

Evaluation of Laminated Reservoirs

Presenter: Roland Chemali Chief Petrophysicist Sperry Thursday No-29-2012 Kuala Lumpur

Laminated Formations

Evaluation of Laminated Reservoirs

- Image Guided Deconvolution
- Electrical Anisotropy
- Anisotropy Measurement Method Wireline
- Anisotropy Measurement Method LWD
- From Electrical Anisotropy to Saturation
- Magnetic Resonance for Fluid Identification
- Fluid Sampling

Evaluation of Laminated Reservoirs

- Image Guided Deconvolution
- Electrical Anisotropy
- Anisotropy Measurement Method Wireline
- Anisotropy Measurement Method LWD
- From Electrical Anisotropy to Saturation
- Magnetic Resonance for Fluid Identification
- Fluid Sampling

Standard vs. High Resolution Tool Response in Laminated Shaly Sand Reservoirs

SPE 30608

Standard vs. High Resolution Interpretation in Laminated

Shaly Sand Reservoirs

High Resolution

Standard Resolution

SPE 30608

Electrical Imager LWD

Electrical Imager Wireline

Evaluation of Laminated Reservoirs

- Image Guided Deconvolution
- Electrical Anisotropy
- Anisotropy Measurement Method Wireline
- Anisotropy Measurement Method LWD
- From Electrical Anisotropy to Saturation
- Magnetic Resonance for Fluid Identification
- Fluid Sampling

Anisotropy in Turbidites and Laminations

Rv = "Vertical" Resistivity Rh = "Horizontal" Resistivity

Anisotropy Ratio = Rv/Rh

Evaluation of Laminated Reservoirs Through Anisotropy (Shaly Sands, Turbidites..)

Anisotropy in Sand Shale Sequences

The Difference Between Micro-Anisotropy and Macro-Anisotropy is Subjective and Depends On Measuring Instrument

The Vertical Coil Array Measures Only Rh i.e. 2 Ohm-m i.e. ""Wet"

Anisotropy: Historic Perspective Anisotropy in the 70's Paper/Patent for Oil Base Dipmeter

United States Patent [19]

Runge

- [54] TRIPLE COIL INDUCTION LOGGING METHOD FOR DETERMINING DIP, ANISOTROPY AND TRUE RESISTIVITY
- [75] Inventor: Richard J. Runge, Anaheim, Calif.
- [73] Assignee: Chevron Research Company, San Francisco, Calif.
- [22] Filed: Apr. 4, 1973
- [21] Appl. No.: 347,747

Related U.S. Application Data

[63] Continuation-in-part of Ser. No. 321,613, Jan. 8, 1973, abandoned, which is a continuation of Ser. No. 795,209, Jan. 30, 1969, abandoned.

[52]	U.S. Cl.		324/6
[51]	Int. Cl	G01v 3/10,	G01v 3/18
F			

[58] Field of Search...... 324/6, 8

[56] References Cited

UNITED STATES PATENTS

2,919,397	12/1959	Morley	324/6
3,014,177	12/1961	Hungerford et al	324/8
3,042,857	7/1962	Ronka	324/6 X
3,187,252	6/1965	Hungerford	324/6
3,388,323	6/1968	Stripling	324/8
3,389,331	6/1968	Vexler	324/8
3,391,335	7/1968	Patton et al.	324/8
3,510,757	5/1970	Huston	324/6
3,609,521	9/1971	Desbrandes	

Anisotropy: Historic Perspective

Anisotropy in the 80's Explains Separation Between Induction and Laterolog A Nuisance to Contend With

SPWLA Twenty-Eighth Annual Logging Symposium, June 29-July 2, 1987

The Vertical Coil Array Measures Only Rh i.e. 2 Ohm-m

Sovic, Klein et Al Increase Reserves in Kuparuk and Other Reservoirs

Figure 6. Detailed logs defining the Kuparuk A-Sand model for free water level at 7,200 feet.

R.A. Mollison, O.N. Fanini, B.F. Kriegshäuser, L. Yu, *Baker Atlas*, G. Ugueto, Shell Exploration and Production, and J. van Popta, *Shell EP Technology*

Evaluation of Laminated Reservoirs

- Image Guided Deconvolution
- Electrical Anisotropy
- Anisotropy Measurement Method Wireline
- Anisotropy Measurement Method LWD
- From Electrical Anisotropy to Saturation
- Magnetic Resonance for Fluid Identification
- Fluid Sampling

Multi-Component Induction Hardware Description

- 1 Co-located Transmitter triad
- 2 standard z short spacing coils
 - Same as ACRt
 - 6", 10"
- 4 Co-located Receiver triads
 - Receiver Triad Main and bucking coils
 - Same spacings as ACRt
 - 17", 29", 50", 80[°]
 - Multi-frequency operation
 - MCI : 12, 36, **60**, 84 kHz
 - ACRt: 12, 36, **72** kHz

Test well: Comparison Between Multi-Component Induction and Single Component Induction Responses

Additional Components in Test Well: XZ and YZ

19

Inverted Results From Multi-Component Induction

Evaluation of Laminated Reservoirs

- Image Guided Deconvolution
- Electrical Anisotropy
- Anisotropy Measurement Method Wireline
- Anisotropy Measurement Method LWD
- From Electrical Anisotropy to Saturation
- Magnetic Resonance for Fluid Identification
- Fluid Sampling

Measuring Electrical Anisotropy with LWD

United States Patent [19] Bittar		[11] Patent Number:	6,163,155	
		[45] Date of Patent:	Dec. 19, 2000	
[54]	54] ELECTROMAGNETIC WAVE RESISTIVITY 97118854 10/1997 European Pat. Off			
[]	TOOL HAVING A TILTED ANTENNA FOR	OTHER PUBLICATIONS		
	DETERMINING THE HORIZONTAL AND			
	VERTICAL RESISTIVITIES AND RELATIVE	Zhu, I. and L. Brown, "Iwo-dimensional velocity inversion		
	DIP ANGLE IN ANISOTROPIC EARTH	52 No. 1 Jap. 1087; p. 27, 40		
	FORMATIONS	Bittar M and D Dodney. "The Effects of Dock Anisotrony		
[75]	Inventor: Michael S. Bittar, Houston, Tex.	on MWD Electromagnetic Wave Res	istivitiy Sensors," The	
		Log Analyst, JanFeb. 1996, p. 20-	30.	
[73]	Assignce: Dresser Industries, Inc., Dallas, Tex.	Hagiwara, T., "A New Method to I	Determine Horizontal-	

Azimuthal Deep Resistivity LWD for Anisotropy

Azimuthal Deep Resistivity LWD For Anisotropy

Anisotropy Determination with LWD ADR At Moderate Relative Dip (cont...)

Resistivity (Ohm-m)

Anisotropy Determination with LWD ADR At Very High Relative Dip Rh = 3 Ohm-m, Rv = 20 Ohm-m

Rv, Rh, From LWD ADR Raw Data

SPE-123890

Rv, Rh, From LWD ADR

Processed Results

SPE-123890

In a Field In Alaska We Measure the Same Formation At Different Relative Dip Angles

The Vertical Coil Array Measures Only Rh i.e. 2 Ohm-m

Estimating Vsh-lam, and Rsand

Rsh-h=2 Ohm-m Rsh-v = 7 Ohm-m Rv, Rh obtained from previous joint inversion

High Angle Well EWR

Comparative Performance of Azimuthal and Non-Azimuthal LWD Resistivity Sensors

Comparative Performance of Azimuthal and Non-Azimuthal LWD Resistivity Sensors

34

Evaluation of Laminated Reservoirs

- Image Guided Deconvolution
- Electrical Anisotropy
- Anisotropy Measurement Method Wireline
- Anisotropy Measurement Method LWD
- From Electrical Anisotropy to Saturation
- Magnetic Resonance for Fluid Identification
- Fluid Sampling

From Rv, Rh, and Rshale Get Rsand & Vshale

For a laminated sand/shale sequence, the vertical resistivity, Rv, can be expressed as:

$$Rv = (1-Vsh) \cdot Rsand + Vsh \cdot Rshale$$
 (1)

Similarly, the horizontal resistivity, Rh, can be expressed

$$Rh = \frac{Rsand + Rsand}{(1 - Vsh) + Rshale + Vsh + Rsand}$$
(2)

Solving equations (1) and (2) for Rsand, in terms of Rv, Rh, and Rshale, reduces to:

$$Rsand = Rh^* \left(\frac{Rv - Rshale}{Rh - Rshale} \right)$$
(3)

Assume water saturation can be expressed as:

$$Sw = \frac{1}{\Phi} * \sqrt{\frac{Rw}{Rt}}$$
(4)

Example:

Assume Rw = 0.05 Ω -m and Φ = 30%. Also, assume shale lamina's resistivity, Rshale, = 1.0 Ω -m.

If the deep phase shift resistivity of 3.8 Ω -m is used as Rt in equation (4), then:

Sw = 38%

If anisotropy processing is used, then:

 $Rv = 5.0 \Omega$ -m $Rh = 1.8 \Omega$ -m

and substituting in Equation (3) along with Rshale produces: $Rsand = 9.0 \ \Omega$ -m

Using Rsand as Rt in Equation (4), then:

Sw = 25%

Algorithms Available from:

- Halliburton (LASSI)
- Paradigm Geolog
- Powerlog (Petcom)

Comparison of Computed Results in TVD Assuming Rshale (horiz) =2.2 Ohm-m Shale Anisotropy Ratio = 2.5 ADR vs. EWR

Note: Because Rh(EWR) is low compared to Rshale, Vshale is close to 1.

Comparison of Computed Results in TVD Assuming Rshale (horiz) =2.2 Ohm-m Shale Anisotropy Ratio = 2.5 ADR vs. Core

Evaluation of Laminated Reservoirs

- Image Guided Deconvolution
- Electrical Anisotropy
- Anisotropy Measurement Method Wireline
- Anisotropy Measurement Method LWD
- From Electrical Anisotropy to Saturation
- Magnetic Resonance for Fluid Identification
- Fluid Sampling

DMR Porosity/T, Distribution with TDA Porosity/Differential Conventional Data & T_1 Field Log Distribution

2DFC-T₂D (Two Dimensional Fluid Characterization - T₂D)

This process assumes formation is water wet and the gäsekhibitsbulkk properties with no surface relaxation effect

Water Viscous Oil Light Oil Gas

Zücken NRi bind schepensisch httlassibplitten sonne in Versiskop Gjähluit bine betassetes itsiktiftisfisiolytis verojit http: palebinde terts at Elessen te av Stellig / Dydrolig / Dgl piz/Dgs is an ostly of the resides. The position of this line is primarily a function of temperature.

2DFC-T₂D (Two Dimensional Fluid Characterization - T₂D)

Near Wellbore:

- Fluid ID and Volumes
- Viscosity estimation
- Combines all T₁ & T₂ methodologies
- Identification of effects

Water & 6 cp Oil

Evaluation of Laminated Reservoirs

- Image Guided Deconvolution
- Electrical Anisotropy
- Anisotropy Measurement Method Wireline
- Anisotropy Measurement Method LWD
- From Electrical Anisotropy to Saturation
- Magnetic Resonance for Fluid Identification
- Fluid Sampling

Fluid Sampling For Laminated Reservoirs

Wireline Tester Intake Configurations

Oval Pad & Straddle PackerTesting & Sampling

Actual Core - Carbonate Heterogeneity

Focused Oval Pad Sampling

LWD – Fluid ID and Sampling

- Real-time measurements
 - Formation fluid pressure
 - Temperature
 - Resistivity
 - Density
 - Bubble point measurements
- Applications
 - High angle wells
 - Reduced pump out time
 - Data in hours not days
 - Sticky and unstable hole conditions

GeoTap[®] IDS Sensor

Vibrating Tube Fluid Density Sensor

Principle of operation:

- Vibrating flow tube as sensing element
- Fundamental resonance frequency is function of fluid density

Accuracy ±0.01 g/cm³

High sensitivity ±0.003 g/cm³

Advanced Optical Fluid Analyser

Evaluation of Laminated Reservoirs

