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Standard vs. High Resolution Tool Response in 

Laminated Shaly Sand Reservoirs 

SPE 30608 

 
Image Deconvolution 

 
Image Guided Interpretation 

 



6  © 2012 HALLIBURTON. ALL RIGHTS RESERVED.  © 2012 HALLIBURTON. ALL RIGHTS RESERVED. 

Standard vs. High Resolution Interpretation in Laminated 

Shaly Sand  Reservoirs 

Standard Resolution High Resolution 
SPE 30608 

3’ Net Pay 9’ Net Pay 
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Electrical Imager LWD Electrical Imager Wireline 
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Anisotropy in Turbidites and Laminations 

Rv 
Rh 

Rv = “Vertical” Resistivity 
Rh = “Horizontal” Resistivity 

Anisotropy Ratio = Rv/Rh 

The “Macro-Approach 
In Addition To / Instead Of 

the Micro-Approach 
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Rv Rh 

Evaluation of Laminated Reservoirs Through Anisotropy  

(Shaly Sands, Turbidites..) 
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Anisotropy in Sand Shale Sequences 

Rsand= 20 Ohm-m 

Rshale=1 Ohm-m 

Rv ≈ 10 Ohm-m 

Rh ≈ 2 Ohm-m 

Rv ≈ 10 Ohm-m 

Rh ≈ 2 Ohm-m 

The Difference Between Micro-Anisotropy and Macro-Anisotropy 
 is Subjective and Depends On Measuring Instrument 

The Vertical Coil Array 
Measures Only Rh i.e. 2 Ohm-m  i.e. “”Wet” 
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Anisotropy: Historic Perspective 
Anisotropy in the 70’s 

Paper/Patent for Oil Base Dipmeter 
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Anisotropy: Historic Perspective 
 

Anisotropy in the 80’s 
Explains Separation Between Induction and Laterolog 

A Nuisance to Contend With 
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In Kuparuk in Alaska, ARCO measured the same 
turbidite reservoir at different relative dip angles 

Well-1 
Well-2 
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Sovic, Klein et Al Increase Reserves in Kuparuk and 
Other Reservoirs 
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Multi-Component Induction Hardware Description 

 1 Co-located Transmitter triad 

 2 standard z short spacing coils  

– Same as ACRt  

• 6”, 10” 

 4 Co-located Receiver triads 

– Receiver Triad Main and bucking 

coils 

– Same spacings as ACRt 

• 17”, 29”, 50”, 80” 

– Multi-frequency operation  

•  MCI : 12, 36, 60, 84 kHz 

• ACRt: 12, 36, 72       kHz 
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Test well: Comparison Between Multi-Component Induction and 

Single Component Induction Responses 
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Additional Components in Test Well: XZ and YZ 
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Inverted Results From Multi-Component Induction 
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Measuring Electrical Anisotropy with LWD 

TU-48 TU-32 TU-16 TL-16 TL-32 TL-48 
R1 R2 R3 

TU-48 TU-32 TU-16 
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1-D Wave Resistivity 

Determination of Electrical Anisotropy With Wave Resistivity LWD 

Tilted Receiver Wave Res Tilted Receiver & Transmitter 
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Azimuthal Deep Resistivity LWD for Anisotropy 

3 x  

Receivers 

TL-16 TL-32 TL-48 
R1 R2 R3 

TU-48 TU-32 TU-16 

Uncompensated Upper Transmitter Measurement 
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TU-48 TU-32 TU-16 TL-16 TL-32 TL-48 
R1 R2 R3 

TU-48 TU-32 TU-16 

Uncompensated Lower Transmitter Measurement 

Azimuthal Deep Resistivity LWD For Anisotropy 



Compensated Azimuthal Resistivity 

-ADR 16 in; 2 MHz, Up, Down and Average 

-ADR 48 in; 500 KHz, Up, Down and Average 

Uncompensated Geosignal 

Upper Transmitter 

Uncompensated Geosignal 

Lower Transmitter 

Compensated Geosignal 
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Anisotropic Formation 

Rh = 1 Ohm-m  

Rv = 3 Ohm-m  

Relative Dip = 0 deg 

Relative Dip = 90 deg 

Anisotropy Determination with LWD ADR 

 At Moderate Relative Dip (cont…) 
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ADR 
 
Rp-16 2MHz 
Rp-32 2MHz 
Rp-48 2MHz 
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Anisotropy Determination with LWD ADR 
 At Very High Relative Dip 

Rh = 3 Ohm-m, Rv = 20 Ohm-m 
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Rv, Rh, From LWD ADR 

SPE-123890 

Raw Data 

LWD ADR Raw Logs Wireline Raw Logs 
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Rv, Rh, From LWD ADR 

SPE-123890 

Processed Results 

LWD ADR Results Wireline Results 
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In a Field In Alaska We Measure the Same Formation 
At Different Relative Dip Angles 

Well-1 
Well-2 
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 Rsh-h=2 Ohm-m 
Rsh-v = 7 Ohm-m 
Rv, Rh obtained from previous joint inversion 

Estimating Vsh-lam, and Rsand 
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Rh 

 
Rv 

Vertical Well High Angle Well EWR 

In the zones 
of interest 
Rh varies 
between  4 
ohm-m and 
6 ohm-m  
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Comparative Performance of Azimuthal and 

Non-Azimuthal LWD Resistivity Sensors 
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Comparative Performance of Azimuthal and 

Non-Azimuthal LWD Resistivity Sensors 
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Comparison of Computed Results in TVD 
Assuming Rshale (horiz) =2.2 Ohm-m 

Shale Anisotropy Ratio = 2.5 
ADR vs. EWR 

GR 
Vsh Rv 

Rh 
0.2 20 

Dens 
NSS 

Sand Por 

-15 +45 

Rsand 

20 

HC Volum 

50 0 

ADR 

EWR 

Note: Because Rh(EWR) is low compared to Rshale, Vshale is close to 1. 
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Comparison of Computed Results in TVD 
Assuming Rshale (horiz) =2.2 Ohm-m 

Shale Anisotropy Ratio = 2.5 
ADR vs. Core 

GR 
Vsh Rv 

Rh 
0.2 20 

Dens 
NSS 

Sand Por 

-15 +45 

Rsand 

20 

HC Volum 
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Conventional Data & T1 Field Log  
DMR Porosity/T1 Distribution with TDA Porosity/Differential 

Distribution   

T1 & HI corrected 

NMR Porosity 

120 ft (36 m) low contrast pay identified 

Hydrocarbon identified 

No Gas/Oil Contact 

Long T1 - Gas 
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2D Plot
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2D Map 

Water 

Water will be observed in these plots somewhere along this line because its diffusivity is quite high 

and its relaxation rate will depend on the pore size in which it resides.  The position of this line is 

primarily a function of temperature. 

2D-NMR plots represent the simultaneous inversion of multiple data sets with respect to two NMR 

parameters.  These can be T1/D0 or T2/D0.  T2/D0 is most common. 

Oil will be observed in these plots somewhere along this line because both its diffusivity and its 

relaxation rate are inversely proportional to the viscosity of the oil. 

This process assumes  

formation is water wet 

and the oil exhibits bulk 

properties with no  

surface relaxation effect 

Gas 

Gas will be observed in these plots somewhere along this line because its diffusivity is very high. 

This process assumes  

formation is water wet 

and the gas exhibits bulk 

properties with no  

surface relaxation effect 

Light Oil 

Viscous Oil 

Water 

Water Water Water 

Gas 

Gas 

2DFC-T2D  

(Two Dimensional Fluid Characterization - T2D) 
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Water & 6 cp Oil 

 

Near Wellbore: 

 Fluid ID and Volumes 

 Viscosity estimation 

 Combines all T1 & T2 

methodologies 

 Identification of effects 

x x 
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2DFC-T2D  

(Two Dimensional Fluid Characterization - T2D)  
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Fluid Sampling For Laminated Reservoirs 
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Wireline Tester Intake Configurations 

Straddle Packer 40” Oval Pad 10” Probes 0.5” 

1m 
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Oval Pad & Straddle PackerTesting & Sampling 
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Actual Core - Carbonate Heterogeneity 
X,937.0 ftX,928.0 ft X,934.0 ftX,931.0 ft X,937.0 ftX,928.0 ft X,934.0 ftX,931.0 ft X,937.0 ftX,928.0 ft X,934.0 ftX,931.0 ft

9
.6

 i
n

.
9

.6
 i
n

.

3-RJS-646 T.02 – 4919.35m 

TUPI 



48  © 2012 HALLIBURTON. ALL RIGHTS RESERVED.  © 2012 HALLIBURTON. ALL RIGHTS RESERVED. 

Focused Oval Pad Sampling 
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LWD – Fluid ID and Sampling 

 Real-time measurements 

– Formation fluid pressure 

– Temperature   

– Resistivity 

– Density 

– Bubble point measurements  

 Applications 

– High angle wells 

– Reduced pump out time 

– Data in hours not days 

– Sticky and unstable hole 

conditions 
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Vibrating Tube Density Sensor 

Vibrating Tube Fluid Density Sensor 

Driver Detector Voice Coils 

 Principle of operation: 

− Vibrating flow tube as sensing element 

− Fundamental resonance frequency is function of fluid density 

Accuracy ±0.01 g/cm3            High sensitivity ±0.003 g/cm3 
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