Calculus 3 - Chain Rule

If $y=\sqrt{x^{2}+1}$ find $\frac{d y}{d x}$. In Calc 1 we encountered this type of problem and introduced what is know as the chain rule. If we let $u=x^{2}+1$, the $y=\sqrt{u}$ and found $\frac{d y}{d x}$ by calculating

$$
\begin{equation*}
\frac{d y}{d x}=\frac{d y}{d u} \cdot \frac{d u}{d x} \tag{1}
\end{equation*}
$$

So in this example

$$
\begin{equation*}
\frac{d y}{d x}=\frac{1}{2 \sqrt{u}} \cdot 2 x=\frac{x}{\sqrt{x^{2}+1}} \tag{2}
\end{equation*}
$$

Chain Rule in Higher Dimensions

For functions in 2 independent variables $z=f(x, y)$ we derive the chain rule using the differential

$$
\begin{equation*}
d z=\frac{\partial f}{\partial x} d x+\frac{\partial f}{\partial y} d y \tag{3}
\end{equation*}
$$

Before doing so, we note that there are two possibilities. First suppose the

$$
\begin{equation*}
x=g(t), \quad y=h(t) \tag{4}
\end{equation*}
$$

so

$$
\begin{equation*}
z=f(g(t), h(t)) \tag{5}
\end{equation*}
$$

so $z=F(t)$ and it would make sense to have $\frac{d z}{d t}$
The other possibility is

$$
\begin{equation*}
x=g(t, s), \quad y=h(t, s) \tag{6}
\end{equation*}
$$

So

$$
\begin{equation*}
z=f(g(t, s), h(t, s)) \tag{7}
\end{equation*}
$$

so $z=F(t, s)$ and it would make sense to have $\frac{\partial z}{\partial t}$ and $\frac{\partial z}{\partial s}$.

Type 1 Chain Rule

Suppose that $z=f(x, y), x=g(t)$, and $y=h(t)$.

$$
\begin{equation*}
\frac{d z}{d t}=\frac{\partial f}{\partial x} \cdot \frac{d x}{d t}+\frac{\partial f}{\partial y} \cdot \frac{d y}{d t} \tag{8}
\end{equation*}
$$

Let us look at some examples.
Example 1. Consider

$$
\begin{equation*}
z=x^{2} y \tag{9}
\end{equation*}
$$

and

$$
\begin{equation*}
x=t+1, \quad s=e^{t} . \tag{10}
\end{equation*}
$$

We first calculate the derivative directly. So

$$
\begin{equation*}
z=(t+1)^{2} e^{t} \tag{11}
\end{equation*}
$$

Using the product rule we obtain

$$
\begin{equation*}
\frac{d z}{d t}=2(t+1) e^{t}+(t+1)^{2} e^{t} \tag{12}
\end{equation*}
$$

Next we use the chain rule (8). Calculating derivatives

$$
\begin{equation*}
\frac{\partial f}{\partial x}=2 x y, \quad \frac{\partial f}{\partial y}=x^{2}, \quad \frac{d x}{d t}=1, \quad \frac{d y}{d t}=e^{t} \tag{13}
\end{equation*}
$$

From (8) we obtain

$$
\begin{align*}
\frac{d z}{d t} & =\frac{\partial f}{\partial x} \cdot \frac{d x}{d t}+\frac{\partial f}{\partial y} \cdot \frac{d y}{d t} \\
& =2 x y \cdot 1+x^{2} \cdot e^{t} \tag{14}\\
& =2(t+1) e^{t}+(t+1)^{2} e^{t}
\end{align*}
$$

which we see is (12).
Example 2. Pg. 917 \#8 Consider

$$
\begin{equation*}
w=\cos (x-y) \tag{15}
\end{equation*}
$$

and

$$
\begin{equation*}
x=t^{2}, \quad y=1 \tag{16}
\end{equation*}
$$

We first calculate the derivative directly. So

$$
\begin{equation*}
w=\cos \left(t^{2}-1\right) \tag{17}
\end{equation*}
$$

Using the chain rule we obtain

$$
\begin{equation*}
\frac{d w}{d t}=-\sin \left(t^{2}-1\right) \cdot 2 t \tag{18}
\end{equation*}
$$

Next we use the chain rule (8). Calculating derivatives

$$
\begin{equation*}
\frac{\partial w}{\partial x}=-\sin (x-y), \quad \frac{\partial f}{\partial y}=\sin (x-y), \quad \frac{d x}{d t}=2 t, \quad \frac{d y}{d t}=0 . \tag{19}
\end{equation*}
$$

From (8) we obtain

$$
\begin{align*}
\frac{d z}{d t} & =\frac{\partial f}{\partial x} \cdot \frac{d x}{d t}+\frac{\partial f}{\partial y} \cdot \frac{d y}{d t} \\
& =-\sin (x-y) \cdot 2 t+\sin (x-y) \cdot 0 \tag{20}\\
& =-2 t \sin \left(t^{2}-1\right)
\end{align*}
$$

which we see is (18).

Type 2 Chain Rule

Suppose that $z=f(x, y), x=g(t, s)$, and $y=h(t, s)$.

$$
\begin{align*}
& \frac{\partial z}{\partial t}=\frac{\partial f}{\partial x} \cdot \frac{\partial x}{\partial t}+\frac{\partial f}{\partial y} \cdot \frac{\partial y}{\partial t} \\
& \frac{\partial z}{\partial s}=\frac{\partial f}{\partial x} \cdot \frac{\partial x}{\partial s}+\frac{\partial f}{\partial y} \cdot \frac{\partial y}{\partial s} \tag{21}
\end{align*}
$$

Let us look at some examples.
Example 3. Consider

$$
\begin{equation*}
z=x^{2} y^{2} \tag{22}
\end{equation*}
$$

and

$$
\begin{equation*}
x=t+s, \quad s=t-s \tag{23}
\end{equation*}
$$

We first calculate the derivatives directly. So

$$
\begin{equation*}
z=(t+s)^{2}(t-s)^{2}=t^{4}-2 t^{2} s^{2}+s^{4} \tag{24}
\end{equation*}
$$

and the derivatives are

$$
\begin{align*}
& \frac{\partial z}{\partial t}=4 t^{3}-4 t s^{2} \tag{25}\\
& \frac{\partial z}{\partial s}=-4 t^{2} s+4 s^{3}
\end{align*}
$$

To use the chain rule (21) we need 6 derivatives. So

$$
\begin{array}{ll}
\frac{\partial z}{\partial x}=2 x y^{2}, & \frac{\partial z}{\partial y}=2 x^{2} y \\
\frac{\partial x}{\partial t}=1, & \frac{\partial x}{\partial s}=1 \\
\frac{\partial y}{\partial t}=1, & \frac{\partial y}{\partial s}=-1
\end{array}
$$

and from the chain rule (21) we obtain

$$
\begin{align*}
\frac{\partial z}{\partial t} & =2 x y^{2} \cdot(1)+2 x^{2} y \cdot(1) \\
& =2(t+s)(t-s)^{2}+2(t+s)^{2}(t-s) \\
\frac{\partial z}{\partial s} & =2 x y^{2} \cdot(1)+2 x^{2} y \cdot(-1) \tag{26}\\
& =2(t+s)(t-s)^{2}+2(t+s)^{2}(t-s)
\end{align*}
$$

which we see, after expanding, is (25).
Example 4. Pg. 917 \#16 Consider

$$
\begin{equation*}
w=y^{3}-3 x^{2} y \tag{27}
\end{equation*}
$$

and

$$
\begin{equation*}
x=e^{s}, \quad s=e^{t} \quad \text { at } \quad s=-1, t=2 \tag{28}
\end{equation*}
$$

To use the chain rule (21) we need 6 derivatives. So

$$
\begin{array}{ll}
\frac{\partial w}{\partial x}=-6 x y, & \frac{\partial w}{\partial y}=3 y^{2}-3 x^{2} \\
\frac{\partial x}{\partial t}=0, & \frac{\partial x}{\partial s}=e^{s} \\
\frac{\partial y}{\partial t}=e^{t}, & \frac{\partial y}{\partial s}=0
\end{array}
$$

and from the chain rule (21) we obtain

$$
\begin{align*}
\frac{\partial w}{\partial t} & =-6 x y \cdot(0)+\left(3 y^{2}-3 x^{2}\right) \cdot\left(e^{t}\right) \\
& =\left(3 e^{2 t}-3 e^{2 s}\right) e^{t} \\
\frac{\partial w}{\partial s} & =-6 x y \cdot\left(e^{s}\right)+\left(3 y^{2}-3 x^{2}\right) \cdot(0) \tag{29}\\
& =-6 e^{s} e^{t} e^{s}
\end{align*}
$$

Then we evaluate these at the point so

$$
\begin{equation*}
\frac{\partial w}{\partial t}=3 e^{6}-3, \quad \frac{\partial w}{\partial s}=-6 \tag{30}
\end{equation*}
$$

More Variables

Example 5. Pg. 917 \#12 Consider

$$
\begin{equation*}
w=x y^{2}+x^{2} z+y z^{2} \tag{31}
\end{equation*}
$$

and

$$
\begin{equation*}
x=t^{2}, \quad y=2 t, \quad z=2 \tag{32}
\end{equation*}
$$

The appropriate chain rule is

$$
\begin{equation*}
\frac{d w}{d t}=\frac{\partial w}{\partial x} \cdot \frac{d x}{d t}+\frac{\partial w}{\partial y} \cdot \frac{d y}{d t}+\frac{\partial w}{\partial z} \cdot \frac{d z}{d t} \tag{33}
\end{equation*}
$$

These derivatives are fairly easy to calculate giving

$$
\begin{aligned}
\frac{d w}{d t} & =\left(y^{2}+2 x z\right) \cdot 2 t+\left(2 x y+z^{2}\right) \cdot 2+\left(x^{2}+2 y z\right) \cdot 0 \\
& =2 t\left(4 t^{2}+4 t^{2}\right)+2\left(4 t^{3}+4\right) \\
& =24 t^{3}+8
\end{aligned}
$$

Example 6. Pg. 917 \#22 Consider

$$
\begin{equation*}
w=x \cos (y z) \tag{35}
\end{equation*}
$$

and

$$
\begin{equation*}
x=s^{2}, \quad y=t^{2}, \quad z=s-2 t \tag{36}
\end{equation*}
$$

The appropriate chain rule is

$$
\begin{align*}
& \frac{\partial w}{\partial s}=\frac{\partial w}{\partial x} \cdot \frac{\partial x}{\partial s}+\frac{\partial w}{\partial y} \cdot \frac{\partial y}{\partial s}+\frac{\partial w}{\partial z} \cdot \frac{\partial z}{\partial s} \\
& \frac{\partial w}{\partial t}=\frac{\partial w}{\partial x} \cdot \frac{\partial x}{\partial t}+\frac{\partial w}{\partial y} \cdot \frac{\partial y}{\partial t}+\frac{\partial w}{\partial z} \cdot \frac{\partial z}{\partial t} \tag{37}
\end{align*}
$$

Here we calculate only the first one

$$
\begin{align*}
\frac{\partial w}{\partial s} & =\cos (y z) \cdot 2 s-x z \sin (y z) \cdot(0)-x y \sin (y z) \tag{1}\\
& =2 s \cos \left(t^{2}(s-2 t)\right)-t^{2} s^{2} \sin \left(t^{2}(s-2 t)\right) \tag{38}
\end{align*}
$$

