rates for
sediment #7142 were determined as described by Scheller et al.
(29) by measuring the formation of DIC from 13CH4 over time.
Succinctly, 0.25 mL of ASW overlying settled sediment was re-
moved and centrifuged (16,000 × g for 5 min). The SN was trans-
ferred into 0.6-mL tubes, flash frozen in N2, and stored at −20 °C
until further processing; 150 μL of thawed SN was then added to
He-flushed vials containing 100 μL H3PO4 (85%). The resulting
CO2 was analyzed for isotopic enrichment on a GC-IR-MS Gas-
Bench II (Thermo Scientific).

Extraction of Microbial Aggregates. To separate microbial aggrega-
tions and individual cells from sediment particles, 50 μL of sedi-
ment slurry was resuspended in 450 μL of 1× PBS in a 2-mL tube.
This solution was chilled in an ice bath for 15 min before being
sonicated three times for 10 s at 3–6 W output using a Branson
Sonifier 150 (Branson Ultrasonics Corporation). Between pulsing
intervals, the sample was allowed to cool for 10–30 s. After son-
ication, the sample was applied on top of 500 μL Percoll (Sigma-
Aldrich) and centrifuged at 16,100 × g for 20 min at 4 °C. To
remove Percoll particles and the majority of individual planktonic
cells, the entire SN was resuspended in 15 mL 1× PBS and filtered
through a 3-μm TSTP white polycarbonate filter (EMDMillipore)
using a filter tower at ∼0.3 bar under pressure. Each filter was
washed with a total volume of 50 mL 1× PBS without letting the
filter run dry. Then, particles and biomass that had been retained
by the filter were transferred into a 2-mL tube using 1× PBS by
repeatedly and vigorously pipetting up and down using a 1-mL
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pipette. DAPI staining confirmed that this protocol leads to the
near-complete transfer of microbial aggregates from the filter into
solution (99–100% of DAPI-stained consortia), without selecting
for or against a particular type of consortium morphology or size.
After transfer into 1× PBS, biomass was harvested via centrifuga-
tion (16,100 × g, RT), resuspended in either 1× PBS (for nonfixed
BONCAT analyses) or a 1:1 ratio of 1× PBS and ethanol (fixed
biomass), and stored at either 4 °C (nonfixed) or −20 °C (fixed).

List of Oligonucleotide Probes for FISH and CARD-FISH. In FISH ex-
periments, monolabeled and dual-labeled (indicated with ** in the
list below) probes were used in different combinations (Dataset S2):
Arch915, specific for most members of the domain Archaea (83),
used at 35% formamide (FA); EUB338, -II, and -III (also known as
EUB338mix), which together cover most of the known bacterial
diversity (72, 84), used at 35% FA; EUB338-III, specific for most
members of the Verrucomicrobia (72), used at 35% FA, in combi-
nation with EUB338-I and -II as competitor probes; Delta495a**
together with its competitor probe, specific for most delta-proteo-
bacteria (85), used at 35% FA; Gam42a, together with its com-
petitor, specific for most gamma-proteobacteria (86), used at 35%
FA; Ver47**, specific for Verrucomicrobia (73) together with its
helper probe H64 (74) at 15% FA; and ANME-1-350 (26) (40%
FA), ANME-2-932 (also known as EelMS-932; 26) (40% FA),
ANME-2a-647 (50% FA) (37), and ANME-2c-760** (60% FA)
(37), specific for different subpopulations of ANME. In addition, a
new probe, ANME-2b-729, was designed, which detects >93% of
all ANME-2b-affiliated 16S rRNA sequences in online and labo-
ratory internal databases. The new probe has at least two mis-
matches to all other archaeal or bacterial 16S rRNA sequences
[tested using probeCheck (87)]. After careful evaluation, ANME-
2b-729 was used at 20% formamide concentration. Note that this
probe has a one-nucleotide overlap with probe ANME-2-712 (37)
and should thus not be used in conjunction with this probe. Hy-
bridizations without probe addition or probe NONEUB388 (88)
were used as negative controls.
With the exception of probe ANME-2a-647, which was used at

40% FA (rather than 50%), all probes used in CARD-FISH were
used at the same FA concentrations as in FISH experiments. For
CARD-FISH, hybridizations with probe NONEUB388 were used as
negative controls.

Multiple Displacement Amplification. Individual sorted consortia were
lysed and subjected to WGA as previously described (65) with the
following modifications: WGA was performed with a REPLI-g
Single Cell Kit (Qiagen) with a scaled-down reaction volume of 2 μL
and DNA dye SYTO-13 added at 1× for real-time tracking. The cell
lysis procedure followed a recently described protocol (65), which
was modified by lysozyme treatment. This step included a 15-min
RT incubation with 300 nL of 50 U/μL ReadyLyse lysozyme (Ep-
icentre R1810M), which was followed by the addition of 50 nL
concentrated DLB buffer (65). Lysis and stop reagents were UV-
treated as described (65), and the Master Mix was used as obtained
from the manufacturer (Qiagen). The amplification reaction was
incubated for 6 h at 30 °C.

The 16S rRNA Gene Tag Sequencing. Sediment DNA was extracted
using the Power Soil DNA Isolation Kit according to the manu-
facturer’s protocol (MoBio), and diluted DNA from genome-
amplified sorted consortia was used directly. The V4 region of the
16S rRNA gene was amplified from each extract using archaeal and
bacterial primers 515F (GTGCCAGCMGCCGCGGTAA) and
806R (GGACTACHVGGGTWTCTAAT) (67, 68). Sediment
samples were amplified in duplicate. The nonbarcoded primers
were used with Q5 Hot Start High-Fidelity 2× Master Mix (New
England Biolabs) according to the manufacturer’s directions, using
annealing conditions of 54 °C for 30 cycles and 58 °C for 32 cycles
for sediments and MDAs, respectively. Duplicates of sediment

sample amplifications were then pooled. The barcoded 806R primer
(CAAGCAGAAGACGGCATACGAGAT XXXXXXXXXXXX
AGTCAGTCAG CC GGACTACHVGGGTWTCTAAT) was
paired with 515F in a reconditioning reaction (same conditions as
above except for five cycles of PCR) to barcode the PCR products.
Samples were mixed together in equimolar amounts and purified in
bulk through a Qiagen PCR purification kit before submission to
Laragen for analysis on an Illumnia MiSeq platform. The resulting
paired-end sequence data, 2× 250 bp, was demultiplexed, and se-
quences with >1 bp mismatch on the 12-bp barcode were removed.
The resulting sequences were passed through Illumina’s MiSeq Re-
corder software to assign quality scores to each base call and remove
adapter, barcode, and primer sequence.

Analysis of 16S rRNA Gene Tag Sequences. Sequence data were pro-
cessed in QIIME (Quantitative Insights Into Microbial Ecology)
version 1.8.0 (89) following a recently published protocol (90). Raw
sequence pairs were joined and quality-trimmed using the default
parameters in QIIME. Sequences were clustered into de novo
OTUs with 99% similarity using UCLUST open reference clus-
tering protocol (91). Then, the most abundant sequence was chosen
as representative for each de novo OTU (92). Taxonomic identifi-
cation for each representative sequence was assigned using the
SILVA-115 database (93, 94) clustered at 99% similarity. This
SILVA database had been appended with 1,197 in-house high-
quality, methane-seep derived bacterial and archaeal clones. Any
sequences with pintail values >75 were removed. The modified
SILVA database is available upon request from the corresponding
authors. OTUs were then filtered to remove singletons from the
combined MDA dataset. A threshold filter was used to remove any
OTU that occurred below 0.01% of the entire combined sediment
samples dataset. Known contaminants in PCR reagents as de-
termined by the analysis of negative and positive controls run with
each MiSeq set were also removed (95). For the sediment samples,
the sequence data were rarified by random subsampling to equal
the sample with the least amount of sequence data, resulting in
12,115 and 3,707 sequences per sample for sediments #3730 and
#7135, respectively. Tables of both absolute and relative abun-
dances were generated at the family level for each sample. For
statistical and similarity percentage analyses [Nonmetric Multidi-
mensional Scaling (NMDS), Analysis of Similarity (ANOSIM), and
Similarity Percentage], family-level abundance tables were square-
root-transformed before generation of Bray Curtis similarity ma-
trices and analyzed using Primer-E software (www.primer-e.com).
Differences were considered to be significant at P ≤ 0.05.

Phylogenetic Analysis. The 16S rRNA gene tag sequences from each
consortium as well as closely related sequences from online data-
bases (identified via the BLAST algorithm of National Center for
Biotechnology Information) were imported into and analyzed via
the ARB software package (96). Sequences were automatically
aligned to reference sequences of all ANME subpopulations as well
as relevant bacterial clades contained within the SILVA-115 data-
base that had been amended with 1,197 in-house seep derived
clones. Sequences from cultured representatives of archaeal phyla
Thaumarchaeota and Euryarchaeota were used as outgroup for re-
construction of the archaeal tree. Members of the Planctomycetes
where chosen as outgroup for the bacterial tree. Both alignments
were manually curated, and termini filters were created. During the
phylogenetic reconstruction of archaeal (all >1,100 nt in length) and
bacterial (all >1,000 nt in length) sequences, 958 and 1,255 positions
were considered, respectively. Phylogenies were modeled using a
Randomized Axelerated Maximum Likelihood (RaxML) algorithm,
and short tag sequences were individually added to the resulting tree
using the parsimony interactive tool in ARB without changing the
overall topology of the tree. In addition, maximum parsimony (100×
replications) and Neighbor Joining (1,000× replications) trees were
calculated, and bootstrap values were projected onto the RaxML tree.
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Fig. S1. Sediment sulfide production rates and methane oxidation rates are not affected by the presence of HPG. (A) Sulfide [H2S + HS–] levels cannot be
directly compared between different time points, because seawater and headspace of incubations were refreshed at regular intervals. In contrast to HPG,
methane has a statistically significant effect on sulfide production (P = 0.0183 and P = 0.0063 for #3730 and #7135 after 114 d and 56 d of incubation, re-
spectively). Sulfide levels in sediment #7135 samples #09 and #10 (both without methane) were below detection limit (bd) after 171 d of incubation. (B)
Sediment methane oxidation rates are not affected by the presence of HPG over a course of up to 25 d. Four separate aliquots of sediment #7142 were in-
cubated in the absence of HPG for ∼5 d, after which 50 μM HPG (final concentration) was added to two incubations. Note that one of the HPG-containing
incubations exhibited low rates of AOM from the start of the experiment on. Because of this, the experiment was stopped after ∼10 d of incubation.
Compilations of representative AOM consortia from the endpoints of two incubations are shown on the right. Green fluorescence indicates that cells have
been translationally active during time of incubation. DAPI-stained DNA is in blue. Methane oxidation rates were measured as 13C DIC formed from 13CH4.
Sampling on day 5 was performed immediately after addition of HPG.
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Fig. S2. Bray Curtis similarity indexes of the microbial communities of sediments #3730 (A) and #7135 (B) after incubation in the absence or presence of HPG
for 114 d and 171 d, respectively. For statistical analyses, see Figs. S3 and S4.
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Fig. S3. NMDS ordinations of 16S rRNA gene tag sequences demonstrated that neither HPG (A) nor methane (B) have a statistically relevant effect on the
microbial community of sediment #3730 after 114 d of incubation. Stress values of NMDS ordinations and P values of concomitant Anosim analyses for whole
communities and ANME−SRB-related lineages specifically are shown next to the plots; n, number of sequences per sample. The more similar the microbial
communities from two samples are, the closer they lie together. Differences between samples were considered to be significant at P ≤ 0.05.
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Fig. S4. (A) NMDS ordinations of 16S rRNA gene tag sequences demonstrated that HPG does not have a statistically relevant effect on the microbial com-
munity of sediment #7135 after 171 d of incubation. (B) The absence of methane, on the other hand, has a clear effect on the community composition. Stress
values of NMDS ordinations and P values of concomitant Anosim analyses for whole communities and ANME−SRB-related lineages specifically are shown next
to the plots. Dotted lines connect the individual sampling points for each incubation bottle; n, number of sequences per sample. The more similar the microbial
communities from two samples are, the closer they lie together. Differences between samples were considered to be significant at P ≤ 0.05.
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Fig. S5. Relative abundances of ANME-related archaea and SRB in sediment #3730 (A) or #7135 (B) over time. Abundance-based color-coding indicates relative
abundance of taxa within a sample. Sequences summarized as “other archaea,” which are slightly enriched in #7135 samples incubated in the absence of
methane, were related to rRNA genes from Marine Benthic Group D/Deep Sea Hydrothermal Vent Euryarchaeotal Group 1 as well as the Marine Hydrothermal
Vent Group and Miscellaneous Euryarchaeotal Group. The physiology of these uncultured, yet environmentally widely distributed, clades is currently unknown.
However, recent genomic data suggest an implication of members of Marine Benthic Group D in the degradation of detrital proteins in marine sediments.
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Fig. S6. Extended versions of the phylogenetic trees shown in Fig. 5. Green and white colored boxes in trees show support ≥90% and ≥70%, respectively.
Values <70% are not given. Boxes in left and right trees indicate maximum parsimony (100×) and neighbor joining (1,000×) values, respectively. Numbers in
boxes give the number of sequences within a group. The 16S rRNA gene tag sequences were added after tree construction without changing overall tree
topology. Dotted lines indicate individual partnerships. The scales bars represent 10% estimated sequence divergence.
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Fig. S7. Representative images of our FISH-based screening of methane seep sediment and carbonate samples for associations of Archaea and members of the
Verrucomicrobia. A–C show results of screenings using different combinations of Archaea- and Verrucomicrobia-targeted FISH probes. For references of FISH
probes and detailed aggregate-counts for specific samples refer to SI Text and Dataset S3. Arch915, a probe specific for archaea; EUB338-III, a probe specific for
most Verrucomicrobia; comp, unlabeled competitor probes EUB338-I and II; Ver47, a Verrucomicrobia-specific probe, used together with an unlabeled helper
probe (helper).

Dataset S1. Incubation setup and sampling details

Dataset S1

-, not determined; d, days of incubation; Y, yes; 5/50, 5/50 μM HPG.

Dataset S2. Details on BONCAT-FISH and FISH experiments summarized in Fig. 2

Dataset S2

For each probe set listed, the first probe had been labeled with a Cy3 dye, the second with a Cy5 dye. >, transfer to; comp, competitor probe; d, days of
incubation; help, helper probe; na, not applicable; nd, not determined.

Dataset S3. Details on Verrucomicrobia FISH experiments

Dataset S3

For each probe set listed, the first probe had been labeled with a Cy3 dye, the second with a Cy5 dye. comp, competitor probe; cons, consortium/consortia;
help, helper probe.
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