## Calculus 3 - Volumes

In Calculus 1 we considered the area problem. Find the area under the curve $y=f(x)$ on the interval $[a, b]$. To do this, we broke the interval up into smaller segments, approximated the area on each segment with a rectangle, added the rectangles up, and then took the limit as the number of rectangle went to infinity and the thickness of each rectangle went to zero.


Figure 1: $y=f(x)$

Mathematically: We subdivide the interval

$$
\begin{equation*}
a=x_{0}<x_{1}<x_{2}<\cdots<x_{i-1}<x_{i}<\cdots<x_{n}=b . \tag{1}
\end{equation*}
$$

Let

$$
\begin{equation*}
\Delta x_{i}=x_{i-1}-x_{i} \tag{2}
\end{equation*}
$$

Pick $x_{i}^{*}$ so that

$$
\begin{equation*}
x_{i}^{*} \in\left[x_{i-1}, x_{i}\right] . \tag{3}
\end{equation*}
$$

Height of the $i^{\text {th }}$ rectangle

$$
\begin{equation*}
h_{i}=f\left(x_{i}^{*}\right) . \tag{4}
\end{equation*}
$$

Area of this rectangle

$$
\begin{equation*}
A_{i}=f\left(x_{i}^{*}\right) \Delta x_{i} \tag{5}
\end{equation*}
$$

Add up the rectangles

$$
\begin{equation*}
\sum_{i=1}^{n} A_{i}=\sum_{i=1}^{n} f\left(x_{i}^{*}\right) \Delta_{i} . \tag{6}
\end{equation*}
$$

Then take the limit so

$$
\begin{equation*}
A=\lim _{\substack{n \rightarrow \infty \\ \Delta x_{i} \rightarrow 0}} \sum_{i=1}^{n} f\left(x_{i}^{*}\right) \Delta x_{i} \tag{7}
\end{equation*}
$$

and we gave this Riemann sum a name - a definite integral

$$
\begin{equation*}
A=\int_{a}^{b} f(x) d x=\lim _{\substack{n \rightarrow \infty \\ \Delta x_{i} \rightarrow 0}} \sum_{i=1}^{n} f\left(x_{i}^{*}\right) \Delta x_{i} \tag{8}
\end{equation*}
$$

So now we consider the volume problem. Find the volume under the surface $z=f(x, y)$ on the interval $[a, b] \times[c, d]$. The process is the same thing as in the area problem. We approximate the volume with small rectangular boxes.

Mathematically: Subdivide the interval

$$
\begin{align*}
& a=x_{0}<x_{1}<x_{2}<\cdots<x_{i-1}<x_{i}<\cdots<x_{m}=b  \tag{9}\\
& c=y_{0}<y_{1}<y_{2}<\cdots<y_{j-1}<y_{j}<\cdots<y_{n}=d .
\end{align*}
$$

Let

$$
\begin{equation*}
\Delta x_{i}=x_{i-1}-x_{i}, \quad \Delta y_{j}=y_{j-1}-y_{j}, \tag{10}
\end{equation*}
$$



Figure 2: Grid
Pick $\left(x_{i}^{*}, y_{j}^{*}\right)$ so that

$$
\begin{equation*}
\left(x_{i}^{*}, y_{j}^{*}\right) \in\left[x_{i-1}, x_{i}\right] \times\left[y_{j-1}, y_{j}\right] . \tag{11}
\end{equation*}
$$

Height of the the rectangle box

$$
\begin{equation*}
h_{i j}=f\left(x_{i}^{*}, y_{j}^{*}\right) \tag{12}
\end{equation*}
$$

The volume of this rectangle box is

$$
\begin{equation*}
V_{i j}=f\left(x_{i}^{*}, y_{j}^{*}\right) \Delta x_{i} \Delta y_{j} . \tag{13}
\end{equation*}
$$

Add up the boxes

$$
\begin{equation*}
\sum_{i=1}^{m} \sum_{j=1}^{n} f\left(x_{i}^{*}, y_{j}^{*}\right) \Delta x_{i} \Delta y_{j} . \tag{14}
\end{equation*}
$$

Then take the limit so

$$
\begin{equation*}
\lim _{\substack{m, n \rightarrow \infty \\ \Delta x_{i}, \Delta y_{j} \rightarrow 0}} \sum_{i=1}^{m} \sum_{j=1}^{n} f\left(x_{i}^{*}, y_{j}^{*}\right) \Delta x_{i} \Delta y_{j} \tag{15}
\end{equation*}
$$

and we give this Riemann sum a name - a double integral

$$
\begin{equation*}
\int_{c}^{d} \int_{a}^{b} f(x, y) d x d y=\lim _{\substack{m, n \rightarrow \infty \\ \Delta x_{i}, \Delta y_{j} \rightarrow 0}} \sum_{i=1}^{m} \sum_{j=1}^{n} f\left(x_{i}^{*}, y_{j}^{*}\right) \Delta x_{i} \Delta y_{j} \tag{16}
\end{equation*}
$$

## Example 1.

Find the volume under $z=1$ for $[0,2] \times[0,3]$. Well, we see right away that the volume is 6 . Let us use the double integral. So here


$$
\begin{equation*}
V=\int_{0}^{3} \int_{0}^{2} 1 d x d y \tag{17}
\end{equation*}
$$

As with partial derivatives, when integrating one variable, we hold the
other constant, we do the same with double integral.

$$
\begin{align*}
V & =\int_{0}^{3}\left(\int_{0}^{2} 1 d x\right) d y \\
& =\int_{0}^{3}\left(\left.x\right|_{0} ^{2}\right) d y \\
& =\int_{0}^{3} 2 d y  \tag{18}\\
& =\left.2 y\right|_{0} ^{3} \\
& =6
\end{align*}
$$

## Switching the Order of Limits

We could also have done

$$
\begin{align*}
V & =\int_{0}^{2}\left(\int_{0}^{3} 1 d y\right) d x \\
& =\int_{0}^{2}\left(\left.y\right|_{0} ^{3}\right) d x \\
& =\int_{0}^{2} 3 d x  \tag{19}\\
& =\left.3 x\right|_{0} ^{2} \\
& =6
\end{align*}
$$

Integrating when $f$ is not constant
Consider

$$
\begin{aligned}
V & =\int_{0}^{3} \int_{-1}^{1} 12 x^{2} y d x d y \\
& =\left.\int_{0}^{3} 4 x^{3} y\right|_{x=-1} ^{x=1} d y \\
& =\int_{0}^{3} 8 y d y \\
& =\left.4 y^{2}\right|_{y=0} ^{y=3} \\
& =36
\end{aligned}
$$

## Switching limits

$$
\begin{aligned}
V & =\int_{-1}^{1} \int_{0}^{3} 12 x^{2} y d y d x \\
& =\left.\int_{-1}^{1} 6 x^{2} y^{2}\right|_{0} ^{3} d y \\
& =\int_{-1}^{1} 54 x^{2} d y \\
& =\left.18 x^{3}\right|_{-1} ^{1} \\
& =36
\end{aligned}
$$

In fact, if $f$ is continuous on $[a, b] \times[c, d]$ then

$$
\begin{equation*}
\int_{a}^{b} \int_{c}^{d} f(x, y) d y d x=\int_{c}^{d} \int_{a}^{b} f(x, y) d x d y \tag{22}
\end{equation*}
$$

## Integration over non constant regions

Suppose we wish to set up the double integral

$$
\begin{equation*}
\iint_{R} f(x, y) d y d x \tag{23}
\end{equation*}
$$

where $R$ is the region below (the lines $y=0, y=x$ and $x=1$ )


To get an idea on how to do this let us first consider the problem when the region is a rectangular box.


So we have

$$
\begin{equation*}
\int_{a}^{b} \int_{c}^{d} f(x, y) d y d x=\int_{a}^{b}\left(\int_{c}^{d} f(x, y) d y\right) d x \tag{24}
\end{equation*}
$$

In the round bracket $x$ is fixed and $y$ moves from $y=c$ to $y=d$. Now in the triangular region when $x$ is fixed, then $y$ moves from $y=0$ to $y=x$ and so the limits of integration are

$$
\begin{equation*}
\int_{a}^{b}\left(\int_{0}^{x} f(x, y) d y\right) d x \tag{25}
\end{equation*}
$$



Now as the rectangle moves, it moves from $x=0$ to $x=1$ and these are the outside limits and so

$$
\begin{equation*}
\int_{0}^{1}\left(\int_{0}^{x} f(x, y) d y\right) d x \tag{26}
\end{equation*}
$$

or simply

$$
\begin{equation*}
\int_{0}^{1} \int_{0}^{x} f(x, y) d y d x \tag{27}
\end{equation*}
$$

Example 2. Evaluate

$$
\begin{equation*}
\int_{0}^{1} \int_{0}^{x} 6 y^{2}-x^{3} y d y d x \tag{28}
\end{equation*}
$$

Soln. We first integrate wrt $y$ holding $x$ fixed. So

$$
\begin{equation*}
\int_{0}^{1} 2 y^{3}-\left.\frac{x^{3} y^{2}}{2}\right|_{y=0} ^{y=x} d x \tag{29}
\end{equation*}
$$

Then substitute in the limits

$$
\begin{equation*}
\int_{0}^{1}\left(2 x^{3}-\frac{x^{3} x^{2}}{2}\right)-\left(20^{3}-\frac{x^{3} 0^{2}}{2}\right) d x \tag{30}
\end{equation*}
$$

Then integrate one more time

$$
\begin{equation*}
\frac{x^{4}}{2}-\left.\frac{x^{6}}{12}\right|_{x=0} ^{x=1}=\frac{1}{2}-\frac{1}{12}=\frac{5}{12} \tag{31}
\end{equation*}
$$

## In general

In general we have

$$
\begin{equation*}
\int_{a}^{b} \int_{g(x)}^{h(x)} f(x, y) d y d x \tag{32}
\end{equation*}
$$



